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Angular Fock coefficients: Refinement and further development
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The angular coefficients ψk,p(α,θ ) of the Fock expansion characterizing the S-state wave function of the
two-electron atomic system are calculated in hyperspherical angular coordinates α and θ . To solve the problem
the Fock recurrence relations separated into the independent individual equations associated with definite power
j of the nucleus charge Z are applied. The “pure” j components of the angular Fock coefficients, orthogonal to
the hyperspherical harmonics Ykl , are found for even values of k. To this end, the specific coupling equation is
proposed and applied. Effective techniques for solving the individual equations with the simplest nonseparable
and separable right-hand sides are proposed. Some mistakes or misprints made earlier in representations of ψ2,0,
are noted and corrected. All j components of ψ4,1 and the majority of components and subcomponents of ψ3,0

are calculated and presented. All calculations are carried out with the help of Wolfram Mathematica.
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I. INTRODUCTION

The helium isoelectronic sequence presenting a two-
electron atomic system contains the main features of a many-
body system with Coulomb interaction. As such, it can serve as
a simple basis for testing new quantum theories. The state of a
three-body system when all the particles are in the same space
point is known as the triple coalescence point (TCP). A long
time ago, Bartlett et al. [1] showed that the 1

S helium wave
function � could not be expanded near the TCP as an analytic
series in the interparticle coordinates r1, r2, and r12. Later
Bartlett [2] and Fock [3] proposed the following expansion
containing logarithmic functions:

�(r,α,θ ) =
∞∑

k=0

rk

[k/2]∑
p=0

ψk,p(α,θ )(ln r)p, (1)

where

α = 2 arctan(r2/r1), θ = arccos
[(

r2
1 + r2

2 − r2
12

)/
2r1r2

]
(2)

are the hyperspherical angles and r =
√

r2
1 + r2

2 is the hy-
perspherical radius. The convergence of expansion (1) was
rigorously studied in Refs. [4,5]. The method applied by
Fock [3] to investigate the 1

S helium wave functions was
generalized [6,7] for arbitrary systems of charged particles
and for states of any symmetry. The Fock expansion was used
to treat the two-hydrogen-atom system as the basic one for
all subsequent calculations in the theory of dispersion forces
[8]. The work of Fock was extended by expansion ψ2,0 into
hyperspherical harmonics (HH) [9,10]. The Fock expansion
was somewhat generalized [11] to be applicable to any S state
and its first two terms were determined. The first numerical
solution of the equations for the Fock coefficients was
presented in Ref. [12]. The most comprehensive investigation
of the methods of derivation and calculation of the angular
Fock coefficients was presented in the works of Abbott,
Gottschalk and Maslen [13–15]. Methods for simplifying the
recurrence relations generated by the Fock expansion (1) were
used [13] to determine the highest-power logarithmic terms to
sixth order. The wave function for S states was given to second

order in r as single and double infinite sums [13]. The results of
Ref. [14] hint at the existence of a closed-form wave function
for the few-body system. The closed form of the heliumlike
wave function including terms up to second order in r for 1

S
states and up to fourth order for 3

S states was derived in [15].
In this paper we build on the work in [13] and therefore we

try to adhere to the terminology used in that article. We correct
some substantial errors or misprints made in the final formulas
for ψ2,0, which is the basis for derivation of the representations
for ψk,p with k > 2. We apply different techniques to calculate
the angular Fock coefficients (AFCs) and to reduce some
of them to the form of the one-dimensional series with fast
convergence. This technique is close to that used in [15]. We
separate the AFCs into the components associated with definite
powers of the nucleus charge and present all components of
ψ4,1 and the majority of the components of ψ3,0.

We extensively use all the tools of the Wolfram Mathemat-
ica program [16]. Its most recent version, Mathematica 10,
will be referred as Mathematica. To ensure the correctness
of our analytical results, all of them have been subjected to
numerical verification.

II. GENERAL APPROACH

The Schrödinger equation for a system of two electrons, in
the field of an infinitely massive nucleus, is( − 1

2� + V
)
� = E�, (3)

where E is the energy and V is the Coulomb interaction.
For a system with nuclear charge Z, it is useful to define the
dimensionless potential V ≡ V r or

V = 1√
1 − sin α cos θ

− Z[csc(α/2) + sec(α/2)]. (4)

The first term on the right-hand side (rhs) of Eq. (4) represents
the electron-electron interaction and the second one the
electron-nucleus interaction. The Laplacian is

� = 1

r5

∂

∂r
r5 ∂

∂r
− 1

r2
�2,
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where the hyperspherical angular momentum (HAM) operator,
projected on S states, is

�2 = − 4

sin2 α

(
∂

∂α
sin2 α

∂

∂α
+ 1

sin θ

∂

∂θ
sin θ

∂

∂θ

)
. (5)

By substituting the Fock expansion (1) into the Schrödinger
equation (3), one obtains the Fock recurrence relation (FRR)
[13]

[�2 − k(k + 4)]ψk,p = hk,p, (6a)

hk,p = 2(k + 2)(p + 1)ψk,p+1

+ (p + 1)(p + 2)ψk,p+2

− 2V ψk−1,p + 2Eψk−2,p. (6b)

Atomic units are used throughout the paper. It is important
to note that ψk,p ≡ 0 for k < 0 or p > [k/2] (see, e.g., [13]).

We now solve the FRR (6) to find the angular Fock
coefficients ψk,p. It is well known that the FRR can be solved
by expanding the AFC in HH of the form (see, e.g., [13])

Ykl(α,θ ) =Nkl sinl αC
(l+1)
k/2−l(cos α)Pl(cos θ ),

k =0,2,4, . . . ; l = 0,1,2, . . . ,k/2, (7)

where Cν
n (x) and Pl(z) are Gegenbauer and Legendre polyno-

mials, respectively. The normalization constant is

Nkl = 2l l!

√
(2l + 1)(k + 2)(k/2 − l)!

2π3(k/2 + l + 1)!
, (8)

so that ∫
Ykl(α,θ )Yk′l′ (α,θ )d� = δkk′δll′ , (9)

where δmn is the Kronecker delta and the appropriate volume
element is

d� = π2 sin2 αdα sin θdθ, α ∈ [0,π ],θ ∈ [0,π ]. (10)

The HH (7) are the eigenfunctions of the operator �2, with
eigenvalues given by k(k + 4). They form a complete set of
basis functions in {α,θ}.

Notice that any general function of α and θ can be expanded
in hyperspherical harmonics as

F(α,θ ) =
∞∑

n=0

n/2∑
l=0

Fn,lYnl(α,θ ), (11)

where the expansion coefficients are

Fn,l =
∫

F(α,θ )Ynl(α,θ )d�. (12)

Note that the limits of summation in Eq. (11), as well as in
all of the HH expansions throughout the paper, are defined by
Eq. (7), which means that the step of summation over the first
index of the HH equals 2.

Two important properties of the AFC must be emphasized.
(i) Any AFC ψk,p can be separated into the independent

parts (components)

ψk,p(α,θ ) =
k−p∑
j=p

ψ
(j )
k,p(α,θ )Zj (13)

associated with a definite power of Z, according to the
separation of the rhs (6b)

hk,p(α,θ ) =
k−p∑
j=p

h
(j )
k,p(α,θ )Zj (14)

of the FRR (6a). Hence, each of the FRRs (6) can be separated
into the individual equations (IFRRs) for each component

[�2 − k(k + 4)]ψ (j )
k,p(α,θ ) = h

(j )
k,p(α,θ ). (15)

(ii) Any component of the angular Fock coefficient must
be finite at each point of the two-dimensional angular space
described by the hyperspherical angles α ∈ [0,π ] and θ ∈
[0,π ].

It is well known that the general solution of the inhomoge-
neous equation can be expressed as the sum of the general
solution of the associated homogeneous (complementary)
equation and the particular solution of the inhomogeneous
equation. Note that the linear combination of HH Ykl represents
the general solution of the homogeneous equation associated
with the inhomogeneous equation (15). It must be emphasized
that the HH are defined by Eq. (7) only for even values of k.
However, it may be verified that (a) the functions Ykl defined
by Eq. (7), but with odd values of k, also are solutions of the
homogeneous equation for Eq. (15) and (b) the point α = π is a
singular one for Ykl(α,θ ) with odd k. It should be emphasized
that this point is a pole of the order l + 1, hence no linear
combination of Ykl with different l (for given odd k) can cancel
this singularity. The important conclusion is that for odd k the
finite particular solution of Eq. (15) represents the physical
solution we are looking for. The exception is the case of the
particular solution, which is singular at the point α = π . This
singularity can be removed by subtracting the homogeneous
solution with equivalent behavior.

For even k, the solution
∑

l aklYkl of the homogeneous
equation associated with the FRR (6) must be included in
the general solution. The coefficients akl for bound states are
determined by ensuring that the wave function is normalizable
as r → ∞ (see, e.g., [15]). Hence, these coefficients cannot be
determined by analysis of the behavior of the wave function
(1) near the triple coalescence point. The exception is the case
of k = 2p, when h2p,p ≡ 0 (see, e.g., [13]). Moreover, it was
found [17] that a20 is identically zero (at least) for the 1

S
state by the required exchange symmetry of the spatial part
of the wave function. Otherwise, the particular solution of the
inhomogeneous equation (15) for the IFRR can contain (in
the general case) an admixture of some particular solution
of the associated homogeneous equation. The examples for
ψ

(1)
2,0 and ψ̃

(1)
2,0 obtained in Ref. [15] will be presented in

Sec. VI. In light of the foregoing, the physical solutions of
the inhomogeneous equation (15), containing an admixture of
the solution of the associated homogeneous equation, can be
considered as multivalued. Accordingly, the physical solution
of Eq. (15), containing no admixture of the solution of the
associated homogeneous equation, can be considered as single
valued. We present here single-valued solutions, which can
be produced by orthogonalization of the obtained component
ψ

(j )
k,p to each of the Ykl . The resulting solutions can be called
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“pure” because their HH expansions do not contain Ykl for any
possible l.

III. PREVIOUS RESULTS

In [13], the angular Fock coefficients were derived for
the general Coulomb potential. For the case of the helium
isoelectronic sequence the following AFCs become

ψ1,0(α,θ ) = −Zς + 1
2ξ, (16)

ψ2,1(α,θ ) = −Z

(
π − 2

3π

)
sin α cos θ, (17)

ψ3,1(α,θ ) = Z(π − 2)

36π
[6Zς sin α cos θ − ξ (6 − 5ξ 2)],

(18)

ψ4,2(α,θ ) = (π − 2)(5π − 14)

180π2
Z2(1 − 2 sin2 α sin2 θ ), (19)

where

ξ1 ≡ r1

r
= cos

(
α

2

)
, ξ2 ≡ r2

r
= sin

(
α

2

)
, ς = ξ1 + ξ2,

(20)

ξ ≡ r12

r
= √

1 − sin α cos θ. (21)

Using Mathematiaca, we have verified that the AFCs presented
above satisfy the FRR (6).

