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Damping of confined excitation modes of one-dimensional condensates in an optical lattice
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We study the damping of the collective excitations of Bose-Einstein condensates in a harmonic trap potential
loaded in an optical lattice. In the presence of a confining potential the system is inhomogeneous and the
collective excitations are characterized by a set of discrete confined phononlike excitations. We derive a general
convenient analytical description for the damping rate, which takes into account the trapping potential and the
optical lattice for the Landau and Beliaev processes at any temperature T . At high temperature or weak spatial
confinement, we show that both mechanisms display a linear dependence on T . In the quantum limit, we find
that the Landau damping is exponentially suppressed at low temperatures and the total damping is independent
of T . Our theoretical predictions for the damping rate under the thermal regime is in complete correspondence
with the experimental values reported for the one-dimensional (1D) condensate of sodium atoms. We show that
the laser intensity can tune the collision process, allowing a resonant effect for the condensate lifetime. Also, we
study the influence of the attractive or repulsive nonlinear terms on the decay rate of the collective excitations.
A general expression for the renormalized Goldstone frequency is obtained as a function of the 1D nonlinear
self-interaction parameter, laser intensity, and temperature.
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I. INTRODUCTION

The damping process plays a crucial role in the dynamics
of Bose-Einstein condensates (BECs). Phenomena such as
superfluid phase transitions [1–7], the Josephson effect [8,9],
quantized vortices [10–12], and Mott insulator transitions [13],
among others [14], are limited by the finite lifetime of the col-
lective excitations of the condensed atoms, i.e., by the damping
mechanisms and their dependence on temperature. After the
experimental confirmation that the collective excitations are
damped [2,4,15,16], the behavior of the decay rates has been
of major interest in the physics of BECs. Thus, several studies
and theoretical calculations of the damping of excitations
have been performed in three-dimensional (3D) [1,17–23],
2D [1,22–24], and 1D systems [25–27]. For a better under-
standing of the damping process, it becomes necessary to
consider the contribution of the parabolic confining potential.
The behavior and characteristics of the decay rate and its
dependence on temperature differ radically whether or not we
are dealing with homogeneous systems. The main assumption
for a homogeneous system is to consider the condensate
density constant in the whole space.

In the present work we consider a microscopic theory for
the damping rate of collective oscillations, specifically for a
quasi-1D condensate confined to a parabolic harmonic trap
potential and loaded into an optical lattice. The existence
of a non-negligible confining external potential breaks the
invariance symmetry, which leads to the damping rate showing
a different qualitative behavior in comparison with the previous
formalism, where the condensate is tackled as a homogeneous
system (see, for example, Refs. [23,28], and references

therein). The influence of both external interactions, the
trap potential and laser intensity, must provide a physically
richer scenario for the decay of collective excitations. The
knowledge of excited states or Goldstone modes enables the
characterization of the condensate dynamics in a general
framework. In a spatially inhomogeneous BEC system, the
label spacing of the discrete spectrum (confined phononlike
modes) and also the nature and symmetry of the wave function
of the collective modes are required for the calculation of the
collision scattering process [21].

Cigar-shaped traps can be considered as quasi-one-
dimensional systems [29]. We select such a platform of a con-
densate loaded simultaneously into a 1D harmonic potential
and an optical lattice to characterize the phenomenon of damp-
ing and tackle the problem analytically. Within the framework
of mean-field theory, the physical characteristics of a BEC
in such a trapping profile are ruled by the time-dependent
nonlinear Gross-Pitaevskii equation (GPE) [28,32,33] in an
external potential

Vext(x) = 1

2
mω2

0x
2 − VL cos2

(
2π

d
x

)
, (1)

where m is the alkaline-earth-metal atomic mass, VL is set
by the laser intensity, d is its laser wavelength, and ω0 is the
frequency of the harmonic trap.

