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The main concern of this paper is how to define proper measures of multipartite entanglement for mixed
quantum states. Since the structure of partial separability and multipartite entanglement is getting complicated
if the number of subsystems exceeds two, one cannot expect the existence of an ultimate scalar entanglement
measure, which grasps even a small part of the rich hierarchical structure of multipartite entanglement, and some
higher-order structure characterizing that is needed. In this paper we make some steps in this direction. First, we
reveal the lattice-theoretic structure of the partial separability classification, introduced earlier [Sz. Szalay and
Z.Kokényesi, Phys. Rev. A 86, 032341 (2012)]. It turns out that, mathematically, the structure of the entanglement
classes is the up-set lattice of the structure of the different kinds of partial separability, which is the down-set
lattice of the lattice of the partitions of the subsystems. It also turns out that, physically, this structure is related
to the local operations and classical communication convertibility: If a state from a class can be mapped into
another one, then that class can be found higher in the hierarchy. Second, we introduce the notion of multipartite
monotonicity, expressing that a given set of entanglement monotones, while measuring the different kinds of
entanglement, shows also the same hierarchical structure as the entanglement classes. Then we construct such
hierarchies of entanglement measures and propose a physically well-motivated one, being the direct multipartite
generalization of the entanglement of formation based on the entanglement entropy, motivated by the notion of
statistical distinguishability. The multipartite monotonicity shown by this set of measures motivates us to consider

the measures to be the different manifestations of some “unified” notion of entanglement.
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I. INTRODUCTION

In the description of entanglement [1,2] a hard problem,
yet unsolved, is how to step from the bipartite scenario to the
multipartite one, in particular, how to define proper measures
of multipartite entanglement. The state of a bipartite quantum
system can be either separable or entangled, while for more-
than-two-partite systems the partial separability properties
have a complicated structure [3], and a system of measures
fitting to this structure, while being physically motivated, is
not known.

The quantum entanglement in bipartite pure states can
be described completely by the use of the singular value
decomposition (SVD), also called Schmidt decomposition
[4,5]. This leads to a local unitary canonical form, which
allows for the separation of the nonlocal parameters of the
state (relevant for the description of correlations) from the
local (irrelevant) ones. The Schmidt coefficients contain then
all nonlocal properties of the state; they show a simple structure
(which means that the pure bipartite entanglement itself
shows a simple structure), and, in principle, every measure
of entanglement can be expressed by them. A well-known
example is the entanglement entropy [5]. One can step from
pure state entanglement measures to mixed ones by the use
of convex roof extension [6]. A well-known example is the
entanglement of formation [7], which is the extension of the
entanglement entropy.

For the case of multipartite pure states, local unitary
canonical form is not known, in general [8,9]. A higher-order
singular value decomposition (or Vidal decomposition) [10]
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can be formulated, which is a sequence of bipartite SVDs. Then
a sequence of bipartite entanglement measures characterizes
the multipartite entanglement in some sense. There are also
other decomposition methods [11], such as the parallel factors
method, also called canonical decomposition [12,13], or the
Tucker decomposition [14-16]. Although these approaches
are very important in numerical techniques of the quantum
mechanics of strongly correlated systems [17,18], they do not
give us as deep an insight into the structure and quantitative
description of multipartite entanglement as the SVD did in the
bipartite case.

A very different approach is to build up the partial
separability, or multipartite entanglement structure from the
grounds [3], and define different entanglement measures for
the different kinds of partial separability. The basic observation
making this possible is that the whole construction can be
formulated by the use of the notion of pure state entanglement
with respect to a bipartite split, which is relatively well
understood. In the present paper, we carry out this program.

The first part of the paper is devoted to the classification of
multipartite entanglement. After recalling the basic notions in
the theory of entanglement of bipartite systems in Sec. II, we
build up those for the multipartite case in Sec. III in a more
clarified treatment than was presented originally [3], which
makes it possible to achieve numerous new developments.
Our results can be formulated naturally in the language of
lattice theory [19,20]. We work out the hierarchical structure of
different kinds of partial separability, which turns out to be the
down-set lattice of the lattice of the partitions of the subsystems
(see Sec. IIID), and also the structure of the entanglement
classes, which turns out to be also hierarchical, being the up-
set lattice of the lattice above (see Sec. III F). We clarify the
meaning of this structure; it is related to the local operations
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and classical communication (LOCC) convertibility: If a state
from a class can be mapped into another one, then that class
can be found higher in the hierarchy.