The derivation of the AFCs ψk,0 presents the most com-
plicated problem. For k = 2 this problem was successively
solved in the works [13–15], where the S states of different
symmetry were presented in the natural {r1,r2,r12} coordinates
for the general Coulomb potential. The expression for ψ2,0 in
the so-called Pluvinage coordinates {ζ,η} was presented in
Ref. [18]. In Ref. [19] the {ζ,η} representation from [18]
was transformed into the {r1,r2,r12} coordinates. Here we
present the closed form of the AFC ψ2,0 expressed in the
hyperspherical angular coordinates {α,θ}. The condensed form
of this AFC obtained from the results of [15] and adapted to
the helium isoelectronic sequence reads

ψ2,0 = 1

12
(1 − 2E) + Z

6π

{
− 2πy cos θ ln(ς + ξ )

+πx ln

[
(x + ςξ )2

ς2(γ + x)

]
+ γ (2β + π )

+π (y − 4ςξ ) + xβ

[
ln

(
γ − x

γ + x

)
+ i(2α − π )

]
+ xα ln

(
1 + cos θ

1 − cos θ

)
+ ixL

}
+ Z2

(
1

2
y + 1

3

)
, (22)

where

x = cos α, y = sin α, (23)

β = arcsin(sin α cos θ ), γ = ξ
√

2 − ξ 2, (24)

L = Li2[ei(α−β)] + Li2[−e−i(α−β)] − Li2[−e−i(α+β)]

− Li2[ei(α+β)]. (25)

Here Li2 is the dilogarithm function and i = √−1. We used
the most convenient representation

L(φ) = i
2

[Li2(e2iφ) − Li2(1) − φ(φ − π )]

for the Lobachevsky function L(φ), which is valid for 0 �
φ � π [20,21].

In the following sections we solve the IFFR (15) for the
components ψ

(j )
k,p of the AFC defined by Eq. (13). We propose

special methods for solving Eq. (15) with different kinds of its
right-hand sides defined by Eqs. (14) and (6b). First we show
that these methods allow us to derive the correct expressions
for the components of the AFCs (16)–(19) obtained previously
and then we fix the incorrect representation for ψ2,0 obtained
in [13]. Finally, we derive the components of the AFCs ψ4,1

and ψ3,0 that were not obtained previously.

IV. TECHNIQUE FOR SOLVING THE IFRR WITH THE
SIMPLEST NONSEPARABLE RHS

In this section we discuss the solution of Eq. (15) with the
rhs h

(j )
k,p represented by some polynomial in the variable ξ ≡

ξ (α,θ ) defined by Eq. (21). It follows from Eq. (6b) that h1,0 =
−2V , hence h

(0)
1,0 = −2/ξ represents the simplest example of

the rhs mentioned above. We will see that h
(1)
3,1, h

(0)
3,0, h

(1)
4,1, and

many others are examples of the rhs of that kind. It is clear that
a physical solution of the corresponding equation (15) reduces
to a function �(ξ ) of a single variable ξ . For example, it follows
from Eq. (16) that ψ

(0)
1,0 = ξ/2. It can be shown that the result

of the direct action of the HAM (5) on a twice differentiable
function �(ξ ) is

�2�(ξ ) = (ξ 2 − 2)�′′(ξ ) + 5ξ 2 − 4

ξ
�′(ξ ). (26)

Then Eq. (15) for ψ
(j )
k,p(α,θ ) ≡ �k(ξ ) can be rewritten in the

form

(ξ 2 − 2)�′′
k (ξ ) + 5ξ 2 − 4

ξ
�′

k(ξ ) − k(k + 4)�k(ξ ) = h(ξ ),

(27)
where h

(j )
k,p(α,θ ) ≡ h(ξ ). The general solution of the homoge-

neous equation associated with Eq. (27) can be represented in
the form

�
(h)
k (ξ ) = c1uk(ξ ) + c2vk(ξ ), (28)

where the linearly independent solutions

uk(ξ ) = P
1/2
k+3/2(ξ/

√
2)

ξ 4
√

2 − ξ 2
, vk(ξ ) = Q

1/2
k+3/2(ξ/

√
2)

ξ 4
√

2 − ξ 2
(29)

are expressed via the associated Legendre functions P μ
ν (x)

and Qμ
ν (x) of the first and second kinds, respectively. The

particular solution of the inhomogeneous equation (27) can
be found by the method of variation of parameters, which
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yields

�
(p)
k (ξ ) =vk(ξ )

∫ ξ uk(ξ ′)h(ξ ′)
(ξ ′2 − 2)Wk(ξ ′)

dξ ′

− uk(ξ )
∫ ξ vk(ξ ′)h(ξ ′)

(ξ ′2 − 2)Wk(ξ ′)
dξ ′, (30)

where the Wronskian has a simple form

Wk(ξ ) =
√

2(k + 2)

ξ 2(2 − ξ 2)3/2
. (31)

It was mentioned in Sec. II that the general solution of Eq. (27)
presents a sum of solutions (28) and (30). The coefficients c1

and c2 in Eq. (28) must be chosen in such a way that the
final solution becomes the physically acceptable one. It may
be verified that uk(ξ ) is divergent, whereas vk(ξ ) is finite at the
point ξ = √

2 (α = π/2,θ = π ) for all integral k. On the other
hand, at the point ξ = 0 (α = π/2,θ = 0), uk(ξ ) is divergent
for even values of k, whereas vk(ξ ) is divergent for odd k. This
implies the following conclusions. For odd values of k, one
should set c1 = c2 = 0 if the particular solution (30) satisfies
the finiteness condition (ii); otherwise the coefficients c1 and/or
c2 must be chosen in such a way as to remove the divergence.
For even values of k, the additional condition of orthogonality
of the final solution to Ykl(α,θ ) enables us to obtain the pure
solutions (see the end of Sec. II). In some complicated cases
(see, e.g., Appendix C) the coupling equation (61) can be
applied.

Equation (15), with all of the right-hand sides mentioned
at the beginning of this section, can be solved by the method
described above. However, for most of the right-hand sides,
one can apply the simpler technique described below.

Substituting �(ξ ) = Bξn into Eq. (26), one obtains the
relation

�2Bξn = Bnξn[n + 4 − 2(n + 1)ξ−2],

where B is an arbitrary constant, from which one obtains

[�2 − k(k + 4)]Bξn =Bξn[(n − k)(n + k + 4)

− 2n(n + 1)ξ−2]. (32)

Given Eq. (32), the particular solution (satisfying the finiteness
condition) of the corresponding equation

[�2 − k(k + 4)]�k(ξ ) = h(ξ ) (33)

can be found in the form

�k(ξ ) =
ih−1∑
i=0

Biξ
2i+i0 , (34)

where i0 = 1 for odd n, i0 = 0 for even n, and ih equals the
number of terms in the polynomial representing h(ξ ). The
unknown coefficients Bi can be determined by substituting
(34) into Eq. (33), using Eq. (32), and subsequently equating
the coefficients of the same powers of ξ .

The FRR are solved in order of increasing k and decreasing
p. We calculate the AFCs following this rule. Thus, setting
ψ0,0 = 1, the FRR (6a) for k = 1 and p = 0 is separated into
two

(�2 − 5)ψ (j )
1,0 = h

(j )
1,0 (j = 0,1), (35)

where h
(0)
1,0 = −2/ξ (see the beginning of this section). The

use of Eqs. (32)–(34) enables us to calculate the component of
the AFC

ψ
(0)
1,0 = 1

2ξ. (36)

This result is certainly consistent with Eq. (16). Note that all
solutions of Eq. (15) corresponding to the rhs h(ξ ) (except
ψ

(1c)
3,0 , which is treated in Sec. VII) can be calculated by the

simplified method presented by Eqs. (32)–(34).

V. TECHNIQUE FOR SOLVING THE IFRR WITH
A SEPARABLE RHS

This section is devoted to the method of solving Eq. (15)
with the rhs, represented by the product of functions, each of
them depending on only one of the angle variables. According
to Eq. (6b), the rhs of Eq. (35) with j = 1 has the form

h
(1)
1,0 = 2[csc(α/2) + sec(α/2)]. (37)

Many components of the rhs, presented in Eq. (6b), have a
form of the product

h
(j )
k,p(α,θ ) = Pl(cos θ )(sin α)lh(α), (38)

which for l = 0 reduces to a function of a single variable
α, similar to Eq. (37). For convenience, we have introduced
the notation h(α) ≡ h

(j )
k,p(α). To derive the corresponding

component of the AFCs, we propose the technique described
below.

It can be shown [15] that

�2Pl(cos θ )f (α)

= −4Pl(cos θ )

[
∂2

∂α2
+ 2 cot α

∂

∂α
− l(l + 1)

sin2 α

]
f (α).

(39)

Hence, the solution of Eq. (15) with ψ
(j )
k,p = Pl(cos θ )f (α)

reduces to finding the function f (α) as a suitable solution of
the equation[

4
∂2

∂α2
+ 8 cot α

∂

∂α
− 4l(l + 1)

sin2 α
+ k(k + 4)

]
f (α)

= −(sin α)lh(α). (40)

Setting f (α) = (sin α)lg(α), one obtains

4g′′(α) + 8(l + 1) cot αg′(α) + (k − 2l)(k + 2l + 4)g(α)

= −h(α) (41)

for the function g(α) ≡ g
(j )
k,p(α). The required solution of

Eq. (15) then becomes

ψ
(j )
k,p(α,θ ) = Pl(cos θ )(sin α)lg(α). (42)

To solve Eq. (41) it is convenient to make the change of variable

ρ = tan(α/2), (43)

which coincides with definition ρ = (1 − |x|)/y [given by
(A11) [13]] for 0 � α � π/2, where x and y are defined by
Eq. (23). Turning to the variable ρ, one obtains the following
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differential equation for the function g(ρ) ≡ g(α), instead of
Eq. (41):

(1 + ρ2)2g′′(ρ) + 2ρ−1[1 + ρ2 + l(1 − ρ4)]g′(ρ)

+ (k − 2l)(k + 2l + 4)g(ρ) = −h(ρ), (44)

where h(ρ) ≡ h(α). Using the method of variation of param-
eters, one obtains the particular solution of Eq. (44) in the
form

g(ρ) =vkl(ρ)
∫ ρ

ρc

ukl(ρ ′)h(ρ ′)
(1 + ρ ′2)2Wl(ρ ′)

dρ ′ − ukl(ρ)

×
∫ ρ

0

vkl(ρ ′)h(ρ ′)
(1 + ρ ′2)2Wl(ρ ′)

dρ ′, (45)

where the linearly independent solutions of the homogeneous
equation associated with Eq. (44) are

ukl(ρ) = ρ−2l−1(ρ2 + 1)k/2+l+2

× 2F1

(
k + 3

2
,
k

2
− l + 1;

1

2
− l; −ρ2

)
, (46a)

vkl(ρ) = (ρ2 + 1)k/2+l+2
2F1

(
k + 3

2
,
k

2
+l + 2; l + 3

2
; −ρ2

)
.

(46b)

Here 2F1 is the Gauss hypergeometric function. It is
important to note that (a) the corresponding Wronskian

Wl(ρ) = −2l + 1

ρ

(
ρ2 + 1

ρ

)2l+1

(47)

is independent of k and (b) for the case of k = 2l, the solution
v2l,l(ρ) = 1 follows directly from Eq. (44).

The lower limits of integration in Eq. (45) must be chosen
in such a way as to remove singularities by subtracting the
homogeneous solutions with equivalent behavior. This yields
ρc = 1 for even k and ρc = ∞ for odd k.

One should emphasize that, in fact, the functions in Eq. (46)
are represented by rather simple elementary functions. For the
particular case of the rhs (37) corresponding to k = 1, p = 0,
l = 0, j = 1, and ρc = ∞, one obtains

h(ρ) =2(1 + ρ)
√

1 + ρ2

ρ
, u10(ρ) = 1 − 3ρ2

ρ
√

1 + ρ2
,

v10(ρ) = 3 − ρ2

3
√

1 + ρ2
. (48)

Application of the form (45) yields for this case

ψ
(1)
1,0 = − 1 + ρ√

1 + ρ2
= −[sin(α/2) + cos(α/2)], (49)

which certainly corresponds to Eq. (16).