II. THEORETICAL BACKGROUND

In the framework of the Green’s-function formalism, the
spectrum of the excited states is obtained by the poles
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FIG. 1. (a) Diagrammatic equation for the casual Green’s func-
tion Gp of phonon modes in the condensate. (b) Vertices involved
in the collisional phonon-phonon cubic interaction. (c) Feynman
diagrams contributing to the phonon self-energy operator πp for
Beliaev and Landau processes.

of the dressed Green’s function Gp. The solution of the
Dyson equation, shown diagrammatically in Fig. 1(a), is the
renormalized Green’s function Gp given by

G−1
p = G−1

0p − πp. (2)

In the absence of the interaction Gp → G0p = [ω − ωp +
iε]−1, ε > 0, ωp is the eigenfrequency of the excited state
and πp is the self-energy contribution. The solution of Eq. (2)
leads to the complex frequency ω = ωp + πp. Here Re(πp)
represents the renormalized contribution to the eigenfrequency
ωp, while Im(−πp) corresponds to the damping rate.

We assume that the decay processes are associated with
the collision between confined phonon states. To first order,
the collision term is described by the interaction between
three interacting phonon modes, giving rise to the vertices
in the self-energy diagrams shown in Fig. 1(b). It becomes
clear that the diagram on the right-hand side in Fig. 1(b)
does not contribute to the self-energy interaction at T = 0 K
since a thermal excited mode ωi must be present in the
system [see Eq. (3) below]. We must recall that the thermal
cloud in the present theory is assumed to be in thermal
equilibrium.

Figure 1(c) presents the leading diagrams contributing
to the self-energy πp. Accordingly, the complex frequency
correction can be factorized into two main processes as
πp = �ω̃L + �ω̃B and in the Hartree-Fock-Bogoliubov ap-
proximation we obtain that [23]

πp = 2πg2
1

�2

∑
i,j

[
2(fi − fj )|Aij |2

ωp + ωi − ωj + iε

+ (1 + fi + fj )|Bij |2
ωp − ωi − ωj + iε

]
, (3)

where g1 is the coupling constant and Aij (Bij ) represents the
matrix elements for the Landau (Beliaev) process ωp + ωi →
ωj (ωp → ωi + ωj ). These matrix elements describe the
interaction between the collective mode coupled to the thermal
cloud of quasiparticles. This interaction is dictated by a
three-mode-coupling matrix element and it can be treated as
a perturbation of the equation of motion and retaining only
three-body collisions [28]. In Eq. (3) the sum

∑
i,j takes

into account all possible virtual transitions |ωi〉 and |ωj 〉
contributing to the decay rate, the term 1 + fi + fj gives us the
Bose-Einstein statistical factor of the phonon |ωp〉 decaying
into two confined phonon modes [the diagram on the left-hand
side in Fig. 1(c)] |ωi〉 and |ωj 〉, and fi − fj corresponds to the
thermal correction for the annihilation and creation of phonons
with frequencies ωi and ωj [the diagram on the right-hand side
in Fig. 1(c)], respectively.

A. Bogoliubov-type excitations

Bogoliubov-type excitations can be sought by apply-
ing a small deviation from the GPE stationary solutions
|ψ0〉 exp(−iμt/�), i.e.,

|�(t)〉 = exp(−iμt/�)[|ψ0〉 + |u〉
× exp(−iωt) + |v∗〉 exp(iωt)], (4)

with μ the chemical potential. By linearizing the time-
dependent nonlinear GPE, we obtain the Bogoliubov–de
Gennes equations (BdGEs) for the eigenfrequencies ω and
amplitudes |u〉 and |v〉. As stated above, if the harmonic
trap potential is switched off, we have the homogeneous
case, where the phonon wave vector q = qxex is a good
quantum number and with excited frequency ω(qx) depending
on the phonon wave vector. Thus, the Bogoliubov low-
lying excitation spectrum shows a linear phonon disper-
sion in qx . On the other hand, when the condensate is
loaded into a harmonic potential, ω0 �= 0 in Eq. (1), the
system becomes inhomogeneous and the wave vector q is
no longer a good quantum number. In such a case the
BdGE provides a set of discrete excited-state frequencies ωp

(p = 1,2, . . .).
By considering the periodic potential in (1) and the

nonlinear term g1|φ0|2 in the GPE and BdGE as a perturbation
with respect to the harmonic trap potential 1

2mω2
0x

2, phonon
frequencies ωp up to the second order in g1 and V0 are
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given by Ref. [35]

ωp

ω0
= p + 	√

2π

[
−1 + 2
(p + 1/2)√

πp!

