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One-loop quantum electrodynamic (QED) corrections are studied for two basic atomic processes, radiative
recombination of an electron with a bare nucleus and radiative decay of a hydrogenlike ion. The perturbations of
the bound-state wave function and the binding energy due to the electron self-energy and the vacuum polarization
are computed in the Feynman and Coulomb gauges. QED corrections induced by these perturbations are calculated
for the differential cross section and the polarization of the emitted radiation in the radiative recombination of an
electron and a bare uranium nuclei, as well as the corresponding corrections to the ratio of the E1 (electric dipole)
and M2 (magnetic quadrupole) transition amplitudes in the 2p3/2 → 1s radiative decay of hydrogenlike uranium.
The results obtained indicate the expected magnitude of the QED effects in these processes on a subpercent level.
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I. INTRODUCTION

Radiative recombination of a (quasi-free) electron with a
heavy highly charged ion and radiative decay of such ions are
basic atomic processes that are extensively studied during the
last years in the regime of hard x rays and strong Coulomb
fields [1,2]. Radiative recombination, being the time-reversed
counterpart of the photoionization, provides an experimental
access to this process in the relativistic domain [3,4]. In the
case of radiative decay, a precise determination of the ratio
of the E1 (electric dipole) and the M2 (magnetic quadrupole)
transition amplitudes and the corresponding transition rates
was recently demonstrated [5,6]. The accuracy of these
experiments approaches the level at which the influence of
QED effects might be discernible.

A complete calculation (even at the one-loop level) of the
QED effects in collision processes involving highly charged
ions is a very difficult problem. For radiative recombination,
no complete calculation has been accomplished so far. The
general formulas for this process were derived in Refs. [7,8],
but only some corrections were actually calculated. In the
case of radiative decay, calculations of the one-loop QED
corrections were reported in Ref. [9] for the decay rates of
n = 2 states of hydrogenlike ions and in Ref. [10] for the
fine-structure M1 transition amplitudes in boronlike ions.

Recently a formalism for energy-dependent many-body
perturbation theory has been developed [11–14] that allows
a combined treatment of the QED and electron-correlation
effects. While the primary aim of this approach has been the
description of QED shifts in energy levels of few-electron
atoms, it can be applied to the collision processes as well. In
the present work we apply this method to calculations of a set
of QED corrections in radiative recombination and radiative
decay that are induced by perturbations of the bound-state
wave function and the binding energy by the electron self-
energy and the vacuum polarization. While such a treatment
of QED effects is incomplete at the one-loop level, we believe
that the results obtained could be used as an indication of the
magnitude of QED effects in the processes considered.

The calculations presented in this work are performed by an
extension of the numerical procedure developed in Ref. [15]
for the evaluation of the one-loop self-energy correction to
the Lamb shift. We extend this procedure to the evaluation of
nondiagonal matrix elements of the self-energy operator and
compute the radiatively corrected bound-state wave functions
and bound-state energies. The resulting energies and wave
functions are then used to calculate the differential cross
section and the polarization of the emitted radiation in the K-
shell radiative recombination of an electron with the initially
bare uranium, as well as the ratio of the M2 and E1 transition
amplitudes in the 2p3/2 → 1s radiative decay of hydrogenlike
uranium.

The outline of the paper is as follows. In Sec. II we describe
our numerical method for calculating the matrix elements of
the self-energy operator and the perturbations of the wave
function induced by the self-energy operator. In Sec. III we
briefly discuss the QED corrections to observables in radiative
recombination and radiative decay. Section IV is devoted to
the presentation and the discussion of our results. Finally, in
Sec. V we summarize and provide a brief outlook.

We use units � = c = 1 throughout the paper.

II. SELF-ENERGY CORRECTION TO A BOUND-STATE
WAVE FUNCTION

The two main QED effects are the self-energy and the
vacuum polarization. In this section we will focus on the self-
energy since it is the most difficult part to obtain numerically.
The vacuum polarization is much simpler to calculate since it is
represented by a local radial potential (see, e.g., Refs. [16,17]),
which can be included into the Dirac equation or calculated by
perturbation theory in a straightforward manner.