VI. EXPLICIT SOLUTION FOR ψ2, p

For the case of k = 2 and p = 1, the AFC is represented
by Eq. (17). Deriving the AFCs ψk,p with k = 2p is a very
simple task. Its simple solution was described in Sec. 4.3 of
Ref. [13].

According to (6), the FRR for k = 2 and p = 0 is

(�2 − 12)ψ2,0 = 8ψ2,1 − 2V ψ1,0 + 2E. (50)

Using Eqs. (4), (16), and (17), one can express Eq. (50) in
components

(�2 − 12)ψ (j )
2,0 = h

(j )
2,0 (j = 0,1,2), (51)

where

h
(0)
2,0 = 2E − 1, (52a)

h
(1)
2,0 = h

(1a)
2,0 + h

(1b)
2,0 , (52b)

h
(2)
2,0 = −4(1 + csc α); (52c)

h
(1a)
2,0 = 2[sin(α/2) + cos(α/2)](2 csc α − 3 cos θ + 3)

3
√

1 − sin α cos θ
,

(53a)

h
(1b)
2,0 = csc(α/2) + sec(α/2)

3
√

1 − sin α cos θ
− 8(π − 2) sin α cos θ

3π
.

(53b)

Using the technique presented in Sec. V, one obtains

u20(ρ) = 1

ρ
+ ρ − 8ρ

1 + ρ2
, v20(ρ) = 1 − ρ2

1 + ρ2
. (54)

Application of the form (45) for k = 2, p = 0, l = 0, j = 0,
and ρc = 1 yields

h(ρ) = 2E − 1, ψ
(0)
2,0 = 1

12 (1 − 2E). (55)

Similarly, for k = 2, p = 0, l = 0, j = 2, and ρc = 1 one
obtains

h(ρ) = −2(1 + ρ)2

ρ
, ψ

(2)
2,0 = 1

3
+ ρ

1 + ρ2
= 1

3
+ 1

2
sin α.

(56)

Specific solution for ψ
(1)
2,0

In Sec. III we presented (without derivation) the closed form
of ψ2,0 obtained from the results of the work [15]. This form
defined by Eq. (22) is very convenient for expressing ψ2,0 itself.
However, it includes functions (e.g., dilogarithm function with
its argument in the form of the exponential function) that are
too complex for further mathematical processing required for
derivation of the higher-order angular Fock coefficients. For
example, according to Eq. (6b), the rhs h3,0 of the FRR (6a)
for the AFCs ψ3,0 contains the term −2V ψ2,0. To obtain the
particular solution of the corresponding FRR, one needs to
apply the integral formula (45) with integrands containing
h3,0. It is clear that the reduction of the required integration to
the analytic form is impossible, whereas the representation of
ψ2,0 in the form of an infinite single or double series enables us
to provide this integration. Such series were presented in [13].
The problem is that, unfortunately, there are too many errors
or misprints in the important final formulas and the methods to
obtain them have been described rather superficially or not at
all. In this paper we rederive these formulas, while describing
in detail our method, which differs from that of [13].
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It is shown in Appendix A that the following representation
is valid:

ψ
(1)
2,0 = − 1

3 [sin(α/2)+ cos(α/2)]
√

1 − sin α cos θ+χ20(α,θ ),
(57)

where the HH expansion for the function χ20 reads

χ20(α,θ ) = 2

3

∑
nl

′ Dnl

(n − 2)(n + 6)
Ynl(α,θ ), (58)

with Dnl defined by Eq. (A21). The limits of this summation
are defined by Eq. (7) (replacing k by n, of course). The prime
indicates that n = 2 must be omitted from the summation.
Note that (58) requires a double summation (over n and l),
which converges slowly.

In [13] the following single series representation was
proposed:

χ20(α,θ ) =
∞∑
l=0

Pl(cos θ )(sin α)lσl(α). (59)

The problem is that the technique used to derive the functions
σl is complex and ambiguous and the final formulas [(A19),
(A22), and (A24) from [13]] were presented with errors or
misprints. We present here an alternative method to derive σl .

Suppose that a regular function, having the unnormalized
HH expansion (11), can be represented in the form of an infinite
single series

F(α,θ ) =
∞∑
l=0

Pl(cos θ )Ql(α). (60)

Multiplication of the right-hand sides of Eqs. (11) and (60)
by Y2l′l′(α,θ ) ≡ (sin α)l

′
Pl′ (cos θ ) and subsequent integration

over the angular space (10) enables one to obtain

F2l,l = (l + 1)!√
π�(l + 3/2)

∫ π

0
Ql(α)(sin α)l+2dα (61)

for the coefficients defined in Eq. (12). We used Eq. (8),
the orthogonality equation (9) for HHs, and the well-known
formula of orthogonality for the Legendre polynomials.
Setting Ql(α) = (sin α)lσl(α), where σl(α) is included in
Eq. (59), using the expansion (58) and representation (A21),
and simplifying, one obtains instead of the relation (61)

3(l − 1)(l + 1)(l + 3)
∫ π

0
(sin α)2l+2σl(α)dα − 1

=
√

π�(l+3/2)

2l+2l!
3F2

(
l+1

2
,
l

2
+ 1,l+3

2
; l + 2,l + 2; 1

)
.

(62)

Note that the case of l = 1 cannot be used in Eq. (62), because
the term with Y21 is excluded from the HH expansion (58). It
is clear that for l = 1 the integral on the left-hand side (lhs) of
Eq. (62) just equals zero.

Application of the relations (40)–(44) and (62) enables us
(details can be found in Appendix B) to derive the following
representations, which are valid in the range α ∈ [0,π/2]:

σ0 = 1

12

{(
2y − 1

y

)
α + x[1 + 2 ln(x + 1)] − y − 2

}
,

(63)

σ1 = 1

24π

[(
1

ρ3
+ 9

ρ
− 9ρ − ρ3

)
arctan ρ

− 1

ρ2
− ρ2 − π − 8

3
+ 16G

]
− ρ(ρ2 − 6ρ + 3)

72
+ 1

6
ln

(
1 + ρ2

4

)
, (64)

σl = −2−l−1

3

{
(1 + ρ2)l−1

[
lρ3

(l + 1)(l + 2)
− ρ2

l

+ ρ

l + 1
− l + 1

l(l − 1)

]
+ (l − 2)!�((l + 1)/2)

�(l + 1/2)�(l/2 + 1)

× 2F1

(
l − 1

2
,
l + 3

2
; l+3

2
; y2

)}
(l � 2), (65)

where G � 0.915 965 6 is Catalan’s constant and x,y and ρ are
defined by Eqs. (23) and (48), respectively. For π/2 < α � π ,
one needs to replace α by π − α, x by −x, and ρ by 1/ρ.
One can optionally set ρ = (1 − |x|)/y, which is valid for the
whole range α ∈ [0,π ]. Note that the factor 1/4 was missing in
the corresponding expression (A24) from [13]. Moreover, we
should emphasize that the representation (A22) from [13] for
σ1 is not correct, because it does not satisfy the inhomogeneous
differential equation (B8) and does not agree with the definition
(66) presented below.

Using series rearrangement (see [13,22]) of the double
summation in Eq. (58), we obtain another representation

σl = 1

6

∞∑
m=δl1

D4m+2l,l

(2m + l − 1)(2m + l + 3)
C

(l+1)
2m (x), (66)

which is valid for any l � 0. The convergence of expansion
(66) is very slow, however, it can be used to verify the
correctness of Eqs. (63)–(65).

The component ψ (1)
2,0 is represented by Eqs. (57) and (58). In

contrast, using definition (13), one can separate the component
ψ̃

(1)
2,0 out of the AFCs ψ2,0 defined by Eq. (22). We have

intentionally put a tilde over ψ because the components
obtained by these two different methods do not coincide at any
point of the angular space {α,θ}, since both representations
mentioned above are not the pure solutions (see the end of
Sec. II) of Eq. (51). In other words, the HH expansions of
both components include some admixture of the homogeneous
solutions Y2,l (l = 0,1) of Eq. (51). It is clear that χ20 cannot
contain such an admixture by definition (58). Thus, using
definitions (57) and (12), one obtains the coefficient

C
(p)
21 =N2

21

∫
Y21(α,θ ){− 1

3 [sin(α/2) + cos(α/2)]

× √
1 − sin α cos θ}d� = π + 4

9π

for the unnormalized HH, Y21(α,θ ) = sin α cos θ in the HH
expansion of ψ

(1)
2,0. It can be verified that C

(p)
20 = 0. Thus,

one obtains the pure component in the form ψ
(1p)
2,0 = ψ

(1)
2,0 −

C
(p)
21 sin α cos θ . It is clear that another way to obtain the

pure component ψ
(1p)
2,0 is to subtract C

(p)
21 from σ1(α) defined

by Eq. (64). The same method can be used to obtain the
pure component ψ̃

(1p)
2,0 = ψ̃

(1)
2,0 − C̃

(p)
21 sin α cos θ based on the
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analytic expression (22). Numerical integration yields the
following value of the coefficient:

C̃
(p)
21 = N2

21

∫
Y21(α,θ )ψ̃ (1p)

2,0 (α,θ )d� = 0.315 837 352,

whereas C̃
(p)
20 = 0. The pure components ψ

(1p)
2,0 and ψ̃

(1p)
2,0

certainly coincide for any angular point under consideration.

VII. SOLUTIONS FOR AFCs WITH k > 2

For k = 3 and p = 1, the FRR (6) reduces to

[�2 − 21]ψ3,1 = −2V ψ2,1, (67)

where V and ψ2,1 are defined by Eqs. (4) and (17), respectively.
According to Eqs. (13)–(15), Eq. (67) can be represented in
components as

[�2 − 21]ψ (j )
3,1 = h

(j )
3,1 (j = 1,2), (68)

where

h
(1)
3,1 = 2B

(
1

ξ
− ξ

)
, (69a)

h
(2)
3,1 = −4B cos θ [sin(α/2) + cos(α/2)], (69b)

with the constant B = (π − 2)/3π and ξ defined by Eq. (21).
Using the technique described in Sec. IV, one easily find the
component

ψ
(1)
3,1 = Bξ

(
5

12ξ 2 − 1
2

)
. (70)

To solve Eq. (68) with j = 2, one can apply the technique
described in Sec. V. Thus, for the case of k = 3, p = 1, l = 1,
and ρc = ∞, one obtains

h(ρ) =−2B
(ρ+1)

√
ρ2 + 1

ρ
, u3,1(ρ) = 1 + 14ρ2 − 35ρ4

ρ3
√

1 + ρ2
,

v3,1 =35 − 14ρ2 − ρ4

35
√

1 + ρ2
. (71)

Application of the formula (45) then yields

g(ρ) = B(1 + ρ)

2
√

1 + ρ2
,

ψ
(2)
3,1 =g sin α cos θ

=B

2

[
sin

(
α

2

)
+ cos

(
α

2

)]
sin α cos θ. (72)

The components represented by Eqs. (70) and (72) are certainly
consistent with the AFC ψ3,1 presented by Eq. (18).