]
− V0

2
exp(−α2)[Lp(2α2) − 1] − 	V0√

2π
exp(−α2)

[
Ei

(
α2

2

)
− C − ln

α2

2
+ δp(α)√

π

]
+ V 2

0

4
exp(−2α2)[Chi(2α2) − C− ln 2α2 + ρp(α)] + 	2

[
γp

2π2
+ 0.033 106

]
, p = 1,2, . . . , (5)

with 	 = g1N/l0�ω0, N the number of atoms, l0 = √
�/mω0

defining the characteristic unit length α = 2πl0/d, and V0 =
VL/�ω0. In addition, Lp(z), 
(z), Ei(z), Chi(z), and C are the
Laguerre polynomials, the Gamma function, the exponential
integral, the cosine hyperbolic integral, and the Euler constant,
respectively. The parameters γp, δp, and ρp are reported
elsewhere [35]. Typically, the coefficient α � 1, thus the linear
term in V0 and the cross term V0	 in the above equation are
negligible.

B. Symmetry of the excited states

Owing to the inversion symmetry, the space of solutions
can be decoupled into two independent subspaces O and E for
p = 1,3, . . . and p = 2,4, . . . modes, respectively. Hence, the
components |up〉 and |vp〉 are expanded over the complete set
1D oscillator wave functions {φ2p+1} or {φ2p} for the odd O
and even E Hilbert subspaces. The normalized eigenvectors
|�p〉† = [|u∗

p〉,|vp〉], up to first order in 	 and V0, can be cast
as [35]

|�p〉= |φp〉 +
∑
m�=p

4	fp,m − V0gp,m

2(p − m)
|φm〉 −

∞∑
m=0

	fp,m

p + m
|φm〉,

(6)

with

fp,m = (−1)(p−m)/2

π
√

2m!p!



(
p + m + 1

2

)
, (7)

gp,m = (−1)(p−m)/2

√
m!p!

h!(2α2)(p−m)/2 exp(−α2)L|p−m|
h (2α2),

(8)

where Lt
h(2α2) are the associated Laguerre polynomials, h =

(p + m − |p − m|)/2, and m + p is an even number.
The parity of the function |�p〉 is linked to the index

p; if p is even or odd the eigenstate |�p〉 is symmetric or
antisymmetric, respectively. The decay process of a certain
phonon p is restricted by the symmetry property of the matrix
elements in Eq. (3). The amplitudes Aij (p) and Bij (p) impose a
parity selection rule for the involved states |�p〉, |ui〉, and |vi〉.
As shown in Eqs. (9) and (11), for a symmetric (antisymmetric)
state |�p〉 the amplitudes |ui〉 and |vi〉 must fulfill the parity
condition that i + j is an even (odd) number, therefore limiting
the possible number of processes for Beliaev ωp → ωi + ωj

and Landau ωp + ωi → ωj decay rates. Besides the symmetry
of the matrix elements Aij (p) and Bij (p), for a certain
eigenmode |�p〉 with frequency ωp, a key role in the damping
process is ruled by the label spacing between the Bogoli-
ubov collective oscillations �

(i,j )
p = (ωp − ωi − ωj )/ω0 and

�
(i,p)
j = (ωj − ωi − ωp)/ω0. Fixing the frequency ωp, all

allowed combinations of ωi and ωj cause �
(i,j )
p or �

(i,p)
j to

approach zero, leading to resonant transitions for the Beliaev
or Landau damping processes. This effect is shown in Fig. 2,
where the influence of the intensity V0 on some level spacings
�

(i,j )
p [Fig. 2(a)] and �

(i,p)
j [Fig. 2(b)] is displayed. For

calculations we fixed d/l0 = 0.25 and 	 = 2. From the figure
it can be seen that the laser intensity can be used as a external
parameter to tune a particular damping process, i.e., we are able
to reach certain critical values V

(p;i,j )
0 [see Fig. 2(a)], where

�
(i,j )
p (V0) = 0. This is a direct consequence of the fact that the

Bogoliubov-type collective excitation energies, as a function
of 	 and V0, are not equidistant. Note that, for a certain state
p, the Landau mechanism allows more combinations fulfilling
the condition �

(i,p)
j (V0) = 0.

III. DECAY RATE

In the following we consider that the damping originates
by a collision process and in a first-order approximation
it is described by the interaction of the three confined
phonons, giving rise to a cubic interaction in the bare phonon
amplitude [19,21,22,30,36]. This mechanism is represented by
the vertex diagrams of the self-energy part shown in Fig. 1(b).