A. General background

In the zeroth-order approximation, we start with the
relativistic wave functions which are solutions of the Dirac
equation with the Coulomb potential describing the nuclear
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FIG. 1. Expansion of the bound electron self-energy in terms
of scattering order with the nuclear Coulomb potential. The double
lines denote electrons propagating in the presence of the potential and
the single lines denote freely propagating electrons. The wavy lines
denote virtual photons.

binding field,

[α · p + βm + Vnuc(r) − E] �(r) = 0, (1)

where α and β are the Dirac matrices, Vnuc is the nuclear
potential, and m and E are the electron mass and energy,
respectively. The solutions of this equation are of the form

�n,κ,m(r) = 1

r

(
Fn,κ (r)χm

κ (θ,ϕ)

iGn,κ (r)χm
−κ (θ,ϕ)

)
, (2)

where F and G are known as the large and small ra-
dial components, respectively, χ is an ls-coupled spherical
spinor, n is the principal quantum number, and κ is Dirac’s
angular-momentum quantum number κ = (−1)j+l+ 1

2 (j + 1
2 )

determined by the orbital angular momentum l and the total
angular momentum j . The projection of j is given by m.

In this section we will be interested in the corrections
to the Dirac wave functions (2) arising from the electron
self-interaction as predicted by QED. In order to simplify
further expressions, we introduce a collective index t such
that �n,κ,m ≡ �t and let |t〉 denote the state vector which
corresponds to �t . Furthermore, we reserve the index a for the
state whose corrections we wish to study (the model state). The
correction to the model state due to the first-order self-energy
can then be written as

|δaSE〉 =
∑
t �=a

|t〉〈t |	ren
B (Ea)|a〉

Ea − Et

, (3)

where 	ren
B = 	B − δm is the renormalized bound1 electron

self-energy operator.
The evaluation of the matrix elements of the operator 	ren

B
has been extensively studied in the literature and different ap-
proaches have been developed to tackle this problem [18–26].
In our work we use the method originally proposed by Brown
et al. [27] and further developed by Blundell and Snyder-
man [20]. This method expands the unrenormalized operator
	B in terms of scattering order with the nuclear potential
(see Fig. 1). The terms of this expansion are renormalized

1For brevity we refer to operators containing electrons propagating
in the nuclear potential as bound operators, although the propagating
electrons may have arbitrarily high energies. This is to distinguish
these operators from those containing freely propagating electrons.

and the matrix elements of 	ren
B are obtained as the sum of a

zero-potential, a one-potential, and a many-potential term:

〈t |	ren
B |a〉 = 	ZP

ta + 	OP
ta + 	MP

ta , (4)

where

	ZP
ta = 〈t |	ren

free|a〉 (5)

is the matrix element of the renormalized free-electron self-
energy operator 	ren

free and

	OP
ta = 〈t |
0,ren

free Vnuc|a〉, (6)

where 

0,ren
free is the (scalar part of the) renormalized free-

electron vertex operator. The remaining many-potential term
can be formulated by using the Feynman rules of bound-state
QED, see, e.g., Ref. [20].

The first-order perturbation of the the model-state wave
function |a〉 by the electron self-energy can thus be written as

|δaSE〉 =
∑
t �=a

|t〉〈t |	ren
B |a〉

Ea − Et

=
∑
t �=a

|t〉(	ZP
ta + 	OP

ta + 	MP
ta

)
Ea − Et

≡ |δaZP〉 + |δaOP〉 + |δaMP〉. (7)

The matrix elements in Eq. (7) are nonzero only if |a〉 and |t〉
have the same spin-angular dependence (κa = κt and ma =
mt ), which means that the self-energy affects only the radial
part of the wave function.

We now proceed to discuss how the three corrections
in (7) can be computed. The many-potential term and the
perturbation of the wave function involve summations over
the spectrum of the Dirac equation. For computing such
sums, we use the method of space discretization [28,29]. The
complete numerical spectrum is obtained by solving the Dirac
equation (1) for each κ on a discretized radial grid. This allows
for a straightforward inclusion of the finite-nucleus effect
using essentially arbitrary (spherically symmetric) nuclear
models. The r variable is confined to the interval 0 < r < R,
where R is chosen large enough that its particular choice
does not influence the final results. A series of calculations
are performed on r grids of increasing resolution and the
continuum limit can be found by extrapolation.

B. Zero- and one-potential terms

The zero- and one-potential terms are given by the matrix
elements of the renormalized free-electron self-energy and
vertex-correction operators, respectively [Eqs. (5) and (6)].
These operators are most easily constructed in momentum
space using dimensional regularization (see Refs. [30–32] for
details). The resulting matrix elements can in principle be
calculated with respect to the momentum distributions of the
states |a〉 and |t〉.