AFCs that were not calculated previously

Let us consider the FRR for the following two cases: (i)
k = 3 and p = 0 and (ii) k = 4 and p = 1. According to (6)

one obtains

(�2 − 21)ψ3,0 = 10ψ3,1 − 2V ψ2,0 + 2Eψ1,0, (73)

(�2 − 32)ψ4,1 = 24ψ4,2 − 2V ψ3,1 + 2Eψ2,1. (74)

Using Eqs. (13)–(15) and the AFCs previously determined,
one can represent the FRRs (73) and (74) in components as
follows:

(�2 − 21)ψ (j )
3,0 = h

(j )
3,0 (j = 0,1,2,3), (75)

(�2 − 32)ψ (j )
4,1 = h

(j )
4,1 (j = 1,2,3), (76)

where

h
(0)
3,0 = 2Eψ

(0)
1,0 − 2V0ψ

(0)
2,0 = Eξ + 2E − 1

6ξ
, (77)

h
(1)
3,0 = 2Eψ

(1)
1,0 + 2V1ψ

(0)
2,0 − 2V0ψ

(1)
2,0 + 10ψ

(1)
3,1

= −2

ξ
χ20(α,θ ) + 5(π − 2)(5ξ 3 − 6ξ )

18π
+

(
1 − 2E

3

)
× ς

sin α
+ 2

(
1

3
− E

)
ς, (78)

h
(2)
3,0 = 2V1ψ

(1)
2,0 − 2V0ψ

(2)
2,0 + 10ψ

(2)
3,1

= 4ς

sin α
χ20(α,θ ) − 2

3

(
2ξ + 1

ξ

)
− 4ξ

3 sin α

− sin α

ξ
+ 5(π − 2)

3π
ς sin α cos θ, (79)

h
(3)
3,0 = 2V1ψ

(2)
2,0 = 2

3

(
2

sin α
+ 3

)
ς, (80)

h
(1)
4,1 = 2Eψ

(1)
2,1−2V0ψ

(1)
3,1 = π−2

18π
[6(1 − 2E)+(12E − 5)ξ 2],

(81)

h
(2)
4,1 = 2V1ψ

(1)
3,1 − 2V0ψ

(2)
3,1 + 24ψ

(2)
4,2 = π − 2

15π2

×
{

2(5π − 14)

[
1 − 4

3
sin2 α + 4

3
sin2 αP2(cos θ )

]
+ 5πς

[
5

3 sin α
ξ 3 +

(
1 − 2

sin α

)
ξ − 1

ξ

]}
, (82)

h
(3)
4,1 = 2V1ψ

(2)
3,1 = π−2

3π

[
2+ tan

(
α

2

)
+ cot

(
α

2

)]
sin α cos θ.

(83)

Here V0 and V1 are defined by the relation V = V0 − ZV1 and
Eq. (4), whereas ς , ξ , and χ20 are defined by Eqs. (20), (21),
and Eq. (59), respectively.

The right-hand sides h
(0)
3,0 and h

(1)
4,1 involve functions of only

ξ , so that the corresponding components ψ
(0)
3,0 and ψ

(1)
4,1 can be

derived by the simplified method described in Sec. IV [see
Eqs. (32)–(34)]. The results are presented in Table I. The
components ψ

(3)
3,0 and ψ

(3)
4,1, obtained by the technique described

in Sec. V, are presented in Table I as well.
Extending the separation presented in Sec. II, one can

obtain the solutions to the majority of subcomponents of the
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TABLE I. Simplest subcomponents of the solutions and the corresponding right-hand sides of the FRRs.

k p j h
(j )
k,p ψ

(j )
k,p

1 0 0 −2/ξ ξ/2

3 1 1 2(π−2)
3π

(ξ−1 − ξ ) π−2
36π

(5ξ 2 − 6)ξ

3 0 0 Eξ + 2E−1
6 ξ−1 ξ [ 1−2E

24 + E−2
72 ξ 2]

3 0 1a − 5(π−2)
3π

ξ 5(π−2)
72π

ξ 3

3 0 2a − 2
3 (2ξ + ξ−1) 1

6 ξ (1 − 1
3 ξ 2)

4 1 1 π−2
18π

[6(1 − 2E) + (12E − 5)ξ 2] π−2
2880π

[3(32E − 15) − 8(12E − 5)ξ 2]

3 0 1b 1
3 ς [ 1−2E

sin α
+ 2(1 − 3E)] 1

36 ς [4E − 1 + (E − 1) sin α]

3 0 3 2
3 ( 2

sin α
+ 3)ς − 1

36 (2 + 5 sin α)ς

4 1 2b 2(π−2)(5π−14)
45π2 (3 − 4 sin2 α) (π−2)(5π−14)

540π2 csc α[α cos(3α) − 1
6 sin(3α)]

4 1 3 π−2
3π

[2 + tan(α/2) + cot(α/2)] sin α cos θ − π−2
120π

(4 + 5 sin α) sin α cos θ

remaining components represented by Eqs. (75) and (76). In
particular, let us perform the additional separations

ψ
(1)
3,0 = ψ

(1a)
3,0 + ψ

(1b)
3,0 + ψ

(1c)
3,0 + ψ

(1d)
3,0 , (84)

ψ
(2)
3,0 = ψ

(2a)
3,0 + ψ

(2b)
3,0 + ψ

(2c)
3,0 + ψ

(2d)
3,0 , (85)

ψ
(2)
4,1 = ψ

(2b)
4,1 + ψ

(2c)
4,1 + ψ

(2d)
4,1 . (86)

Subcomponents ψ
(1a)
3,0 and ψ

(2a)
3,0 are calculated using Eqs. (32)–

(34) and are presented in Table I together with the correspond-
ing right-hand sides. Subcomponents ψ

(1b)
3,0 and ψ

(2b)
4,1 , obtained

by the method described in Sec. V, are presented in Table I
together with the corresponding right-hand sides. Note that
the expression for ψ

(2b)
4,1 presented in Table I is correct for

0 � α � π/2, whereas for π/2 < α � π one should replace
α by π − α. The remaining right-hand sides are

h
(1c)
3,0 = 25(π − 2)

18π
ξ 3, h

(1d)
3,0 = −2

ξ
χ20(α,θ ), (87)

h
(2b)
3,0 =5(π − 2)

3π
ς sin α cos θ, h

(2c)
3,0 = − 4ξ

3 sin α
,

h
(2d)
3,0 = 4ς

sin α
χ20(α,θ ), (88)

h
(2c)
4,1 = 8(π − 2)(5π − 14)

45π2
sin2 αP2(cos θ ), (89a)

h
(2d)
4,1 = π − 2

3π

[
sin

(
α

2

)
+ cos

(
α

2

)]
×

[
5

3 sin α
ξ 3 +

(
1 − 2

sin α

)
ξ − 1

ξ

]
. (89b)

To calculate the subcomponent ψ (1c)
3,0 , one can use the particular

solution presented in Sec. IV. Setting k = 3 and h(ξ ) = ξ 3 in
Eq. (30), one obtains

�
(p)
3 (ξ ) = 1

8

[
ξ (3−5ξ 2)

6
− (4ξ 4 − 10ξ 2 + 5) arcsin(ξ/

√
2)

5
√

2 − ξ 2

]
.

The problem is that �
(p)
3 (ξ ) is singular at the point ξ =√

2 (α = π/2,θ = π ). This singularity can be eliminated with

the help of the function u3(ξ ) [see Eq. (29)] representing a
solution of the associated homogeneous equation and having
the same kind of singularity. Thus, given that

x1 = lim
ξ→√

2
�

(p)
3 (ξ )

√
ξ −

√
2 = iπ

80 × 23/4
,

x2 = lim
ξ→√

2
u3(ξ )

√
ξ −

√
2 = − i√

2π
,

one obtains finally

ψ
(1c)
3,0 (α,θ ) = 25(π − 2)

18π

[
�

(p)
3 (ξ ) − x1

x2
u3(ξ )

]
= 25(π − 2)

144π

[
ξ (3 − 5ξ 2)

6

+ (4ξ 4 − 10ξ 2 + 5) arccos(ξ/
√

2)

5
√

2 − ξ 2

]
. (90)

Using the technique presented in Sec. V, one obtains for
subcomponents with the right-hand sides h

(2b)
3,0 and h

(2c)
4,1 defined

by Eqs. (88) and (89a), respectively,

ψ
(2b)
3,0 = (π − 2)(1 + ρ2)−3/2

288πρ2
[α − 2ρ + 14αρ2

− 35ρ3(π − α + 2) − 35ρ4(α + 2)

+ (14ρ5 + ρ7)(π − α) − 2ρ6] cos θ, (91)

ψ
(2c)
4,1 = − (π − 2)(5π − 14)

8640π2
sin2 αP2(cos θ )

{
187

15
+ 1

4ρ5

× [α(ρ2 − 1)(3ρ8 + 28ρ6 + 178ρ4 + 28ρ2 + 3)

+ 6ρ(ρ8 + 8ρ6 + 8ρ2 + 1)]

}
, (92)

where ρ is defined by Eq. (43). Representations (91) and (92)
are correct, as previously, for α ∈ [0,π/2]. For π/2 < α � π

one should replace ρ by 1/ρ, and α by π − α. At first sight it
may seem that the rhs of Eq. (91) diverges as α → 0. However,
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TABLE II. Numerical coefficients μ
(1)
ln (columns 2–6) and λl included in Eq. (C14).

�
��l

n
0 1 2 3 4 λl

3 −522720 −1051985 255552 −90435 227872 495
4 −3953664 −8398510 3727360 −419475 3335168 2002
5 −30351360 −97464675 44154880 −6969375 39739392 6552
6 −2882764800 −9137296644 5778063360 −189629055 5234966528 235620
7 −270052392960 −1196759060145 696562155520 −65054175615 635252473856 7759752
8 −2853364039680 −12357527011830 9051962343424 −67609913085 8305992794112 27387360
9 −5615652962304 −31944952238815 21219319480320 −1350136582575 19579564720128 17341632
10 −132056403148800 −733168078648720 580357875302400 1595198130669 538208290996224 127481640

it may be verified that it is finite and moreover ψ
(2b)
3,0 tends to

zero as α → 0.
For subcomponent ψ (2d)

4,1 corresponding to the rhs (89b) we use
the representation

ψ
(2d)
4,1 (α,θ ) =

∞∑
l=0

Pl(cos θ )(sin α)l tl(α), (93)

which is similar to Eq. (59). The function τl(ρ) ≡ tl(α) can be
represented (details can be found in Appendix C) in the form

τ0(ρ) = π − 2

108π (ρ2 + 1)2

{
1

15
(19ρ5 + 75ρ4 − 60ρ3 + 30ρ2

+45ρ − 45) +
(

ρ5 − 15ρ3 + 15ρ − 1

ρ

)
arctan ρ

+(3ρ4 − 10ρ2 + 3)

[
247

75π
− 4G

π
− ln

(
ρ2 + 1

4

)]}
,

(94)

τ1(ρ) = − π − 2

302400πρ2(ρ2 + 1)

{
1268ρ7 − 2505ρ6 + 1960ρ5

+ 32 263ρ4 + 18900ρ3 + 18 305ρ2 − 735

+ 735

[(
ρ7 + 20ρ5 − 90ρ3 + 20ρ + 1

ρ

)
arctan ρ

− 32ρ2(ρ2 − 1) ln

(
ρ2 + 1

2

)]}
, (95)

τ2(ρ) = π − 2

14 175πρ4

{
14

π

(
41 − 150G + 3765π

128

)
ρ4

+ 5

128
(672ρ9 − 465ρ8 + 760ρ7 − 6720ρ6

− 5880ρ5 + 2520ρ2 + 315)

+ 525

[
(ρ2−1)

128

(
3ρ7+28ρ5+178ρ3 + 28ρ + 3

ρ

)

× arctan ρ − ρ4 ln

(
ρ2 + 1

4

)]}
, (96)

τl(ρ) = (π−2)(ρ2 + 1)l−2

135π23(l+1)λlρ2l+1

[
ρ2l+2

4∑
n=0

μ
(1)
ln ρn+ρ

l∑
n=0

μ
(2)
ln ρ2n

−μ
(2)
l0 (ρ2 + 1)6 arctan ρ

l−3∑
n=0

μ
(3)
ln ρ2n

]
+A2(l)v4l(ρ),

(l � 3), (97)

where G is Catalan’s constant and the function v4l(ρ) is defined
by Eq. (46b) for k = 4. The A2(l) factors are presented in
Eqs. (C29)–(C31) and the coefficients μ

(i)
nl (i = 1,2,3) and

λl can be found in Tables II and III. It is important that the
A2(l) are equal to zero for odd l. Note that for l = 1 we have
obtained the admixture coefficient F41 = 0 (see Appendix C).
This means that for all odd l in expansion (93), the solution of
the form (45) just gives the correct results for τl satisfying the
coupling equation (61) or the equivalent equation (C15).