-0.8

0.0

0.8

1.6

25 50 75 100 125 150
-0.8

0.0

0.8

1.6

V (4;1,1)
0

V (4;2,2)
0

V (3;1,2)
0

Δ(1,1)
4

Δ(i,
p )

j Δ(2,2)
4

Δ(1,2)
5

Δ(2,3)
5

Δ(2,3)
7

Δ(2,2)
6

Δ(2,2)
4

Δ(1,2)
3

Δ(3,3)
6

Δ(1,3)
4

Δ(i,
j )

p

(a)

(b)

V0

FIG. 2. (Color online) Dependence of the label spacings �(i,j )
p =

(ωp − ωi − ωj )/ω0 and �
(i,p)
j = (ωj − ωi − ωp)/ω0 [see Eq. (3)] on

the reduced laser intensity V0 for (a) Beliaev and (b) Landau damping
rates, respectively. Critical values V

(p;i,j )
0 , where �(i,j )

p approaches
zero, are shown by arrows.
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A. Beliaev damping

In the first-order loop approximation, the Beliaev mech-
anism arises from the collision of three particles where
one phonon with frequency ωp is annihilated, decaying into
two confined excitations ωi and ωj . Therefore, the allowed
processes for the confined modes ωp are those with p =
2,3, . . .. Following the Feynman diagrams of Fig. 1(b) and
using the eigenfunction amplitudes given in Eq. (6), we find
that the decay amplitude Bij can be cast as [23,28]

Bij =
∫

dx ψ0[up(u∗
i u

∗
j + u∗

i v
∗
j + v∗

i u
∗
j )

+ vp(u∗
i v

∗
j + v∗

i v
∗
j + v∗

i u
∗
j )]. (9)

Thus, for the Beliaev damping rate we obtain

γ
(p)
B = γ (0)

2
|	|M(B)

p (	,V0), (10)

with γ (0) = 4πg1/l0� and M(B)
p (	,V0) defined in Ap-

pendix A. Note that the Beliaev mechanism is forbidden if
ε → 0 in Eq. (3). The energy conservation limits the real
phonon transitions ωp → ωi + ωj .

Figure 3 displays the behavior of the Beliaev damping rate
γ

(p)
B in units of γ (0) as a function of the reduced parameter

	 for the first seven allowed confined modes p = 2, . . . ,8. In
this calculation we used T = 0 and laser intensity VL = 0. For
small values of 	 all the normalized damping seen in Fig. 3
presents a linear behavior, while for increasing values of |	|
the function γ

(p)
B /γ (0) behaves nonmonotonically and reaches

a maximum. For a given excited state |�p〉 the position of
the maximum is not symmetric with respect to the type of
nonlinear interaction (repulsive g1 > 0 or attractive g1 < 0).
In Fig. 4 we show the dependence of γ

(p)
B on the dimensionless

laser intensity V0 and calculated d/l0 = 0.25 and T = 0 K for
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Λ
FIG. 3. (Color online) Reduced Beliaev damping γ

(p)
B /γ (0) for

the Goldstone modes p = 2, . . . ,8 versus the dimensionless self-
interaction parameter 	 at laser intensity V0 = 0 and T = 0 K.
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FIG. 4. (Color online) Influence of the laser intensity V0 on the
reduced Beliaev damping γ

(p)
B /γ (0). Resonant peaks are related to the

zeros of the label spacing �(i,j )
p (V0) in Eq. (3).

	 = 2. It can be observed that the excited states p = 4, 5, and
6 show sharp peaks at certain values of V0. These features are
linked to the zeros of the frequency label spacing �

(i,j )
p (V0) as

represented in Fig. 2, while the number of transitions ωp →
ωi + ωj and the strength of the matrix elements Bij dictate the
relative intensity of the peaks.