However, although 〈p|a〉 can be rather easily calculated
for the lowest-lying bound states, it is numerically difficult to
obtain 〈p|t〉 to sufficient accuracy for highly excited discretized
states |t〉. These states acquire contributions from a wide
range of momenta, and their numerical Fourier transform can
introduce large numerical errors.
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It is more convenient to work directly with the function
defined by the sum over states in Eq. (3) (the restricted radial
Green’s function):

Ga
κ (r,r ′,Ea) =

∑
t �=a

〈r|t〉〈t |r ′〉
Ea − Et

=
∑
t �=a

�t (r)�†
t (r

′)
Ea − Et

. (8)

This function is localized and its discretized form is reasonably
smooth in both coordinates. Its Fourier transform with respect
to r ′ is given by

Ga
κ (r,p,Ea) =

√
2

π

∫
dr ′ r ′2(−i)ljl(pr ′)

∑
t �=a

�t (r)�†
t (r

′)
Ea − Et

,

(9)
where the index l of the spherical Bessel function jl depends
upon which component (large or small) of �

†
t (r

′) is considered.
This transform can be computed numerically without too much
difficulty.

Having obtained Ga
κ (r,p,Ea) from Eq. (9), we can get

the radial representations of the zero- and one-potential self-
energy corrections to the wave function as

〈r|δaZP〉 =
∫

dp p2Ga
κ (r,p,Ea)	ren

free(p,Ea)�a(p) (10)

and

〈r|δaOP〉 =
∫

dpp2
∫

dp′p′2
∫ 1

−1
d(cos ϑ)Ga

κ (r,p,Ea)

×

0,ren
free (p,p′,ϑ,Ea)Vnuc(k)�a(p′), (11)

where ϑ is the angle between p and p′ and k = |p − p′|.
Here �a(p) is the momentum distribution of |a〉 which can
be obtained similarly to Eq. (9).

The Fourier transformations are performed by interpolating
the integrand to continuous space using Lagrange polynomials.

The integration between grid points can then be treated
semianalytically using recursion relations for integrals of
the combinations jl(pr) rm of spherical Bessel functions and
powers of r that appear.

Expressions for the momentum-space matrix elements (5)
and (6) were presented in Feynman gauge in Ref. [30] and in
Coulomb gauge in Ref. [15]. Note that the expressions for the
free vertex operator 


0,ren
free given in these references are valid

only for the diagonal matrix elements and must be modified to
account for the fact that the integrand is not symmetric with
respect to p ↔ p′ in the general case.

C. Many-potential term

By using the Feynman diagram technique of bound-state
QED, the many-potential term can be written in coordinate
space as a sum over the orbital angular momentum l of the
virtual photon:

	MP
ta =

∞∑
l=0

	MP,l
ta . (12)

Each term in this sum can be calculated using the expansion
of the self-energy operator (Fig. 1) as

	MP,l
ta = 〈t |	B|a〉l − 〈t |	free|a〉l − 〈t |
0

freeVnuc|a〉l . (13)

Here all operators on the right-hand side are unrenormalized
and constructed in coordinate space. After the subtraction (13)
is performed for a fixed l, the summation (12) becomes
convergent and can be evaluated numerically. In actual
calculations, the sum over l is necessarily truncated and should
be in principle extrapolated to infinity. However, we have found
that using a fixed truncation limit at l = 50 introduces a relative
error in the many-potential part of the wave function correction
of less than 0.05% for Z = 92.

The Feynman-gauge expression for the many-potential
term is given by

	MP,l
ta = −α

π
(2l + 1)

∫
k dk

{∑
m

〈t |αμjl(kr1)Cl|m〉〈m|jl(kr2)Clαμ|a〉
Ea − Em − sign(Em)k

−
∑

p

〈t |αμjl(kr1)Cl|p〉〈p|jl(kr2)Clαμ|a〉
Ea − Ep − sign(Ep)k

−
∑
p,q

〈t |αμjl(kr1)Cl|p〉〈p|Vnuc|q〉〈q|jl(kr2)Clαμ|a〉
[Ea − Ep − sign(Ep)k][Ea − Eq − sign(Eq)k]

F

}
. (14)

Here the states |m〉 are generated in the nuclear potential and
|p〉 and |q〉 refer to states generated in the limit Z → 0. The
Cl are spherical tensors whose components are related to the
spherical harmonics Y l

m by

Cl
m(θ,φ) =

√
4π

(2l + 1)
Y l

m(θ,φ). (15)

The function F is given by

F = 1 + [sign(Ep) − sign(Eq)]
k

Ep − Eq

(16)

and ensures proper treatment of negative-energy states in the
third term (the “vertex” term). The corresponding expression
for 	

MP,l
ta in Coulomb gauge can be found in Ref. [15].