Remember that the general solution of the FRR (74) must
contain the addition of the form a40Y40 + a41Y41 + a42Y42,
where the coefficients a4l can be determined only by analysis
of the asymptotic behavior of the wave function (see the end of
Sec. III). Using Eqs. (11) and (12), one can detect the presence
of an admixture of the HH Y4l in any component ψ

(j )
4,1 and then

get rid of such an admixture, just as was done in Sec. VI for
ψ

(1)
2,0. Therefore, only the pure components ψ

(j )
4,1 are presented

in Eqs. (92)–(97) and Table I.
The last subcomponent we present here is ψ

(2c)
3,0 . It is the

physical solution of Eq. (75) with its rhs h
(2c)
3,0 defined by

Eq. (88). To apply the technique described in Sec. V, we again
use the single sum representation

ψ
(2c)
3,0 (α,θ ) =

∞∑
l=0

Pl(cos θ )(sin α)lφl(ρ), (98)

where ρ is defined by Eq. (43). The function φl(ρ) is obtained
(details can be found in Appendix D) in the form

φl(ρ) = φ
(p)
l (ρ) + clv3l(ρ), (99)

where the reduction of the formula (46b) for k = 3 and 0 �
ρ � 1 yields

v3l(ρ) = (ρ2 + 1)l−3/2

[
(2l − 3)(2l − 1)

(2l + 3)(2l + 5)
ρ4

+ 2(2l − 3)

2l + 3
ρ2 + 1

]
. (100)
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TABLE III. Numerical coefficients μ
(2)
ln and μ

(3)
ln included in Eq. (C14).

�����l

μ
μ

(2)
ln (n = 0,1, . . . ,l) μ

(3)
ln (l = 0, . . . ,l − 3)

3 {−72765, − 412335, − 960498, − 2625678} {1}
4 {1273965,5945170,9597203,3639900, − 14747117} {1, − 1}
5 {−8513505, − 34999965, − 45846801, − 10135125,10135125, − 146271983} {1, − 14

9 ,1}
6 {1456717185,5473725180,6250641012,983757060, − 777756650, {1, − 21

11 , 21
11 , − 1}

983757060, − 13174180236}
7 {−101948591745, − 358127104335, − 370912265724, − 46034728740,31617756170, {1, − 28

13 , 378
143 , − 28

13 , 1}
−31617756170,46034728740, − 1585784814084}

8 {1804845357315,6016151191050,5790931172103,602937350136, − 374632125450, {1, − 7
3 , 42

13 , − 42
13 , 7

3 ,−1}
328821494780, − 374632125450,602937350136, − 16476813837561}

9 {−2508790869585, − 8018292387105, − 7290251115147, − 663280843995,381499104294, {1, − 42
17 , 63

17 , − 924
221 ,

−306553004730,306553004730, − 381499104294,663280843995, − 39837938484597} 63
17 , − 42

17 ,1}
10 {95748321954285,295643941472880,256791268415682,21004496987760, {1, − 49

19 , 1323
323 , − 1617

323 ,

−11353909326045,8538680495904, − 7845295711140,8538680495904, 1617
323 , − 1323

323 , 49
19 , − 1}

−11353909326045,21004496987760, − 931653655078718}

The particular solution φ
(p)
l of the corresponding differential

equation in ρ [see Eq. (D4)] can be represented in the form

φ
(p)
l (ρ) = 2−l(ρ2 + 1)l−3/2

3(2l − 3)(2l − 1)(2l + 3)(2l + 5)

×
[

2f1l(ρ) + 2f2l(ρ) + f3l(ρ)

2l + 1

]
, (101)

where

f1l(ρ) = [9 − 4l(l + 2)]ρ + (13 − 4l2)ρ3, (102)

f2l(ρ) = [(2l − 3)(2l − 1)ρ4 + 2(2l − 3)(2l + 5)ρ2

+ (2l + 3)(2l + 5)] arctan(ρ), (103)

f3l(ρ) = −[(2l + 3)(2l + 5)ρ4 + 2(2l − 3)(2l + 5)ρ2

+ (2l − 3)(2l − 1)]
ρ

l + 1
2F1(1,l + 1; l + 2; −ρ2).

(104)

Note that the hypergeometric function presented in Eq. (104)
can be expressed through elementary functions [see Eq. (D8)].
The coefficient cl is defined by Eqs. (D17)–(D25). It is clear
that formulas (99)–(104) are valid for 0 � α � π/2. For
π/2 < α � π , one should replace ρ by 1/ρ.

There are only two subcomponents ψ
(1d)
3,0 and ψ

(2d)
3,0 that

were not determined in this research. The reason is that the
right-hand sides h

(1d)
3,0 and h

(2d)
3,0 of the corresponding IFRRs

[see Eqs. (87) and (88)] include the function χ20 presented
in expansion (59), which complicates the calculations and
dramatically increases the size of the final formulas.

VIII. CONCLUSION

Solutions of the Fock recurrence relations (6) were used
to derive the angular coefficients ψk,p(α,θ ) of the Fock
expansion (1) describing the S-state wave function of the

two-electron atomic system. The hyperspherical coordinates
with hyperspherical angles (2) were applied.

The FRRs were separated into the independent individual
equations (15) associated with each definite power j (p �
j � k − p) of the nucleus charge Z. The appropriate solutions
ψ

(j )
k,p of Eq. (15) present the independent components (of the

AFC) defined by Eqs. (13) and (14). The property of finiteness
at the boundary points of the hyperspherical angular space
was extensively used to derive each component. The pure
components not containing the admixture of the HH Ykl were
found for even values of k.

A few methods for solving the individual FRRs were
proposed. A simple technique for solving the IFRRs with the
simplest nonseparable right-hand side (14) was described in
Sec. IV; an effective method for solving the IFRRs with a
separable right-hand side of a specific but frequent kind was
presented in Sec. V.

Some mistakes or misprints made in Ref. [13] for the double
and single infinite series representations of the component ψ (1)

2,0
were noted and corrected.

The coupling equation (61) was proposed and applied in
the case of a single series representation for the component of
the AFC.

Using the techniques mentioned above, all the components
of the AFC ψ4,1 and the majority of components and
subcomponents of ψ3,0 were calculated and presented in Tables
I–III and in the explicit formulas of Sec. VII. Details of all
these calculations are in Appendixes A–D. All calculations
(both analytical and numerical) were carried out with the help
of the program Mathematica.
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APPENDIX A

For ease of comparison, let us express ψ
(1)
2,0 defined by Eqs. (51), (52b), and (53), in the form

ψ
(1)
2,0 = χ20(α,θ ) + ϕ(α,θ ), (A1)

where

ϕ(α,θ ) = − 1
3 [sin(α/2) + cos(α/2)]

√
1 − sin α cos θ. (A2)

By direct action of the HAM operator defined by Eq. (5), one obtains

(�2 − 12)ϕ(α,θ ) = h
(1a)
2,0 , (A3)

where the rhs of Eq. (A3) is defined by Eq. (53a). Hence,

(�2 − 12)χ20(α,θ ) = h
(1b)
2,0 , (A4)

where the rhs of Eq. (A4) is defined by Eq. (53b).
First, we need to solve Eq. (A4) by expanding χ20 in HH. To this end, following [13], let us consider the HH expansion of the

function

f (α,θ ) ≡ cos(α/2) + sin(α/2)

sin α
√

1 − sin α cos θ
=

∑
nl

DnlYnl(α,θ ), (A5)

where the Ynl are the unnormalized HH. It follows from (7), (11), and (12) that

Dnl = N2
nl

∫
f (α,θ )Ynl(α,θ )d�. (A6)

According to Refs. [13,23], the following representation holds for ν > −2:

ξν =
√

π

�(−ν/2)

∞∑
l=0

Pl(cos θ )
�(l − ν/2)

�(l + 1/2)

(
sin α

2

)l

Fl,ν(α), (A7)

where

Fl,ν(α) = 2F1

(
l

2
− ν

4
,
l

2
− ν

4
+ 1

2
; l + 3

2
; sin2 α

)
(A8)

represents the Gauss hypergeometric function and ξ is defined by Eq. (21).
Inserting (7) (for unnormalized HH) and (A7) for ν = −1 into (A6) and using the orthogonality of the Legendre polynomials,

one obtains

Dnl = N2
nl

π221−l

2l + 1

∫ π

0
(sin α)2l+1C

(l+1)
n/2−l(cos α)f +(α)dα, (A9)

where

f +(α) = [cos(α/2) + sin(α/2)] 2F1

(
l

2
+ 1

4
,
l

2
+ 3

4
; l + 3

2
; sin2 α

)
.

It is important to emphasize the following substantial property. It may be verified that the integral on the rhs of Eq. (A9) differs
from zero only for even values of n/2 − l.

The following relation has been proved to be correct [see, e.g., Eq. (90) in [13]]:

f +(α) = 2F1

(
l

2
,
l + 1

2
; l + 1; sin2 α

)
+ 1

2
sin α 2F1

(
l + 1

2
,
l

2
+ 1; l + 2; sin2 α

)
. (A10)

Inserting (A10) into (A9), one obtains

Dnl = N2
nl

π221−l

2l + 1

(
I1 + 1

2
I2

)
, (A11)

where

I1 =
∫ 1

−1
y2lC

(l+1)
n/2−l(x) 2F1

(
l

2
,
l + 1

2
; l + 1; y2

)
dx, (A12)

I2 =
∫ 1

−1
y2l+1C

(l+1)
n/2−l(x) 2F1

(
l + 1

2
,
l

2
+ 1; l + 2; y2

)
dx. (A13)
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We made the change of variable, corresponding to the notation in (23), that is, x = cos α and y = sin α. Recall the well-known
formula of orthogonality for the Gegenbauer polynomials (in terms of x and y)∫ 1

−1
y2l+1C(l+1)

m (x)C(l+1)
n (x)dx = π (n + 2l + 1)!

22l+1n!(n + l + 1)(l!)2
δmn, (A14)

where δmn is the Kronecker delta. In order to apply Eq. (A14) to reduce the integral (A12), we propose to use expansion (A9)
from [13] with n = −1 and ν = l + 1, which gives

y−1
2F1

(
l

2
,
l + 1

2
; l + 1; y2

)
= (l!)2

π

∞∑
m=0

(l + 2m + 1)�2(m + 1/2)

�2(l + m + 3/2)
G1(l,m)C(l+1)

2m (x), (A15)

where

G1(l,m) = 3F2

(
l

2
,
l + 1

2
,
1

2
;

1

2
− m,l + m + 3

2
; 1

)
(A16)

is the generalized hypergeometric function. Inserting (A15) into (A12) and using (A14), one easily obtains

I1 = �(m + 1/2)(l + m)!

m!�(l + m + 3/2)
G1(l,m), (A17)

where m = n/4 − l/2.
In order to apply Eq. (A14) to the reduction of the integral (A13), we propose to use expansion (A6) from [13] with ν = l + 1,

which gives

2F1

(
l + 1

2
,
l

2
+ 1; l + 2; y2

)
= (l + 1)!√

π

∞∑
m=0

(−1/4)m�(m + 1/2)

(l + m + 1)!
G2(l,m)C(l+1)

2m (x), (A18)

where

G2(l,m) = 3F2

(
l

2
+ m + 1

2
,
l

2
+ m + 1,l + m + 3

2
; l + m + 2,l + 2m + 2; 1

)
. (A19)

Inserting (A19) into (A13) and using (A14), one obtains

I2 = π (l + 1)(−1)m(2l + 2m + 1)!

