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Magic wavelength for the hydrogen 1S-2S transition

Akio Kawasaki*

Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, USA
(Received 9 July 2015; published 12 October 2015)

The magic wavelength for an optical lattice for hydrogen atoms that cancels the lowest order ac Stark shift of
the 1S-2S transition is calculated to be 513 nm. The magnitudes of the ac Stark shift �E = −119 Hz/(kW/cm2)
and the slope d�E/dν = −2.77 Hz/(GHz kW/cm2) at the magic wavelength suggest that a stable and narrow-
line-width trapping laser is necessary to achieve a deep enough optical lattice to confine hydrogen atoms in a
way that gives a small enough light shift for the precision spectroscopy of the 1S-2S transition.
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I. INTRODUCTION

Hydrogen spectroscopy is of fundamental interest to physi-
cists and has contributed to the development of quantum me-
chanics and quantum electrodynamics [1]. The spectroscopy
has become more and more precise as new technologies
have developed. In particular, the precision of the spec-
troscopy of the 1S-2S transition has improved by ten orders
of magnitude in the past century, and now the fractional
frequency uncertainty is on the order of 10−15 [2,3]. This
high precision contributes to the determination of several
fundamental constants, such as the Rydberg constant and
proton radius [4], and allows one to set limits on the time
variation of the fundamental constants [5] and the violation
of Lorentz boost invariance [6]. There are also plans to test
the CPT theorem by comparing the transition frequency of
hydrogen and antihydrogen [7–9].

So far, the precision spectroscopy of the hydrogen 1S-2S

transition has been performed only with a hydrogen atomic
beam because of the difficulty in trapping and cooling
hydrogen [3]. Spectroscopy with an atomic beam cannot avoid
the uncertainty due to the limited amount of interrogation time
and the Doppler effect, and indeed the second-order Doppler
effect is one of the major sources of the frequency uncertainty
in Ref. [3]. The precision spectroscopy of other atomic species,
on the other hand, is typically performed with trapped atoms
or ions and takes advantage of the long interrogation time and
the Lamb-Dicke regime confinement, which results in better
relative uncertainty [10,11]. For the hydrogen 1S-2S transition,
one would also expect that spectroscopy with trapped atoms
would improve the precision.

To trap neutral atoms for precision spectroscopy, an optical
lattice formed by a standing wave of laser light is typically
used. The light-induced ac Stark shift becomes a trapping
potential for atoms, but since the amount of the ac Stark shift
is generally different for different states, the laser light also
induces a frequency shift in optical transitions. At a special
wavelength for the trapping light called the magic wavelength,
the ac Stark shifts for the ground state and an excited state are
the same, which nearly leads to the cancellation of the energy
shift of the transition. The idea of the magic wavelength was
first proposed for the strontium clock transition [12], and is
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now widely used in state-of-the-art optical transition atomic
clocks [10].

In this paper, the magic wavelength for the 1S-2S transition
of hydrogen is calculated, and the possibility of trapping
hydrogen in an optical lattice of the magic wavelength is
discussed. The ac Stark shift for the hydrogen ground state has
been widely calculated. However, some studies [13–15] are for
the specific purpose of high intensity laser applications, and
others [16] are calculations in a general situation. The present
report compares the ac Stark shift of the ground state with that
of the 2S state for precision spectroscopy.

In addition to the 1S-2S spectroscopy of hydrogen,
optical trapping is particularly important for antihydrogen
spectroscopy, where an intense atomic beam for spectroscopy
cannot be generated. The state-of-the-art antihydrogen trap
for spectroscopy is a magnetic trap, and some measurements
were performed for the ground-state hyperfine transition [7],
where the effect of the magnetic field is removed by subtracting
two frequencies from transitions between different sublevels.
With a magnetic field-free measurement in an optical lattice,
the effect of the magnetic field is automatically removed, and
the overall sequence to reduce magnetic field effects becomes
simpler.