The first term on the right-hand side of Eq. (14) (the “bound”
term) contains a pole on the k axis whenever there is an
intermediate state |m0〉 with a positive energy Em0 < Ea . This
situation can appear if |a〉 is not the ground state, and the
appearance of the pole is related to the spontaneous decay of
the excited state. In this case one has to perform a numerical
Cauchy principal-value (CPV) integral over k when evaluating
Eq. (14).

In order to accomplish the CPV integration in a numerically
stable way, we first note that the integrand of the bound term
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p

b

FIG. 2. Feynman diagram for the radiative recombination process
in the leading-order approximation. The continuum electron is
denoted by p and the bound atomic electron is denoted by b.

for the intermediate pole-state |m0〉 is of the form

f (k) = g(k)

ω0 − k
, (17)

where the pole is located at ω0 = Ea − Em0 . Next we separate
out the singular part:

f (k) = f (k) − g(ω0)

ω0 − k
+ g(ω0)

ω0 − k
≡ h(k) + g(ω0)

ω0 − k
, (18)

where now

h(k) = g(k) − g(ω0)

ω0 − k
(19)

contains no poles and can be integrated numerically without
difficulty. The CPV integral of the remaining term can be
evaluated analytically over a suitable interval [0,C] that
includes ω0 to give∫ C

0
dk

g(ω0)

ω0 − k
= −g(ω0) ln

(∣∣∣∣1 − C

ω0

∣∣∣∣
)

. (20)

The total integral thus becomes∫ ∞

0
dkf (k) = −g(ω0) ln

(∣∣∣∣1 − C

ω0

∣∣∣∣
)

+
∫ C

0
dkh(k) +

∫ ∞

C

dkf (k). (21)

Having obtained the self-energy correction to the wave
function, we now proceed to describe two applications.

p

b b

p p

b

FIG. 3. Feynman diagrams for the one-loop self-energy correc-
tions to the radiative recombination process.

III. CALCULATION OF AMPLITUDES FOR
ATOMIC PROCESSES

A straightforward application of our QED-corrected wave
functions is to compute corrections to observables in basic
atomic processes. We will here consider two such processes in
hydrogenlike uranium, namely radiative recombination of an
electron into the K shell, as well as the 2p3/2 → 1s radiative
decay. We begin with radiative recombination.

A. Radiative recombination

Radiative recombination is the process in which a charged
ion captures an electron from the continuum with the emission
of a photon. The observable properties of this process can be
traced back to the corresponding transition amplitude τ . In
zeroth order, the amplitude of the capture of the continuum
electron with asymptotic four-momentum p, spin projection
μ, and charge −e into the bound state |a〉 of an initially bare
atomic nucleus is given by [8,33]

τ (0) = −e〈a|ανA∗
ν(k,x)|p,μ〉, (22)

where

Aν(k,x) = ενeik·x√
2ω(2π )3

(23)

is the four-potential of the emitted photon with wave vector
k, energy ω = |k|, and polarization vector εν . The Feynman
diagram for this amplitude is shown in Fig. 2.

General expressions for the one-loop QED corrections to
this amplitude were derived in Refs. [8,34]; the corresponding
Feynman diagrams are shown in Figs. 3 and 4. The contribu-
tions from the electron self-energy (Fig. 3) are

τ
(1)
SE = −

⎡
⎣∑

t �=a

〈a|	ren
B (Ea)|t〉〈t |eανA∗

ν |p,μ〉
Ea − Et

+ 1

2
〈a|∂	B

∂E
|a〉〈a|eανA∗

ν |p,μ〉

+
∑

t

〈a|eανA∗
ν |t〉〈t |	ren

B (p0)|p,μ〉
p0 − Et (1 − iε)

+
∫

dzeA∗
ν(z)
ν

B(Ea,p
0,z) + (

Z
−1/2
2 − 1

)〈a|eανA∗
ν |p,μ〉

]
, (24)

where 
ν
B is the bound vertex-correction operator and Z2 is a renormalization constant. The corresponding vacuum-polarization

corrections are (Fig. 4)

τ
(1)
VP = −

⎡
⎣∑

t �=a

〈a|UVP|t〉〈t |eανA∗
ν |p,μ〉

Ea − Et

+
∑

t

〈a|eανA∗
ν |t〉〈t |UVP|p,μ〉

p0 − Et (1 − iε)

+
∫

dz
∫

dx
∫

dyeA∗
ν(z)ψ†

a (x)αλψp,μ(x)Dλσ (ω,x − y)�σν(ω,y,z) + (
Z

−1/2
3 − 1

)〈a|eανA∗
ν |p,μ〉

]
, (25)
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p p

b

p

bb

FIG. 4. Feynman diagrams for the one-loop vacuum-polarization
corrections to the radiative recombination process.

where UVP is the vacuum-polarization potential, Dλσ is the
photon propagator, �σν is the polarization tensor for the
photon self-energy, and Z3 is a renormalization constant.