2n+1l!m!(l + 2m + 1)(l + m + 1)!
G2(l,m), (A20)

where again m = n/4 − l/2. Substitution of Eqs. (A17), (A20), and (8) into (A11) yields finally

Dnl = 2l(l!)2(2m)!√
πm!(2l + 2m + 1)!

[
2(l + 2m + 1)�(m + 1/2)(l + m)!√

π�(l + m + 3/2)
G1(l,m) + (l + 1)(−1)m�(l + m + 3/2)

22ml!(l + m + 1)
G2(l,m)

]
, (A21)

where m = n/4 − l/2 is a non-negative integer. By direct numerical comparison with definition (A6), it is easy to verify that
relation (A21) is correct, whereas formula (93) in [13] is not correct. Note that Eq. (A21) is not a single representation for Dnl .
We have found at least two other representations.

It should be emphasized that representation (A21) for Dnl is correct only for even n/2 − l; otherwise, Dnl = 0. In particular,
D20 = 0. It follows from (A21) that D21 = 4 − 8/π , which means that using Eqs. (A5) and (53b), one can rewrite Eq. (A4) in
the form

(�2 − 12)χ20(α,θ ) = 2

3

∑
nl

′
DnlYnl(α,θ ), (A22)

where the prime indicates that n = 2 is omitted from the summation. Taking into account that the eigenvalues of the �2 operator
are given by n(n + 4), one obtains for the HH expansion

∑
nl XnlYnl of the function χ20

(�2 − 12)χ20(α,θ ) =
∑
nl

′
Xnl(n − 2)(n + 6)Ynl(α,θ ). (A23)

Comparison of (A22) and (A23) yields

χ20(α,θ ) = 2

3

∑
nl

′ Dnl

(n − 2)(n + 6)
Ynl(α,θ ). (A24)

Recall that the contributions of the terms with n = 2 must be treated separately as the solutions of the associated homogeneous
equation.
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APPENDIX B

To obtain the analytical representations for σl , it is necessary to substitute expansion (59) and representation (A7) for ν = −1
into the lhs and rhs of Eq. (A4), respectively. Subsequent application of the relations (40) and (41) for k = 2 yields

∞∑
l=0

Pl(cos θ )(sin α)l[4σ ′′
l (α) + 8(l + 1) cot ασ ′

l (α) − 4(l − 1)(l + 3)σl(α)]

= 8(π − 2)

3π
sin α cos θ − 1

3

[
csc

(
α

2

)
+ sec

(
α

2

)] ∞∑
l=0

Pl(cos θ )

(
sin α

2

)l

2F1

(
l

2
+ 1

4
,
l

2
+ 3

4
; l + 3

2
; sin2 α

)
. (B1)

Equating the expansion coefficients for the Legendre polynomials (in cos θ ) of the same order, one obtains ordinary differential
equations that must be solved using the boundary conditions (ii) and the coupling equation (62). We solve these equations using
the variable ρ defined by Eq. (43). Given that

sin α = 2ρ/(ρ2 + 1), csc(α/2) + sec(α/2) = ρ−1(ρ + 1)
√

ρ2 + 1, (B2)

the following relationship will be useful for further consideration:

2F1

(
l

2
+ 1

4
,
l

2
+ 3

4
; l + 3

2
;

4ρ2

(ρ2 + 1)2

)
=

{
(ρ2 + 1)l+1/2, 0 � ρ � 1
(ρ2 + 1)l+1/2ρ−2l−1, ρ > 1.

(B3)

Special cases of l = 0, l = 1, and l � 2 will be considered.

1. Case l = 0

Equating coefficients for the Legendre polynomials of zeroth order (l = 0) on both sides of Eq. (B1) and turning to the variable
ρ, one can employ Eq. (44) for k = 2 and l = 0. This yields

(ρ2 + 1)2S ′′
0 (ρ) + 2(ρ2 + 1)

ρ
S ′

0(ρ) + 12S0(ρ) = −h(ρ), (B4)

where the substitution g(ρ) = S0(ρ) ≡ σ0(α) was applied. Using Eqs. (B2) and (B3), one obtains for the rhs, in the range
ρ ∈ [0,1] (0 � α � π/2),

h(ρ) = (ρ + 1)(ρ2 + 1)

3ρ
. (B5)

For l = 0 one can employ formula (45) with k = 2 and ρc = 1, which gives the following solution of Eq. (B4) for 0 � ρ � 1:

S0(ρ) = ρ{2(ρ2 − 1) ln[(ρ2 + 1)/2] − ρ(3ρ + 2) − 1} − (ρ4 − 6ρ2 + 1) arctan ρ

12ρ(ρ2 + 1)
. (B6)

An alternative representation is

σ0 = 1

12

{(
2y − 1

y

)
α + x[1 + 2 ln(x + 1)] − y − 2

}
, 0 � α � π/2, (B7)

where x and y are defined by Eq. (23). It is clear that for π/2 < α � π , one needs to replace ρ by 1/ρ, x by −x, and α by
π − α. Representation (B7) is simpler than the corresponding one (A19) from [13], which also is correct only for 0 � α � π/2.
It is easy to verify that σ0 presented in Eq. (B7) corresponds to the pure component ψ

(1)
2,0 (see the end of Sec. II) because the HH

expansion coefficient

F2,0 ∝
∫

σ0(α)Y20(α,θ )d�

equals zero.

2. Case l = 1

In this case, equating coefficients for P1(cos θ ) = cos θ on both sides of Eq. (B1), using (B2) and (B3), and simplifying, one
obtains the equation

(1 + ρ2)2S ′′
1 (ρ) + 2(2 − ρ2)(1 + ρ2)

ρ
S ′

1(ρ) = 8(π − 2)

3π
− (1 + ρ)(1 + ρ2)2

6ρ
, 0 � ρ � 1, (B8)
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where S1(ρ) ≡ σ1(α). Formula (45) with k = 2, l = 1, and ρc = 1 yields the particular solution to Eq. (B8) in the form

S
(p)
1 (ρ) = 1

24π

[(
1

ρ3
+ 9

ρ
− 9ρ − ρ3

)
arctan ρ − 1

ρ2
− ρ2 + 2 − 2π

3

]
− ρ(ρ2 − 6ρ + 3)

72
+ 1

6
ln

(
1 + ρ2

2

)
. (B9)

To obtain the pure (single-valued) solution to Eq. (B8), one needs to calculate the coefficient F2,1 of the unnormalized HH
expansion of the solution (B9). Recall that representation (B9) is correct only for 0 � ρ � 1 (0 � α � π/2). For ρ > 1
(π/2 < α � π ), one should replace ρ by 1/ρ on the rhs of Eq. (B9). Thus, using Eqs. (11) and (12) for n = 2 and l = 1 one
obtains

F2,1 = N2
21

∫
σ

(p)
1 (α)Y21(α,ϑ)d� = 64N2

21π
2
∫ 1

0

S
(p)
1 (ρ)ρ4

(1 + ρ2)5
dρ

∫ π

0
sin θ cos2 θ dθ

= 14 − 48G + π (1 + 12 ln 2)

72π
, (B10)

where G is Catalan’s constant and N21 is defined by Eq. (8). The final result is σ1 = S
(p)
1 (ρ) − F2,1.

The same result can be obtained using Eq. (62), which for l = 1 reduces to∫ π/2

0
y4σ1(α)dα = 0, (B11)

where σ1(α) represents the general solution of Eq. (B8) satisfying the condition (ii) of finiteness.

3. Case l � 2

The required function σl (l � 2) can certainly be obtained by means of application of the particular solution (45) and subsequent
use of Eq. (62). However, in this case we apply the following simplified procedure.

Equating coefficients for Pl(cos θ ) on both sides of Eq. (B1) (for l � 2), using (B2) and (B3), and introducing the function
Ql(ρ) by means of the relationship

σl(α) ≡ Sl(ρ) = −2−l

3
(ρ2 + 1)l−1Ql(ρ), (B12)

one obtains the differential equation

ρ(ρ2 + 1)Q′′
l (ρ) + 2[(l − 2)ρ2 + l + 1]Q′

l(�) − 6(l − 1)ρQl(ρ) = (ρ + 1)(ρ2 + 1), (B13)

which is correct only for 0 � ρ � 1 (0 � α � π/2). Mathematica gives the following general solution to the homogeneous
equation associated with the inhomogeneous equation (B13):

Q
(h)
l (ρ) = C1 2F1

( − 3
2 ,l − 1; l + 3

2 ; −ρ2
) + C2ρ

−2l−1
2F1

( − 3
2 , − l − 2; 1

2 − l; −ρ2
)
. (B14)

Assuming that a particular solution has the form a + bρ + cρ2 + dρ3 and substituting the latter one into the lhs of Eq. (B13),
one easily finds this particular solution in the form

Q
(p)
l (ρ) = 1

2

[
lρ3

(l + 1)(l + 2)
− ρ2

l
+ ρ

l + 1
− l + 1

l(l − 1)

]
. (B15)

One should set C2 = 0 to satisfy the condition (ii) of finiteness. Thus, using (B12), (B14), and (B15) we obtain

Sl(ρ) = −2−l−1

3

{
(1 + ρ2)l−1

[
lρ3

(l + 1)(l + 2)
− ρ2

l
+ ρ

l + 1
− l + 1

l(l − 1)

]
+ 2C1 2F1

(
l − 1

2
,
l + 3

2
; l + 3

2
; y2

)}
, (B16)

where the relationship

2F1

(
l − 1

2
,
l + 3

2
; l + 3

2
; y2

)
= (1 + ρ2)l−1

2F1

(
− 3

2
,l − 1; l + 3

2
; −ρ2

)
was used (see 7.3.1.54 in [24]). Now we can apply the coupling equation (62) to find the constant C1 ≡ C1(l). To this end, we
first need to calculate explicitly the integral ∫ π

0
y2l+2σl(α)dα = K1(l) + C1K2(l), (B17)

where using Eq. (B16) one obtains

K1(l) = −2l+3

3

∫ 1

0

ρ2l+2

(ρ2 + 1)l+4

[
lρ3

(l + 1)(l + 2)
− ρ2

l
+ ρ

l + 1
− l + 1

l(l − 1)

]
dρ, (B18)
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K2(l) = −2−l

3

∫ 1

−1
y2l+1

2F1

(
l − 1

2
,
l + 3

2
; l + 3

2
; y2

)
dx. (B19)

Mathematica gives for the integral (B18)

K1(l) = 1

3l

[
l + 1

(l − 1)(2l + 3)
2F1

(
− 3

2
,1; l + 5

2
; −1

)
+ 1

2l + 5
2F1

(
− 1

2
,1; l + 7

2
; −1

)
− l

(l + 1)(l + 3)

]
. (B20)

To reduce the integral (B19) we applied the expansion (A9) from [13], which for parametrization n = l and ν = 1/2 becomes

y2l+1
2F1

(
l − 1

2
,
l + 3

2
; l + 3

2
; y2

)
= 1

2
�2

(
l + 3

2

) ∞∑
m=0

(−1)m(4m + 1)�(m + 1/2)

m!(l + m + 1)!�(l − m + 3/2)

×3F2

(
l − 1

2
,
l + 3

2
,l + 3

2
; l + 3

2
− m,l + m + 2; 1

)
C

(1/2)
2m (x).