B. Landau damping

Here, in the damping process a phonon mode with fre-
quency ωp and a thermal excitation ωi are annihilated and a
confined phonon is created. Thus, the Landau mechanism is a
thermal process at finite temperature. In the present case the
vertices’ phonon-phonon interaction [see Fig. 1(b)] leads to
the amplitude probability [19,23]

Aij =
∫

dx φ0[up(uiu
∗
j + viv

∗
j + viu

∗
j )

+ vp(uiu
∗
j + viv

∗
j + viuj )]. (11)

Thus, we have

γ
(p)
L = γ (0)|	|M(L)

p (	,V0), (12)

where M(L)
p (	,V0) is defined in Appendix B. Hence, the total

damping can be cast as

γ (p) = γ (0)|	|(M(L)
p + 1

2M
(B)
p

)
. (13)

Figure 5 presents the total damping γ (p) (solid lines) as
a function of 	 for the first five excited states. The Landau
contribution γ

(p)
L is represented by dashed lines. As in the case

of the Beliaev process, γ (p)/γ (0) ∼ |	| for small values of the
self-interaction atom-atom parameter, while for large values
of |	| the function γ (p)/γ (0) has a maximum at a certain 	p

value. We note that γ
(p)
L is smaller than γ

(p)
B for all excited

states p = 2, . . . ,5. For the Beliaev damping, the first excited
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FIG. 5. (Color online) Total damping γ (p) = γ
(p)
L + γ

(p)
B in units

of γ (0) for the Goldstone modes p = 1,2, . . . ,8 versus the dimension-
less self-interaction parameter 	. Landau damping for the modes are
shown for the same color dashed lines.

state p = 1 is forbidden at any temperature, while for T �= 0 K
this mode becomes allowed for the Landau process.

The dependence of γ (p) (solid lines) for p = 1, . . . ,5 on the
laser intensity is shown in Fig. 6. For the sake of comparison,
the Landau damping contribution is represented by dashed
lines. The figure shows that the total damping presents the
same behavior as the Beliaev decay (see Fig. 4) and that γ

(p)
L

shows resonant transitions for V0 ∼ 140.
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FIG. 6. (Color online) Influence of the laser intensity V0 on the
total damping γ (p) = γ
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L + γ
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B in units of γ (0) for the confined

modes p = 1, . . . ,5. Dashed lines show the Landau damping. In the
calculation d/l0 = 0.25.

0.4 0.8 1.2 1.6

0.05

0.10

0.15

0.20

0.25

0.15 0.30 0.45 0.60

0.02

0.03

0.04

0.05

γ B
(p

) /γ
(0

)

kBT/ ω0

p=8 p=7

p=5
p=3

p=6

p=4

p=2

Beliaev Damping
Λ=2, V0=0

p=8

p=7

p=5

p=3

p=6

FIG. 7. (Color online) Reduced Beliaev decay rate γ
(p)
B /γ (0) ver-

sus kBT /�ω0 for the Goldstone modes p = 2, . . . ,8. Open squares
represent the solution for the thermal regime as derived from Eq. (14).
Open diamonds correspond to the low-temperature limit according to
Eq. (15).

IV. DISCUSSION OF THE RESULTS

From the reported calculations, two main results can be
easily deduced: (i) the behavior of the damping rates γ

(p)
B ,

γ
(p)
L , and γ (p) with the temperature and (ii) the evaluation of

the renormalized confined phonon frequencies. Equations (10)
and (12) allow a good approach for all temperature regimes.
Figures 7 and 8 depict γ

(p)
B and γ (p) decays for 	 = 2 and

V0 = 0 as a function of the reduced temperature kBT /�ω0,
respectively. From Fig. 8 we have that, in the range of
temperature here considered, γ (p)

B > γ (p) for all excited states
p > 1.

In the thermal regime where kBT � �ω0, i.e., high tem-
perature or weak quantum confinement, we obtain that γ (p),
given by Eq. (13), is reduced to

γ (p) = γ (0)|	|kBT

�ω0

[
A(1)

p + 1

2
B(1)

p

− 1

12

(
�ω0

kBT

)2(
A(0)

p − 1

2
B(0)

p

)]
, (14)

where the Landau A(r)
p and Beliaev B(r)

p coefficients (r = 0,1)
are temperature independent [see Eqs. (A6) and (B3)]. The
asymptotic behaviors for γ