The first term on the right-hand side of Eq. (24) is just [see
Eq. (3)]∑

t �=a

〈a|	ren
B (Ea)|t〉〈t |eανA∗

ν |p,μ〉
Ea − Et

= 〈δaSE|eανA∗
ν |p,μ〉,

(26)
which means that it can be computed with the self-energy
corrected wave function |δaSE〉 by making the substitution
〈a| → 〈δaSE| in Eq. (22). The corresponding term in the
vacuum-polarization corrections can be treated similarly by
the substitution 〈a| → 〈δaVP| with the VP-corrected wave
function

|δaVP〉 =
∑
t �=a

|t〉〈t |UVP(r)|a〉
Ea − Et

. (27)

The dominant contribution to UVP(r) is given by the
Uehling potential, which corresponds to considering only
freely propagating fermions interacting once with the nuclear
potential inside the fermion loops. The remaining Wichmann-
Kroll contribution is more difficult to evaluate, but can be
computed to very good accuracy using the approximate
formulas in Ref. [35].

In the present work we calculate only the first terms in the
right-hand side of Eqs. (24) and (25), which correspond to
the diagrams in Figs. 3(a) and 4(a). In the case of vacuum
polarization, the diagram 4(b) can be easily evaluated as well.
However, its contribution is expected [8] to be largely canceled
by the corresponding self-energy diagram, so we do not include
it into our calculation. The remaining vacuum-polarization
contribution should be small, as it vanishes in the Uehling
approximation. The omitted self-energy terms in Eq. (24) are
generally not small. At present we are not able to calculate
them; such calculation would require development of new
computational methods.

Let us now briefly describe how to obtain corrections
to observable quantities from the transition amplitude. The
differential cross section for the emission of a photon with
energy ω = |k| into the solid-angle element d� is connected
to the transition amplitude τ by the expression [8]

dσ

d�
= (2π )4

|v| k2τ ∗τ, (28)

where v is the velocity of the initial continuum electron with
respect to the ion. The transition amplitude can be expanded
in terms of the fine-structure constant α,

τ = τ (0) + τ (1) + · · · , (29)

yielding the zeroth-order differential cross section as

dσ (0)

d�
= (2π )4

|v| k2τ (0)∗τ (0). (30)

The first-order (in α) correction to the cross section is induced
by the correction to the transition amplitude τ (1) and by the
shift of the energy of the emitted photon,

dσ (1)

d�
= (2π )4

|v| k2(τ (0)∗τ (1) + τ (1)∗τ (0))

+dσ (0)

d�

∣∣∣∣
ω=p0−E

QED,(1)
a

− dσ (0)

d�

∣∣∣∣
ω=p0−Ea

, (31)

where EQED,(1)
a is the energy of the state a corrected by the

one-loop QED effects and Ea is the energy of this state with-
out QED effects. The self-energy and vacuum-polarization
contributions to τ (1) are given by Eqs. (24) and (25).

Apart from corrections to the cross section, we wish also to
study the QED effects on the linear polarization of the radiation
emitted in the process. In order to describe the polarization we
make use of the Stokes parameters P1, P2, and P3. The first
Stokes parameter P1 can be accessed in experiment as

P1 = I0◦ − I90◦

I0◦ + I90◦
, (32)

where Ix is the intensity of radiation whose linear polarization
vector makes an angle of x degrees relative to the reaction
plane. The reaction plane is defined as the plane spanned by
the momentum vector p of the incoming continuum electron
and the wave vector k of the emitted photon. P1 ranges
from −1 (the polarization completely perpendicular to the
reaction plane) to +1 (the polarization completely parallel to
the reaction plane). P2 can be constructed similarly to P1 but
intensities should be taken at angles of x = 45◦ and x = 135◦.
As discussed in Ref. [33], P2 in radiative recombination is
proportional to the degree of spin polarization of the incoming
continuum electrons. In the present paper we assume the
initial-state electrons to be unpolarized, so that P2 vanishes.
The third Stokes parameter P3 corresponds to the degree of
circular polarization and will not be considered here.