Substitution of this representation into Eq. (B19), and subsequent application of the formula of orthogonality for the Gegenbauer
polynomials, finally yields

K2(l) = − 2−l
√

π�(l + 3/2)

3�((l + 1)/2)�((l + 5)/2)
. (B21)

Using Eqs. (62) and (B17), one obtains

C1 = K(l)

3(l − 1)(l + 1)(l + 3)K2(l)
, (B22)

where

K(l) = K3(l) + 1 − 3(l − 1)(l + 1)(l + 3)K1(l), (B23)

K3(l) =
√

π�(l + 3/2)

2l+2l!
3F2

(
l + 1

2
,
l

2
+ 1,l + 3

2
; l + 2,l + 2; 1

)
. (B24)

The simplest way to reduceK(l) is to calculate numerically the first entries of the sequence, that is, to calculateK(l) for l = 2,3,4,5.
Using Mathematica, one obtains the required sequence −5/2, − 7/3, − 9/4, − 11/5. It can be seen that K(l) = −(2l + 1)/l.
Simplifying, we have finally

C1 = (l − 2)!�((l + 1)/2)
2�(l + 1/2)�(l/2 + 1)

. (B25)

APPENDIX C

The solution of the FRR (76) for the subcomponent with j = 2d implies that we need to find a suitable solution to the equation

(�2 − 32)ψ (2d)
4,1 = h

(2d)
4,1 , (C1)

where h
(2d)
4,1 and ψ

(2d)
4,1 are defined by Eq. (89b) and expansion (93), respectively. Inserting expansion (A7) for ν = −1,1,3 into

the rhs of Eq. (89b), one obtains the expansion

h
(2d)
4,1 (α,θ ) =

∞∑
l=0

Pl(cos θ )(sin α)lhl(α) (C2)

for the rhs of Eq. (C1), where

hl(α) = π − 2

3π (2l − 1)2l

[
sin

(
α

2

)
+ cos

(
α

2

)][
5

(2l − 3) sin α
Fl,3(α) −

(
1 − 2

sin α

)
Fl,1(α) − (2l − 1)Fl,−1(α)

]
(C3)

and where the hypergeometric function Fl,ν is defined by Eq. (A8). Thus, according to Eq. (41), with g(α) = tl(α) and k = 4,
and expansions (93) and (C2), one obtains the differential equation

4t′′l (α) + 8(l + 1) cot α t′l(α) + 4(2 − l)(l + 4)tl(α) = −hl(α) (C4)

for the function tl(α) defined by Eq. (93). Transformation of Eq. (C4) to the variable ρ = tan(α/2) yields [see Eq. (44)]

(1 + ρ2)2τ ′′
l (ρ) + 2ρ−1[1 + ρ2 + l(1 − ρ4)]τ ′

l (ρ) + 4(2 − l)(l + 4)τl(ρ) = −hl(ρ), (C5)
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where hl(ρ) ≡ hl(α) and τl(ρ) ≡ tl(α). Turning to the variable ρ in Eq. (C3) and simplifying, one obtains the following compact
representation for the rhs of Eq. (C5):

hl(ρ) = − (π − 2)(ρ + 1)(ρ2 + 1)l−1

3π (2l − 1)(2l + 3)2l+1

[
15 − 4l(l + 1)(4l + 11)

(2l − 3)(2l + 5)ρ
+4l(2l + 3)+2ρ + 4(l + 1)(2l − 1)ρ2 + (2l − 1)(4l + 5)ρ3

2l + 5

]
,

(C6)

where 0 � ρ � 1. One possible way to solve Eq. (C5) is to take into account that its rhs (C6) contains some linear combination
of terms of the form

hn,l(ρ) = ρn(ρ + 1)(ρ2 + 1)l−1, (C7)

with the integral n > −2. The particular solution Tn,l(ρ) of Eq. (C5), with the exchange of hl(ρ) for hn,l(ρ) defined by Eq. (C7),
reads

Tn,l(ρ) = (ρ2 + 1)l+4ρn+2

2l + 1

{
2F1

(
7

2
,3 − l;

1

2
− l; −ρ2

)[
3F2(7/2,l + 4,l + (n + 4)/2; l + 3/2,l + (n + 6)/2; −ρ2)ρ

2l + n + 4

+ 3F2(7/2,l + 4,l + (n + 3)/2; l + 3/2,l + (n + 5)/2; −ρ2)
2l + n + 3

]
− 2F1

(
7

2
,l + 4; l + 3

2
; −ρ2

)
×

[
3F2(7/2,3 − l,(n + 3)/2; 1/2 − l,(n + 5)/2; −ρ2)ρ

n + 3
+ 3F2(7/2,3 − l,n/2 + 1; 1/2 − l,n/2 + 2; −ρ2)

n + 2

]}
. (C8)

This solution was derived by means of application of Eq. (45) with an exchange of definite integration for indefinite integration
over ρ (that is, setting the antiderivatives for the lower limit equal to zero).

Here we present the particular solutions τ
(p)
l of Eq. (C5) obtained by the exact formula (45) with k = 4. We consider the cases

of l = 0,1,2 (for lmax = k/2) and l � 3, separately.
Application of Eqs. (45)–(47), with h(ρ) = hl(ρ) defined by Eq. (C6), and ρc = 1 yields, for l = 0,1,2,

τ
(p)
0 (ρ) = − π − 2

108π (ρ2 + 1)2

[
1 − ρ

15
(19ρ4 + 142ρ3 + 82ρ2 − 48ρ − 3) −

(
ρ5 − 15ρ3 + 15ρ − 1

ρ

)
arctan ρ

+ (3ρ4 − 10ρ2 + 3) ln

(
ρ2 + 1

2

)]
, (C9)

τ
(p)
1 (ρ) = π − 2

302 400πρ2(ρ2 + 1)

[
1268ρ7 − 2505ρ6 + 1960ρ5 + 32 263ρ4 + 18 900ρ3 + 18 305ρ2 − 735

+ 735

(
ρ7 + 20ρ5 − 90ρ3 + 20ρ + 1

ρ

)
arctan ρ − 23 520ρ2(ρ2 − 1) ln

(
ρ2 + 1

2

)]
, (C10)

τ
(p)
2 (ρ) = π − 2

362 880πρ4

[
672ρ9 − 465ρ8 + 760ρ7 − 6720ρ6 − 5880ρ5 + 8798ρ4 + 2520ρ2 + 315

+ 105(ρ2 − 1)

(
3ρ7 + 28ρ5 + 178ρ3 + 28ρ + 3

ρ

)
arctan ρ − 13 440ρ4 ln

(
ρ2 + 1

2

)]
. (C11)

It was mentioned in Sec. II that in order to obtain the pure component ψ
(2d)
4,1 one needs to select and then to get rid of the admixture

of the HH Y4l . In other words, we need to orthogonalize ψ
(2d)
4,1 to each of the Y4l . First, according to expansion (93) and Eqs. (11)

and (12), we need to calculate the unnormalized HH expansion coefficients

F4,l = π2N2
4l

[ ∫ π/2

0
dα τ

(p)
l (ρ)(sin α)l+2

∫ π

0
Y4l(α,θ )Pl(cos θ ) sin θ dθ

+
∫ π

π/2
dα τ

(p)
l (1/ρ)(sin α)l+2

∫ π

0
Y4l(α,θ )Pl(cos θ ) sin θ dθ

]
, (C12)

where the factor N4l is defined by Eq. (8). Direct integration with the use of solutions (C9)–(C11) yields

F4,0 = − (π − 2)

8100π2
[5π (15 ln 2 − 16) + 247 − 300G], (C13a)

F4,1 = 0, (C13b)

F4,2 = − (π − 2)

113 400π2
[5π (840 ln 2 + 109) + 4592 − 16 800G], (C13c)

042512-16



ANGULAR FOCK COEFFICIENTS: REFINEMENT AND . . . PHYSICAL REVIEW A 92, 042512 (2015)

where G is Catalan’s constant. Thus, to obtain the pure subcomponent ψ
(2d)
4,1 , one needs to replace τ

(p)
0 by τ0 = τ

(p)
0 −

F4,0(4 cos2 α − 1) and τ
(p)
2 by τ2 = τ

(p)
2 − F4,2 in expansion (93).

For l � 3, the particular solution of Eq. (C5) obtained by Eq. (45) can be represented in the form

τ
(p)
l (ρ) = (π − 2)(ρ2 + 1)l−2

135π23(l+1)λlρ2l+1

[
ρ2l+2

4∑
n=0

μ
(1)
ln ρn + ρ

l∑
n=0

μ
(2)
ln ρ2n − μ

(2)
l0 (ρ2 + 1)6 arctan ρ

l−3∑
n=0

μ
(3)
ln ρ2n

]
, (C14)

where the coefficients λl and μ
(1)
ln are presented in Table II; μ

(2)
ln and μ

(3)
ln are presented in Table III in the form of lists. The number

of coefficients is limited by l � 10.
It is clear that all the terms of expansion (93) with l � 3 are automatically orthogonal to the Y4l . Therefore, in this case we

use relation (61), which becomes

T2l,l = (l + 1)!√
π�(l + 3/2)

∫ π

0
tl(α)(sin α)2l+2dα = 22(l+2)(l + 1)!√

π�(l + 3/2)

∫ 1

0
τl(ρ)

ρ2l+2

(1 + ρ2)2l+3
dρ, (C15)

where Tn,l are the unnormalized HH expansion coefficients for the considered subcomponent

ψ
(2d)
4,1 (α,θ ) =

∑
nl

′
Tn,lYnl(α,θ ). (C16)

The prime indicates that n = 4 is omitted from the summation for the pure component.
The general solution of Eq. (C5) reads

τl(ρ) = τ
(p)
l (ρ) + A1u4l(ρ) + A2v4l(ρ), (C17)

where the solutions u4l and v4l of the homogeneous equation associated with Eq. (C5) are defined by Eqs. (46) and the constants
A1 and A2 are currently undetermined. It is clear that in order for ψ

(2d)
4,1 to satisfy the finiteness condition (ii), the function

(sin α)lτl(ρ) for each l must satisfy this condition, according to expansion (93). It is easy to verify that (sin α)lu4l(ρ) is divergent
at ρ = 0 (α → 0), whereas both functions (sin α)lv4l(ρ) and (sin α)lτ (p)

l (ρ) are finite at this point. Hence, one should set A1 = 0.
Thus, Eq. (C15) can be rewritten in the form

T2l,l = 22(l+2)(l + 1)!√
π�(l + 3/2)

[P1(l) + A2P2(l)], (C18)

where

P1(l) =
∫ 1

0
τ

(p)
l (ρ)

ρ2l+2

(1 + ρ2)2l+3
dρ, (C19)

P2(l) =
∫ 1

0
v4l(ρ)

ρ2l+2

(1 + ρ2)2l+3
dρ =

√
π2−2(l+2)�(l + 3/2)

�(l/2 + 3)�(l/2)
. (C20)

Note that for each value of l � 3 the integral (C19) can be calculated in the exact explicit form.
To derive the closed expression for Tn,l according to definition (C16), let us first obtain the HH expansion for the rhs of