II. CALCULATION

To calculate the trapping depth by an optical lattice for
the ground state and an excited state, I calculate the ac
polarizability of atoms in those states. Typically, such a calcu-
lation is performed with relativistic many-body perturbation
theory [12,17,18], but for hydrogen, simple nonrelativistic
perturbation theory with the analytic solution of Schrödinger
equation can be used. Some of the previous reports on the
hydrogen ground-state ac Stark shift have also used this simple
method [13,14].

The two lowest order energy shifts of a state due to the
oscillating electric field are given as

�E = − 1
4α(e,ω)E2 − 1

64γ (e,ω)E4 − · · · , (1)

where E , α, γ , e, and ω are the amplitude of the electric
field, polarizability, hyperpolarizability, the polarization of the
light, and the light frequency [12]. The largest contribution to
the polarizability is from electric dipole (E1) transitions, and
electric quadrupole (E2) and magnetic dipole (M1) transitions
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have the second largest contribution:

α(e,ω) = αE1(e,ω) + αM1(e,ω) + αE2(e,ω) + · · · . (2)

Second-order perturbation theory gives αE1(e,ω) for a state
|n〉 as

αE1(e,ω) = 2

�

∑
k

ωkn|〈k|d · e|n〉|2
ω2

kn − ω2
, (3)

where �ωkn is the energy difference of the state |k〉 and |n〉 and
d is the operator for dipole moment. For hydrogen, the exact
energy levels and wave functions can be found as the solutions
of the Schrödinger equation in a nonrelativistic treatment,
while relativistic correction, given by the difference between
the solution of the Schrödinger equation and the solution of the
Dirac equation, can be regarded as a higher order correction.
I first calculate the lowest order shift, and then estimate the
corrections due to higher order terms.

The matrix element is separated into the angular component
and the radial component. The angular component involves
the Clebsch-Gordan coefficients and is generally magnetic
sublevel dependent. In the case of the nS-n′P transitions in
hydrogen, which are the only allowed E1 transitions from nS

states, the transitions between the F = 0 component of an
nS state and the F = 1 component of an n′P state will have
polarization-independent Clebsch-Gordan coefficients. For a
transition between an 2S1/2 F = 0 state and a 2P1/2 F = 1
state, the coefficient is 1/

√
3; while for a transition between

an 2S1/2 F = 0 state and a 2P3/2 F = 1 state, the coefficient
is

√
2/3. Since the polarization-independent ac Stark shift by

the trapping light is desired, I assume that the spectroscopy is
performed between F = 0 sublevels of the 1S and 2S states
and regard 1/

√
3 and

√
2/3 as the angular components of the

matrix elements respectively.
The general form of the radial wave function of the

hydrogen atom is

Rn,l(ρ) =
√

4(n − l − 1)!

n4[(n + l)!]

(
Z

a0

)3/2

ρle−ρ/2L2l+1
n−l−1(ρ), (4)

where a0 is the Bohr radius and

ρ = 2Zr

na0
. (5)

With Eqs. (4) and (5), the radial components become

〈Rk,1|r|R1,0〉 = k2

4

(k + 1)!√
(k + 1)k(k − 1)

×
k−2∑
m=0

(−1)m(m + 4)

(k − m − 2)!m!

(
2

k + 1

)m+5
a0

Z
, (6)

〈Rk,1|r|R2,0〉 = k2

8
√

2

(k + 1)!√
(k + 1)k(k − 1)

×
k−2∑
m=0

(−1)m+1(m + 4)

(k − m − 2)!m!

4k + km − 2

k + 2

×
(

4

k + 2

)m+5
a0

Z
, (7)

FIG. 1. (Color online) ac Stark shifts for the 1S (black solid line)
and 2S (red dashed line) states by visible light. Intensity is 10 kW/cm2

and nmax = 100.