In order to compute P1 we express it in terms of the
differential cross sections for two polarizations of the emitted
radiation: one with the polarization parallel to the reaction
plane (dσ/d�)‖, and another with the polarization perpendic-
ular to this plane (dσ/d�)⊥. The resulting Stokes parameter
P1 is then obtained as

P1 =
(

dσ
d�

)
‖ − (

dσ
d�

)
⊥(

dσ
d�

)
‖ + (

dσ
d�

)
⊥

. (33)

QED effects modifying the cross section dσ/d� induce the
corresponding corrections to P1. In this work we will study the
QED correction to P1 defined as the difference of P1 computed
with including the QED effects and without them,

δP1 = P1(with QED) − P1(without QED). (34)

B. Radiative decay

As a second application of our radiatively corrected wave
functions we consider the 2p3/2 → 1s radiative decay in
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hydrogenlike uranium. Because of the angular momentum
and parity selection rules, this decay can proceed both via the
E1 (electric dipole) and M2 (magnetic quadrupole) channels.
It was recently shown [5] that it is possible to gain direct
experimental access to the ratio τM2/τE1 of the corresponding
transition amplitudes. We will here consider one-loop QED
corrections to this ratio.

The separation of the radiative decay into different channels
is a consequence of the expansion of the radiation field into
so-called multipole components. We will here just briefly recall
how this expansion is defined; for further details we refer to
Ref. [36].

The spatial part of the four-potential (23) can be written as
(for a particular photon helicity λ = ±1)

Aλ(k,r) = ελe
ik·r√

2ω(2π )3

= 1√
2ω(2π )2

∞∑
L=0

L∑
M=−L

iL
√

2L + 1

× DL
Mλ(z → k)

[
AM

L (m) + iλAM
L (e)

]
, (35)

where, in the Coulomb gauge,

AM
L (m) = jL(|k|r)TM

L,L (36)

is the magnetic component and

AM
L (e) =

√
L + 1

2L + 1
jL−1(|k|r)TM

L,L−1

−
√

L

2L + 1
jL+1(|k|r)TM

L,L+1 (37)

is the electric component, both defined in terms of the so-called
vector spherical harmonics TM

L,L′ . In Eq. (35) DL
Mλ(z → k)

is the Wigner rotation matrix which rotates the radiation
field from the quantization axis z into the actual propagation
direction k. The magnetic quadrupole and electric dipole
components of the radiation field are given by Eq. (36) with
L = 2, and Eq. (37) with L = 1, respectively.

The zeroth-order transition amplitudes of the E1 and M2
transitions are proportional to the reduced matrix elements of
the corresponding multipole components,

τ
(0)
E1 = C 〈a||α · A1(e)||b〉,

(38)
τ

(0)
M2 = C 〈a||α · A2(m)||b〉,

where |a〉 is the 1s state and |b〉 is the 2p3/2 state. The energy
of the emitted photon is given by ω = |k| = Eb − Ea . C is
some overall prefactor which is not relevant for the present
work as it cancels in the ratio τ

(0)
E1/τ

(0)
M2.

The QED corrections to the E1 amplitude due to perturba-
tions of the wave functions and due to the shift of the transition
energy can be expressed as

τ
(1)
E1 = C 〈δaSE||α · A1(e)||b〉 + 〈a||α · A1(e)||δbSE〉

+C 〈δaVP||α · A1(e)||b〉 + 〈a||α · A1(e)||δbVP〉
+ τ

(0)
E1

∣∣∣
ω=E

QED,(1)
a −E

QED,(1)
b

− τ
(0)
E1

∣∣∣
ω=Ea−Eb

, (39)

and the same for τ
(1)
M2.
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FIG. 5. (Color online) The zeroth-order radial wave function of
the 1s state (top) and the self-energy (SE) correction in Feynman
gauge and Coulomb gauge (bottom) for Z = 92. The correction
shifts the wave function outward radially which corresponds to a
less strongly bound electron. The radial unit is the Bohr radius a0 and
the wave functions are given in units of 1/

√
a0.

Similarly to the radiative recombination case, the correc-
tion (39) represent only a part of the total one-loop QED
effect. Further corrections containing the so-called vertex
contributions [diagram in Fig. 3(c)] and terms with the
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FIG. 6. (Color online) A comparison of the contributions from
the different terms in expansion (7) of the total self-energy correction
to the large component of the 1s wave function for Z = 92, as
calculated in the Feynman and Coulomb gauges. The x axis is
logarithmic in order to enhance the nuclear region. Units are the
same as in Fig. 5.
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derivative of the self-energy operator [9,10] are not calculated
here.