Eq. (C1),

h
(2d)
4,1 =

∑
nl

H(4)
n,lYnl(α,θ ), (C21)

where, according to Eq. (12) for unnormalized HH,

H(4)
n,l = N2

nl

∫
h

(2d)
4,1 (α,θ )Ynl(α,θ )d� (C22)

and the normalization coefficient Nnl is defined by Eq. (8). Substitution of representations (C2) and (C3) into (C22) yields

H(4)
n,l = N2

nlπ (π − 2)

3(2l − 1)(2l + 1)2l−1

∫ π

0
(sin α)2l+2

[
cos

(
α

2

)
+ sin

(
α

2

)]
C

(l+1)
n/2−l(cos α)

×
[

5

(2l − 3) sin α
Fl,3(α) −

(
1 − 2

sin α

)
Fl,1(α) − (2l − 1)Fl,−1(α)

]
dα. (C23)

The orthogonality of the Legendre polynomials was used to derive formula (C23). Inserting expansion (C16) into the lhs of
Eq. (C1), one obtains

(�2 − 32)ψ (2d)
4,1 =

∑
nl

Tn,l(n − 4)(n + 8)Ynl(α,θ ). (C24)
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According to Eq. (C1), the right-hand sides of Eqs. (C24) and (C21) can be equated, which yields

Tn,l = H(4)
n,l

(n − 4)(n + 8)
. (C25)

Thus, for the required case of n = 2l (l > 2), one obtains, using (C25) and (C23),

T2l,l = (π − 2)2l−1(l + 1)(l!)2

3π2(2l − 1)(l − 2)(l + 4)(2l + 1)!
P3(l), (C26)

where

P3(l) =
∫ π

0
(sin α)2l+2

[
cos

(
α

2

)
+ sin

(
α

2

)][
5

(2l − 3) sin α
Fl,3(α) −

(
1 − 2

sin α

)
Fl,1(α) − (2l − 1)Fl,−1(α)

]
dα. (C27)

The integral (C27) can be evaluated in explicit form. The result is

P3(l) = − 2l+1

(l + 3)(2l − 3)(2l + 3)(2l + 5)

(
30

l + 1
− 26

l + 2
+ 13 − 4l{47 − 2l[2l(l + 3) − 9]} + 2l+1

× [(l + 1){4l[l(4l + 3) − 17] + 45}B1/2

(
l + 3

2
,
1

2

)
+ 8l(l{l[4l(l + 4) + 3] − 56} − 62)B1/2

(
l + 3

2
,
3

2

)])
, (C28)

where Bz(a,b) is the incomplete Beta function. Equating the right-hand sides of Eqs. (C18) and (C26), one obtains the required
coefficient in the form

A2 ≡ A2(l) = 1

P2(l)

[
(π − 2)2−3(l+2)

3π (2l − 1)(l − 2)(l + 4)
P3(l) − P1(l)

]
. (C29)

It may be verified that for odd values of l, the coefficients A2(l) equal zero. For even values of l, formula (C29) yields

A2(l) = − (π − 2)

π2
A(l), (C30)

where

A(4) = 5515π − 11 648

29 48400
,

A(6) = 191 095π − 396 032

1 378 377 000
,

A(8) = 66 779 345π − 137 592 832

4 085 509 428 000
,

A(10) = 59 227 659π − 121 716 736

25 014 766 104 900
.

(C31)

APPENDIX D

The IFRR (75) for subcomponent ψ
(2c)
3,0 reads

(�2 − 21)ψ (2c)
3,0 = h

(2c)
3,0 , (D1)

where the rhs h
(2c)
3,0 is defined by Eq. (88). To find a suitable solution in the form of expansion (98), let us express the rhs of

Eq. (D1) in the form

h
(2c)
3,0 ≡ − 4ξ

3 sin α
=

∞∑
l=0

Pl(cos θ )(sin α)lhl(α), (D2)

where, using expansion (A7) for ν = 1, one obtains

hl(α) = 22−l

3(2l − 1) sin α
2F1

(
l

2
− 1

4
,
l

2
+ 1

4
; l + 3

2
; sin2 α

)
. (D3)

Inserting expansions (D2) and (98) into the IFFR (D1), equating the factors for the Legendre polynomials Pl(cos θ ) of the same
order, and turning to the variable ρ = tan(α/2), one obtains the inhomogeneous differential equation

(1 + ρ2)2φ′′
l (ρ) + 2ρ−1[1 + ρ2 + l(1 − ρ4)]φ′

l(ρ) + (3 − 2l)(7 + 2l)φl(ρ) = −hl(ρ), (D4)
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which represents Eq. (44) with k = 3 and with an exchange of h(ρ) for hl(ρ) ≡ hl(α) and g(ρ) for φl(ρ). Simplification of the
rhs of Eq. (D4) yields, for 0 � ρ � 1,

hl(ρ) = 21−l(ρ2 + 1)l+1/2[(1 − 2l)ρ2 + 2l + 3]

3(2l − 1)(2l + 3)ρ
. (D5)

Simplifying the solutions (46) of the homogeneous equation associated with Eq. (D4), one obtains, for k = 3,

u3l(ρ) = (ρ2 + 1)l−3/2

ρ2l+1

[
(2l + 3)(2l + 5)

(2l − 3)(2l − 1)
ρ4 + 2(2l + 5)

2l − 1
ρ2 + 1

]
, (D6)

v3l(ρ) = (ρ2 + 1)l−3/2

[
(2l − 3)(2l − 1)

(2l + 3)(2l + 5)
ρ4 + 2(2l − 3)

2l + 3
ρ2 + 1

]
. (D7)

The particular solution φ
(p)
l (ρ) of Eq. (D4) can be obtained by formula (45), but with an exchange of definite integration

for indefinite integration (that is, setting the antiderivatives for the lower limits equal to zero). The result is presented in
Eqs. (101)–(104). It is worth noting that the hypergeometric function included in Eq. (104) can be represented in the form (see
Eq. 7.3.1.135 in [24])

2F1(1,l + 1; l + 2; −ρ2) = − l + 1

(−ρ2)l+1

[
ln(1 + ρ2) +

l∑
k=1

(−ρ2)k

k

]
. (D8)

It can be easily shown that the homogeneous solution u3l(ρ) is singular and v3l(ρ) and the particular solution φ
(p)
l (ρ) are regular

at the point ρ = 0 (α = 0) for any l � 0. The conclusion is that the physical solution must be sought in the form (99). The
problem is to find the coefficient cl . To solve the problem we apply the coupling equation (61), which for this case becomes

O2l,l = (l + 1)!22(l+2)

√
π�

(
l + 3

2

) ∫ 1

0

[
φ

(p)
l (ρ) + clv3l(ρ)

] ρ2l+2

(ρ2 + 1)2l+3
dρ, (D9)

where On,l represent the unnormalized HH expansion coefficients for subcomponent

φ
(2c)
3,0 (α,θ ) =

∑
nl

On,lYnl(α,θ ). (D10)

For this case (odd value of k = 3) the rhs of Eq. (D10) represents the physical solution we are looking for (see the end of Sec. II).
To derive the closed expression for On,l we first obtain the unnormalized HH expansion

h
(2c)
3,0 (α,θ ) =

∑
nl

H(3)
n,lYnl(α,θ ) (D11)

for the rhs of Eq. (D1), where by definition

H(3)
n,l = N2

nl

∫
h

(2c)
3,0 (α,θ )Ynl(α,θ )d�. (D12)

Inserting expansions (D2) and (D3) into (D12), one obtains

H(3)
n,l = N2

nlπ
223−l

3(2l − 1)(2l + 1)

∫ π

0
2F1

(
l

2
− 1

4
,
l

2
+ 1

4
; l + 3

2
; sin2 α

)
(sin α)2l+1C

(l+1)
n/2−l(cos α)dα, (D13)

where the orthogonality of the Legendre polynomials was used. Substitution of expansion (D10) into the lhs of Eq. (D1) yields

(�2 − 21)ψ (2c)
3,0 =

∑
nl

On,l(n − 3)(n + 7)Ynl(α,θ ). (D14)

According to Eq. (D1), the right-hand sides of Eqs. (D11) and (D14) can be equated, which yields

On,l = H(3)
n,l

(n − 3)(n + 7)
. (D15)

Thus, inserting (D13) into Eq. (D15) for n = 2l (l � 0), one obtains

O2l,l = 2l+4l!(l + 1)!

3π (2l − 3)(2l − 1)(2l + 7)(2l + 1)!

∫ π/2

0
2F1

(
l

2
− 1

4
,
l

2
+ 1

4
; l + 3

2
; sin2 α

)
(sin α)2l+1dα

= 22−l l!(l + 1)!

3(2l − 3)(2l − 1)(2l + 7)�2(l + 3/2)
3F2

(
l

2
− 1

4
,
l

2
+ 1

4
,l + 1; l + 3

2
,l + 3

2
; 1

)
. (D16)
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Equating the right-hand sides of Eqs. (D9) and (D16), we find the required coefficient

cl = M1(l) − M2(l)

M3(l)
, (D17)

where

M1(l) = 2−3l−2l!
√

π

3(2l − 3)(2l − 1)(2l + 7)�(l + 3/2)
3F2

(
2l − 1

4
,
2l + 1

4
,l + 1; l + 3

2
,l + 3

2
; 1

)
, (D18)

M3(l) ≡
∫ 1

0
v3l(ρ)

ρ2l+2(
ρ2 + 1

)2l+3 dρ = 2−l−3/2(2l + 1)

(2l + 3)(2l + 7)
. (D19)

According to representations (101)–(104), the function M2(l) can be represented in the form

M2(l) ≡
∫ 1

0
φ

(p)
l (ρ)

ρ2l+2

(ρ2 + 1)2l+3
dρ

= 2−l

3(2l − 3)(2l − 1)(2l + 3)(2l + 5)

[
2M21(l) + 2M22(l) + M23(l)

2l + 1

]
, (D20)

where

M21(l) = −1

6

[
13 − 4l2

2l+5/2
+ 8l3 + 28l2 − 2l − 79

l + 2
2F1

(
l + 2,l + 9

2
; l + 3; −1

)]
, (D21)

M22(l) = (2l + 1)(2l + 5)

(2l + 3)(2l + 7)2

{
(2l + 3)

2l+7/2

[
π (2l + 7) − 4(4l2 + 24l + 23)

(2l + 1)(2l + 5)

]
− 2

√
π (l + 1)!

�(l+1/2)
+ 23/2(l + 1) 2F1

(
− 1

2
,−l;

1

2
;

1

2

)}
,

(D22)

M23(l) = (−1)l+1

[
Dl +

l∑
k=1

(−1)k

k
Gkl

]
. (D23)

In the function (D23) we have introduced the following notation:

Dl = 2−l−3/2

(2l + 3)(2l + 5)(2l + 7)2
{181 × 2l+5/2 − 525 ln 2 − 1046 + l[2l+11/2(l + 3)[11 + 2l(l + 3)]

− 8{195 + 4l[31 + l(l + 9)]} − 2(985 + 4l{303 + 2l[83 + l(21 + 2l)]}) ln 2]}, (D24)

Gkl = (2l − 3)(2l − 1)

2(k + 1)
2F1

(
k + 1,l + 9

2
; k + 2; −1

)
+ (2l + 5)

(
2l − 3

k + 2
2F1(k + 2,l + 9

2
; k + 3; −1) + 2l + 3

2(k + 3)
2F1(k + 3,l + 9

2
; k + 4; −1)

)
. (D25)

To derive formulas (D23)–(D25), the representation (D8) was used.
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