Combining the angular components, Eqs. (3), (6), and (7), and
setting Z = 1, I obtain

α1S
E1(ez,ω) = e2a2

0

16�2
mc2α2

∞∑
n=2

1

ω2
n1 − ω2

(n + 1)!

n

×
[

n−2∑
m=0

(−1)m(m + 4)

(n − m − 2)!m!

(
2

n + 1

)m+5
]2

, (8)

α2S
E1(ez,ω) = e2a2

0

128�2
mc2α2

∞∑
n=3

1

ω2
n2 − ω2

n − 2

n + 2

n[(n + 1)!]2

n2 − 1

×
[

n−2∑
m=0

(−1)m+1(m + 4)

(n − m − 2)!m!

(
4

n + 2

)m+5

× (4n + nm − 2)

]2

, (9)

where α is the fine structure constant. The summation over n

does not have any simpler analytical form and therefore can be
calculated numerically with a large enough upper limit nmax.

Figure 1 shows the calculated ac Stark shift with nmax =
100 for visible light. The 1S state has an almost constant ac
Stark shift in this region, while the 2S state shift changes
considerably. This is because the minimum transition energy
for the 1S state is 10.2 eV, and visible light is far-red-detuned
for all transitions from the 1S state. This, in turns, means that
when the ac Stark shift for the 1S state changes significantly
due to the transition between the 1S and nP states, the shift
for the 2S state is more or less constant and positive. Since
a negative ac Stark shift is required for the one-dimensional
optical lattice, the visible light region is of interest.

Figure 1 suggests that there is a point where α1S
E1 = α2S

E1
around �ω � 2.4 eV, and Fig. 2 is the magnified plot for
this region. The crossing point is at 2.4185 eV, which is
512.64 nm in the units of wavelength. This is the lowest
energy magic wavelength for the hydrogen 1S-2S transition.
Based on the fact that there are shorter wavelength transitions
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FIG. 2. (Color online) ac Stark shifts for the 1S (black solid line)
and 2S (red dashed line) states around 2.4185 eV (512.64 nm) by
10 kW/cm2 light. nmax = 3000.

for the 2S state, there are more magic wavelengths for the
hydrogen 1S-2S transition, such as 2.806 eV (441.8 nm)
and 2.997 eV (413.7 nm). However, 2.4185 eV is the best
magic wavelength in the sense that the slope d�E/dω is the
smallest. Thus, I will concentrate on the magic wavelength of
512.64 nm.

III. EFFECTS OF HIGHER ORDER TERMS

Next, I estimate the contribution by higher order terms. The
effects of E2 and M1 transitions are calculated by perturbation
theory. The Hamiltonian for the E2 transition is

HE2 =
∑
i,j

e

2

(
rirj − r2

3
δij

)
∂iEj . (10)

With a linearly polarized plane wave E = E0eeikn·x−ωt , the
polarizability by E2 transition is given as

αE2(ω) = 2

�

e2ω2

4c2

∑
i,j,k

ωkn|〈k|(niej − r2

3 δij

)|n〉|2
ω2

kn − ω2
. (11)

The polarizability of the 1S state due to the three-dimensional
state is, for instance,

α1S−3D
E2 (ω) = 37

214

e2ω2

�c2

(
a0

Z

)4
ω31

ω2
31 − ω2

, (12)

where the angular component takes a value between 0 and
4/45 depending on the direction of e and n, and 4/45 was
used to set an upper limit. The polarization of the 1S state by
the 3P state is

α1S−3P
E1 (ω) = 36

212

e2

�

(
a0

Z

)2
ω31

ω2
31 − ω2

, (13)

and the difference is the factor of ω2a2
0/c

2, except for the
numerical prefactor. With visible light and an atom, this
factor is negligibly small and thus αE2 is expected to be
negligible compared to αE1. At 512.64 nm, the ratio becomes
2.37 × 10−7. Because this factor of ω2a2

0/c
2 is dominant in

the ratio α1S−3D
E2 /α1S−3P

E1 , the ratio of the polarizability due

to other excited states α1S−nD
E2 /α1S−nP

E1 is also expected to be
small. Thus total polarizability due to E2 transitions αE2(ω)
is negligible compared to αE1(ω).