(p)
B and γ (p) are displayed by open

squares in Figs. 7 and 8, respectively. In the case of the Beliaev
damping and by comparison with the exact result in Fig. 7, we
can see that the thermal regime supported by Eq. (A5) is a better
approach for the lower excited states. For example, for p = 2
Eq. (A5) provides a good result if kBT > 0.5�ω0, while for
p = 8 the function (A5) is valid if kBT > 1.3�ω0. In contrast,
for the total damping, i.e., for higher values of p, the limit (14)
becomes a better approach. Thus, for p = 2 and 4, Eq. (14) is
good enough if kBT > �ω0 and kBT > 0.6�ω0, respectively.
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FIG. 8. (Color online) Reduced total damping γ (p)/γ (0) for the
Goldstone modes p = 1,2,3,4 as a function of temperature. Dashed
lines: Landau damping. Weak kBT � �ω0 and strong kBT 
 �ω0

confinement limits are represented by open squares and open
diamonds, respectively (see the text).

Note that for p an odd number, the thermal regime (14) is
even better. These facts are explained by the presence of the
Landau matrix element A(1)

p in the total damping calculation
for T �= 0 K.

The linear character of the damping rate with T has
been tested experimentally in the atomic gas of Na [4]. In
the experiment of Ref. [4] the condensate was loaded in a
trap where the transversal frequency ωr � ω0. Hence, we
can argue that this is a quasi-1D condensate. The excitation
frequency employed in the experiment was ωex = 1.58ω0

and ω0 = 2π × 19.3 Hz. Following the Bogoliubov excitation
spectrum of Eq. (5), the excitation frequency ωex corresponds
to the p = 2 confined phonon mode with a dimensional
nonlinear parameter 	 = 3.42. Using the asymptotic expres-
sion for the high-temperature regime [Eq. (14)], we obtain
γ (2) = 4.4 s−1 for T = 200 nK and 17.6 s−1 for T = 800 nK,
which agree quite well with the reported experimental values
of 4.4 and 18 s−1. In the evaluation a condensate of 3500
atoms is assumed and from the value of 	 = 3.42 we extract
an effective 1D coupling constant g1 = 3.7 × 10−25 eV m.

At very low temperature or in a strongly confined regime,
i.e., kBT 
 �ω0, from Eqs. (A7) and (B4) it follows that the
total damping of the exited mode p can be cast as

γ (p) = {
A(1)

p (T ) + 1
2

[
B(0)

p + B(1)
p (T )

]}
. (15)

Here the coefficients A(1)
p and B(1)

p decay exponentially with T

and γ (p) is almost constant independently of the temperature.
Comparing the results of Eq. (15) with the theoretical calcu-
lations for 3D or 2D homogeneous systems, where the trap
potential and confined effect are neglected, we find a different
behavior for the Landau damping. Reference [23] reports
the law γL ∼ T 2, while the limit of γL ∼ T 4 is predicted in
Refs. [17,19,20]. The quantum limit or very low temperature

for Beliaev damping and the total decay as a function of
reduced temperature are represented by open diamonds in
Figs. 7 and 8. From the figures it can be seen that, for
kBT 
 0.6�ω0, the asymptotic approach given by Eq. (15)
reproduces quite well the decay processes.

An important result is the knowledge of the excited
frequency shift as a function of the condensate parameters
and the applied laser intensity. The real part of the self-energy
in Eq. (3) leads to an analytical expression for the renormalized
excited frequency Re{πp} = �ω̃p as a function of 	, V0, and
T . Thus,

�ω̃p = γ0|	|
∑
i,j

[
(1 + fi + fj )|Bij |2 (ωp − ωi − ωj )ω0

(ωp − ωi − ωj )2 + ε2

+ 1

2
(fi − fj )|Aij |2 (ωj − ωi − ωp)ω0

(ωj − ωi − ωp)2 + ε2

]
. (16)

Figure 9 shows the dependence of the dimensionless self-
interaction parameter 	 on the renormalized discrete phonon
frequencies �ω̃p = ω − ωp for the reduced temperature val-
ues kBT /�ω0 = 0, 1, and 2. We conclude that for the attractive
regime (	 < 0), the renormalized shift �ω̃p > 0, while the
opposite result is obtained for the repulsive interaction,
i.e., �ω̃p < 0 if 	 < 0. This behavior is understood by
the dependence of �ω̃p in Eq. (16) on the label spacing
�

(i,j )
p = (ωp − ωi − ωj )/ω0 and �

(i,p)
j = (ωj − ωi − ωp)/ω0

as a function of 	. According to the results of Appendixes A
and B, we have that in the thermal regime, �ω̃p is proportional
to kBT /�ω0. Thus a linear increase or decrease of the excited
frequency with the temperature is predicted for an attractive
or a repulsive interaction between atoms, respectively.
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FIG. 9. (Color online) Renormalized phonon frequencies
{Reπp} = �ω̃p in units of γ (0) as a function of the reduced
self-interaction parameter 	 for three values of the temperature
kBT /�ω0 = 0,1,2 in black, blue, and red lines, respectively, and
phonon states p = 1,2,3,4.
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V. CONCLUSION

We evaluated the damping rates of confined phonon modes
of 1D condensates in a harmonic trap potential loaded in an
optical lattice. We remarked on the influence of the spatial
confinement potential on the collective oscillations and on the
damping rates as a function of the temperature. The presence
of an optical lattice as an external field allows us to manipulate
the decay rate of the condensate. The damping γ (p) can be
turned on or off as a function of the laser intensity. Also, for a
given excited state p and tuning the laser intensity, it is possible
to get a set of transitions ωp → ωj ± ωi leading to a resonant
effect for the total lifetime 1/γ (p).
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APPENDIX A: BELIAEV MATRIX ELEMENT

After substituting the perturbed wave function |up〉 and |vp〉
in the matrix element (9) and neglecting terms of the second
order or higher in 	 and V0, for the function M(B)

p we get

M(B)
p (	,V0) =

∑
i,j

(1 + fi + fj )|Bij |2L(+)
p , (A1)

where Bij = T0pij − 	Fpij + V0Hpij [Tlpij (l + p + i + j is
an even number) is reported elsewhere [35]], with

Fpij = apij + b+
jpi + b+

ijp + 2(b−
pij + b−

ijp + b−
jpi), (A2)

Hpij = cpij + dpij + dijp + djpi, (A3)

apij =
∑
m�=0

T2m000T2mpij

2m
, b±

pij =
′∑
m

T00pmT0mij

m ± p
,

cpij =
∑
m�=0

g0,2mT0mij

2m
, dpij =

∑
m�=p

gp,mT0mij

2(m − p)
,

(A4)

where the parity condition p + i + j is an even number, and
the Lorenzian function

L(±)
p = 1

π

ω0ε

(ωp ∓ ωi − ωj )2 + ε2
.

In the limit of thermal regime, the probability M(B)
p is reduced

to

M(B)
p (T ) = kBT

�ω0

[
B(1)

p + 1

12

(
�ω0

kBT

)2

B(0)
p

]
, (A5)

with

B(r)
p =

∑
i,j

ωi + ωj

ω0

(
ω2

0

ωiωj

)r

|Bij |2L(+)
p (r = 0,1). (A6)

For low temperature we have

M(B)
p (T ) = B(0)

p + B(1)
p (T ), (A7)

where

B(r)
p =

∑
i,j

[exp(−�ωi/kBT ) + exp(−�ωj/kBT )]r

× |Bij |2L(+)
p (r = 0,1). (A8)

APPENDIX B: LANDAU MATRIX ELEMENT

Using the wave functions |up〉 and |vp〉 and Eq. (11) and
neglecting terms higher than 	 and V0, we have for M(B)

p

M(L)
p =

∑
i,j

(fi − fj )|Aij |2L(−)
p , (B1)

where Aij = T0pij − 	Dpij + V0Gpij , with

Dpij = apij + b+
pij + b+

ijp + 2(b−
pij + b−

ijp + b−
jpi),

Gpij = cpij + dpij + dijp + djpi .

If kBT 
 �ω0, the Landau probability process can approach

M(L)
p (T ) = kBT

�ω0

[
A(1)

p − 1

12

(
�ω0

kBT

)2

A(0)
p

]
(B2)

with

A(r)
p =

∑
i,j

ωj − ωi

ω0

(
ω2

0

ωiωj

)r

|Aij |2L(−)
p (i = 0,1), (B3)

while for the weak confinement kBT � �ω0 we obtain

M(L)
p (T ) = A(1)

p

=
∑
i,j

[exp(−�ωi/kBT )

− exp(−�ωj/kBT )]|Aij |2L(−)
p . (B4)
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