IV. RESULTS AND DISCUSSION

A. Self-energy correction to the atomic wave function

The electron self-energy effects has been intensively stud-
ied in the past in the context of the binding energy, the hyperfine
splitting, the bound-electron g factor, etc. The corresponding
corrections to the wave function, however, received much less
attention so far. Although the wave functions themselves are
unobservable, it might nevertheless be instructive to see how
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FIG. 8. (Color online) The zeroth-order radial 2p3/2 wave func-
tion (top) and the self-energy (SE) correction in Feynman gauge
(bottom) for Z = 92. Units are the same as in Fig. 5.

they are affected by the inclusion of QED effects. This may
help to gain intuition for how these effects influence various
physical properties and processes.

In Fig. 5 we plot the self-energy correction to the radial
wave function |δaSE〉 for the 1s state in hydrogenlike uranium
as computed in Feynman and Coulomb gauge. Our calculations
are performed for the homogeneous nuclear charge distribution
with radius Rnuc = 5.863 fm. Note that the self-energy
correction shifts the wave function outward radially, which
corresponds to a less strongly bound electron. This is in
agreement with the positive sign of the associated energy shift
(see, e.g., Ref. [15]). As expected, the wave function correction
is not gauge invariant. The gauge invariance will be recovered
for observable quantities when all corrections of the given
order of α are combined together. Nevertheless, the difference
between the corrections in the two gauges is quite small and
both corrections display very similar radial behavior.

Figures 6 and 7 display the semi-log plots which compare
the contributions of the three terms in Eq. (7) to the total
self-energy wave-function correction in the two gauges, for
the large and small components. It is interesting that the
one-potential term is roughly the same in both gauges, whereas
the zero-potential and many-potential terms play opposite roles
in Coulomb and Feynman gauge. Furthermore, in Coulomb
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FIG. 9. (Color online) Self-energy wave-function and energy-
shift corrections to the differential cross section of radiative recom-
bination of an electron into the 1s state of bare uranium in the rest
frame of the initial-state electron, for three different energies of the
projectile (incoming bare uranium). The lines are: Feynman gauge
(dashed red), Coulomb gauge (dash-dotted black), in comparison with
the previous results by Shabaev et al. [8] (solid blue).
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cross section. Lower plots: the QED corrections (the self-energy and vacuum-polarization bound wave-function corrections and the correction
due to the shift of the bound-state energy) in the Feynman gauge (dashed red line) and in the Coulomb gauge (dash-dotted black line).

gauge the bulk of the effect comes from the zero- and
one-potential terms with the many-potential term acting as
a relatively small correction. This can be advantageous in
high-precision calculations since it is the many-potential term
which typically sets the limit on the numerical accuracy of the
final result, due to the extrapolations in terms of partial waves
and grid size involved in its evaluation.

In Fig. 8 we show the Feynman-gauge self-energy correc-
tion to the 2p3/2 radial wave function in hydrogenlike uranium.
Again, we see that the self-energy correction shifts the wave
function outward in accordance with the positive energy shift.
The typical size of the correction is one order of magnitude
smaller than that for the 1s state (Fig. 5). This reflects the
fact that the probability to find the 2p-state electron in the
nuclear region (where QED effects are most prominent) is
much smaller than for the 1s-state electron.

We proceed now to presenting applications of the ra-
diatively corrected wave functions to calculations of QED
corrections to radiative recombination and radiative decay.

B. K -shell radiative recombination

Figure 9 shows our Feynman- and Coulomb-gauge results
for the self-energy correction to the differential cross section
for radiative recombination of an electron into the 1s state of an
initially bare uranium nucleus. The results are given in the rest
frame of the initial electron, i.e., the laboratory frame where
the incoming energetic bare nucleus captures a (quasi-free)
electron from a stationary target. Good agreement is observed
with the results from Ref. [8] obtained in Feynman gauge.

In Fig. 10 we plot the sum of the QED corrections computed
in this work to the differential cross section. In contrast to
Ref. [8], we did not include any corrections associated with a
finite energy distribution of the initial continuum electrons.
Thus, our results correspond to the scenario in which the
energy spread of the continuum electrons is much smaller
than the energy resolution of the photon detection. Our results
are also not fully gauge invariant since we do not include the
complete set of QED corrections of first order in α.