The Hamiltonian for the M1 transitions is

HM1 = μB

�
(L + gS) · B, (14)

and this gives

αM1(ω) = 2

�3
μ2

B

∑
k

ωkn|〈k|(L + gS) · e|n〉|2
ω2

kn − ω2
(15)

for a linearly polarized plane wave B = (E0/c)e eikn·x−ωt .
This is significantly smaller than αE1(ω) due to two factors.
The factor μ2

b is α2 smaller than e2a2
0 . The matrix element

suggests that there is no change in electronic structure, and thus
the only allowed M1 transitions for hydrogen are hyperfine
transitions. This results in ωkn smaller by a factor of 105

compared to the E1 transition case. Thus, αM1(ω) is negligible
compared to αE1(ω).

Hyperpolarizability γ (e,ω) is induced by higher order
perturbative interactions between an atom and two photons.
Given that the electric field of the light is much smaller than
the internal field in the atoms, as shown by the six or more
orders of magnitude smaller ac Stark shift for typical trapping
depth than the atomic energy, the perturbative expansion is
a good approximation. In this case, γ (e,ω) is significantly
smaller than α(e,ω), unless there is a two-photon resonance.
Since neither the 1S state nor the 2S state has a transition of 4.8
eV, no two-photon transition is expected to give a significant
contribution to γ (e,ω).

The relativistic correction is divided into a correction of
the energy and the correction of the wave function. These are
expected to be small, as the velocity of the electron is cα,
and is thus not relativistic. Based on the Dirac equation for
the hydrogen atom, I can estimate the effect with analytic
solutions. The energy level correction includes a factor of
ωkn/(ω2

kn − ω2). For example, the relativistic correction to the
1S1/2 state and the 2P3/2 state are −43.8 and −2.74 GHz,
which gives the change of 41.1 GHz in ω21. This shift in ω21

gives the relative change of ω21/(ω2
21 − ω2) of 1.86 × 10−5 at

the wavelength of 512.64 nm.
The relativistic correction in the wave function slightly

changes the matrix element. Defining the difference between
the relativistic wave function |
rel

1S 〉 and the nonrelativistic
wave function |
nonrel

1S 〉 as |
δ
1S〉, I obtain

〈

rel

2S

∣∣r∣∣
rel
1S

〉 � 〈

nonrel

2S

∣∣r∣∣
nonrel
1S

〉
+〈


δ
2S

∣∣r∣∣
nonrel
1S

〉 + 〈

nonrel

2S

∣∣r∣∣
δ
1S

〉
= 〈


nonrel
2S

∣∣r∣∣
rel
1S

〉 + 〈

δ

2S

∣∣r∣∣
nonrel
1S

〉
, (16)

assuming the correction is small. We calculate 〈
nonrel
2S |r|
rel

1S 〉
to estimate 〈
nonrel

2S |r|
δ
1S〉. Because

∣∣
rel
1S

〉 = Y 0
0 (θ,φ)

√
2
(1 + 2γ )

(
Z

a0

)3/2(
Z

a0
r

)γ

e−Zr/a0 ,

(17)
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where γ = √
1 − α2, the matrix elements are

〈

nonrel

2S

∣∣r∣∣
rel
1S

〉 = 1

2

√

(1 + 2γ )

3

(
2

3

)4+γ


(4 + γ )
a0

Z

� 1.290 20
a0

Z
, (18)

〈

nonrel

2S

∣∣r∣∣
nonrel
1S

〉 =
√

2

3

128

81

a0

Z
� 1.290 26

a0

Z
. (19)

The difference is 〈
nonrel
2S |r|
δ

1S〉 = 5.4 × 10−5〈
nonrel
2S |r

|
nonrel
1S 〉. 〈
δ

2S |r|
nonrel
1S 〉 is expected to be on the same order

of magnitude, and therefore the overall relativistic correction
to the wave function is negligible.

All other effects on the energy levels, such as the Lamb shift,
the finite nucleus size effect, and the hyperfine splitting are
around 1 GHz or less, which corresponds to a fractional amount
of 10−6 or less. Thus, the overall higher order correction is at
most on the order of 10−4, and therefore the number 512.64
nm is reliable up to three-digit precision.

IV. IMPLEMENTATION OF THE MAGIC WAVELENGTH
OPTICAL LATTICE

Figure 2 shows that the ac Stark shift at the magic
wavelength is −119 Hz/(kW/cm2). This is 50 times smaller
than the alkali-earth-metal–like atoms such as strontium or
ytterbium [19]. In addition, the recoil energy for hydrogen
is 72 μK, due to its small mass. These two factors require
very intense light for hydrogen trapping. In order to obtain
a trap depth for hydrogen of 300Er trapping depth, which
is typical for the state-of-the-art optical lattice clocks [20,21],
3.8 × 106 kW/cm2 intensity is required for hydrogen trapping.
This is barely achievable by focusing 1 W light injected to an
optical cavity of finesse 3000π that has a beam waist diameter
of 10 μm.

The slope of the polarizability is d�α/dν =
−27.7 Hz/GHz for 10 kW/cm2 light. The 300Er lattice gives
a −10.5 MHz/GHz shift. Compared to the ytterbium magic
wavelength trap that gives a slope of 11(1) Hz/GHz for a
500Er lattice [22], this is six orders of magnitude larger. In
order to suppress the frequency uncertainty of the 1S-2S

transition due to the light shift to 1Hz or lower, the line width
of the trapping light should be 100 Hz or less, and the magic
wavelength needs to be determined with a similar accuracy.

Given the high intensity of the lattice, the loss from the
lattice due to the scattering of the lattice light becomes a

TABLE I. Scattering rate by lattice light for relevant transitions.

Transition 
 (s−1) Isat (mW/cm2) R (s−1)

1S → 2P 6.26 × 108 7256 7.9 × 10−3

2S → 3P 2.24 × 107 1.65 1.4 × 10−3

2S → 4P 9.67 × 106 1.75 1.6 × 10−3

concern. Table I summarizes the line width 
, the saturation
intensity Isat, and the scattering rate R at 512.64 nm for the
three closest transitions involving the 1S and 2S states. The
rate is significantly smaller than 1 s−1 and therefore the loss due
to scattering is not a concern. However, it should be noted that
the small mass of hydrogen and the optical cavity to enhance
the power might complicate suppression of the heating due to
the lattice intensity fluctuations [23].

Another practical concern is cooling hydrogen to a temper-
ature cold enough to trap into the lattice. Hydrogen was first
trapped in a magnetic trap with buffer gas cooling and then
evaporatively cooled down to 50 μK to achieve a Bose-Einstein
condensate [24]. This is cold enough for atoms to be loaded
into the optical lattice, but this method does not work for
antihydrogen, because the number of atoms that can be trapped
is only a few in each cycle of the experiment. A cooling scheme
with the Lyman-α transition was recently proposed [25], and
the predicted achievable temperature was 20 mK. It would be
possible to trap a few antihydrogen atoms in the optical lattice,
but a more sophisticated way to cool antihydrogen would be
necessary.

V. CONCLUSION

The magic wavelength for the hydrogen 1S-2S transition
is calculated using the solutions of the Schrödinger equation.
The wavelength is estimated to be 513 nm; the trap depth is
−1.19 kHz per 10 kW/cm2 intensity; and the slope of the
transition frequency shift is −10.5 MHz/GHz for a 300Er

lattice depth. These results imply that a sophisticated system
is required to implement an optical lattice for hydrogen,
such as power enhancement by an optical cavity and a
narrow-line-width laser. However, it should be possible to trap
hydrogen atoms in an optical lattice for the 1S-2S transition
spectroscopy.
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Atom (Springer, Berlin, 1988).
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