The corrections we have computed here behave qualita-
tively in the same way in both gauges and the difference
between them is relatively small. One should not, however,
interpret this as an indication that the uncalculated QED effects
are small, as they may happen to be also similar in the two
gauges. The obtained plots suggest that the relative size of
the QED effects to the differential cross section grows with
increasing energy (albeit quite slowly) and that these effects
are most pronounced at a photon observation angle of roughly
60 deg.

In Fig. 11 we plot the polarization of the emitted radiation
(the Stokes parameter P1) as a function of observation angle,
together with the QED correction δP1 [Eq. (34)]. The results
presented in these plots illustrate the energy dependence of
the QED correction. In all three cases we observe that the
maximum of the curve is shifted toward smaller angles; the
size of the shift increases with the increase of the energy.
The largest QED correction, however, appears in the lowest of
the three projectile energies and in the very forward direction,
at an angle of just 1 degree (see inset in the lower leftmost plot
in Fig. 11).
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C. Radiative decay

In Table I we present numerical values of the E1 and
M2 reduced matrix elements for the 2p3/2 → 1s transition in
hydrogenlike uranium, as well as the ratio of the corresponding
transition amplitudes τM2/τE1. The first row displays the
results obtained with the point-nucleus Dirac energies and
wave functions. The second row shows the corresponding
results obtained with the extended nucleus. The next rows
present the individual QED corrections and the final results.
The calculation was performed in the Feynman gauge. The

vacuum-polarization corrections include the Wichmann-Kroll
contribution.

We found that the finite nuclear size and QED effects
together induce the correction of −0.46% to the ratio of
the E1 and M2 amplitudes. This is by almost factor of 40
smaller than the experimental error [5]. While our present
calculations of QED effects are not complete and we cannot
make a quantitative prediction for the total shift, it seems
unlikely that QED effects can influence the interpretation of
the experimental results of Ref. [5].

TABLE I. Individual contributions to the electric dipole and magnetic quadrupole reduced matrix elements and for the ratio of the
corresponding transition amplitudes, for the 2p3/2 → 1s transition in U 91+, in atomic units. SE denotes the self-energy corrections calculated
in the Feynman gauge, VP denotes the vacuum-polarization corrections (including the Wichmann-Kroll contribution). Note that the specified
uncertainties represent only the numerical errors of the calculated contributions; the uncertainty due to missing QED effects is not included.

Contribution 〈a||α · A1(e)||b〉 〈a||α · A2(m)||b〉 τM2/τE1

Dirac (pointlike nucleus) 0.0740699(1) 0.0062527(1) 0.084416(1)

Dirac (finite nuclear size, Rnuc = 5.863 fm) 0.0741350(2) 0.0062458(1)
SE: 2p3/2 wave function correction −0.0000293(1) −0.000000815(1)
SE: 1s wave function correction 0.00008898(1) 0.00002677(2)
VP: 2p3/2 wave function correction 0.000001016(1) 0.0000000415(1)
VP: 1s wave function correction −0.00001272(1) −0.000006495(2)
VP+SE: correction from energy shift 0.000041106(1) −0.000028075(1)

Sum QED + nuclear size 0.0742241(3) 0.0062372(1) 0.084032(2)

Difference −0.000384(3)
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V. SUMMARY AND OUTLOOK

A numerical method for calculating electron self-energy
corrections to bound-state wave functions has been imple-
mented. The resulting wave functions have been applied to
a partial calculation of the one-loop QED correction to the
process of radiative recombination of an electron with a bare
uranium nucleus, as well as the corresponding corrections to
the M2/E1 amplitude ratio for radiative decay of the 2p3/2

state in hydrogenlike uranium.
For radiative recombination we found good agreement

with the previously reported Feynman-gauge results for
the differential cross section. In the present work we also
computed the self-energy corrections in the Coulomb gauge.
Although gauge invariance is not expected at this level, we
found a relatively small difference between the gauges. The
corresponding QED corrections to the angular distribution of
polarization parameter of the emitted radiation P1 was also
studied in both gauges. We saw an indication that the QED
corrections are largest in the backward and (especially for the
lowest energy considered) very forward directions.

For the ratio of the M2 and E1 transition amplitudes, we
found that the finite nuclear size and QED effects together
amount to a shift of the ratio of −0.46%.

The results obtained indicate the expected order of magni-
tude of the QED effects in these processes. In order to make
a quantitative prediction, however, a complete calculation of
all one-loop QED corrections is needed. Further development
of the work described here would necessarily focus on the
evaluation of the uncalculated terms, especially the vertex
correction and reducible self-energy correction.
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