The second part of the paper is devoted to the quantification
of multipartite entanglement. After recalling the basic notions
in the theory of measures of bipartite entanglement in Sec. IV,
we consider the g-sums and g-means together with their gener-
alizations as useful tools for the construction of entanglement
measures from entanglement measures in Sec. V, then we
construct measures for the multipartite case in Sec. VI. The
principle is that all kinds of “partial entanglement content” of
a given state are quantified simultaneously by the elements of
a set of multipartite entanglement measures. Besides the usual
entanglement monotonicity and discriminance properties, we
introduce the multipartite monotonicity, which endows the set
of multipartite entanglement measures with the same hierar-
chical structure, as the partial separability shows. We succeed
in constructing a hierarchy of multipartite entanglement
measures satisfying these requirements in Sec. VI D, which are
the direct generalizations of the entanglement entropy for pure
states and the entanglement of formation for mixed states in
the bipartite case. These measures have the same information-
geometrical meaning, related to correlation measures based on
statistical distinguishability, as the entanglement entropy and
the entanglement of formation. The multipartite monotonicity
shown by this set of measures motivates us to consider these
measures to be the different manifestations of some “unified”
notion of entanglement.

The summary with some important discussions and a list
of open questions is left to Sec. VII. The paper’s sectioning
follows the structure of the theory faithfully. The proofs of
propositions in the main text are given in appendixes. In the
theory of entanglement of mixed states, the central notion is the
convexity: We deal mostly with convex or concave functions
defined over convex sets. Apart from the original results in the
body of the text (Secs. III, VI, and VII, together with some of
the appendixes), this paper is intended to be a self-contained
discourse and toolbox on convexity [21,22] and entanglement
[1,2,21,23-28]. In the spirit of this, we give the necessary
grounding for these topics using a unified notation system
(Secs. I, IV, and V, together with some of the appendixes). We
also recall some known proofs of theorems about entanglement
measures (appendixes) and also some useful calculations about
convexity to enlighten how this structure shows up [21,22].

II. QUANTUM STATES AND ENTANGLEMENT: BASICS

Here we briefly recall the basic notions arising in the
description of the states of single-partite (Sec. I A) and
bipartite (Sec. IIB) quantum systems [2,21,24-29]. We fix
some basic notational conventions for state vectors, pure and
mixed states, separable and entangled states.

A. Quantum states

Entanglement theory deals with the states of quantum
systems. A state vector is an element of a Hilbert space,
|Yy) € ‘H, which is normalized with respect to the standard

2-norm of the Hilbert space, ||| = /(¥ |¥) = 1. In the
paper, we consider the 1 < dim’H < oo case only. The pure
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state of a quantum system is represented by a one-dimensional
subspace (ray) in the Hilbert space (which is actually an
element of the projective Hilbert space), which can be given by
a state vector as the self-adjoint linear operator w = | ) (],
being the projector projecting to the one-dimensional subspace
spanned by the state vector |¢/). (Note that the projectors are
characterized by 72 = 7= = n!. For projectors, having unit
trace is equivalent to being of rank 1.) The set of pure states
over the Hilbert space H arises as

P(H):={m e Linga H | n* = n,||7|l, = trw = 1}. (la)

[If there is no ambiguity about the underlying Hilbert space,
we use the notation P := P(H).] A mixed state is represented
by the convex combination (or mixture) of pure states, and
it represents the state of an ensemble of quantum systems
{(pi, ;) | i =1,...,m}, described by the pure state m; with
probability p;. The convex body of mixed states over the Hilbert
space H arises as

D(H) := ConvP(H) = {Q € Lingp H ‘ dn; € P,

p,->o,2p,~=1:9=2pm}. (1b)

[If there is no ambiguity about the underlying Hilbert space, we
use the notation D := D(H).] This turns out to be equivalent
to the positive semidefinite operators normalized with respect
to the trace norm,

D(H)={o e LingaH |0 = 0,llell, =tre =1}.  (lc)

Geometrically, the pure states are the extremal points of the
convex body of the mixed states [21],

P = ExtrD; (1d)

a pure state cannot be mixed nontrivially.

Convexity is a central notion in quantum (and also in
classical) probability theory [21]. State spaces are, in gen-
eral, convex sets, which means that they are closed under
convex combination, also called mixing. That is, for convex
combination coefficients 0 < p; € R, with ), p; = 1, also
called mixing weights, if o;’s are states, then their convex
combination ), p;o; is also a state. Mixing is interpreted
as forgetting some classical information about the state by
which the system is described, so this is indeed a necessary
property. The main difference between classical and quantum
probability theory is that in the quantum case, because of the
superposition principle (linear structure in the Hilbert space),
the pure state decomposition of a nonpure state is not unique,
contrary to the classical case.

B. Entanglement

Entanglement theory, on the other hand, deals with the
states of composite quantum systems. For example, for two
subsystems, with state vectors being the normalized elements
of the associated Hilbert spaces H; and H;, the state vectors
are the normalized elements of the tensor product Hilbert
space, H1, := H; ® H,. We have again the sets of pure states
P :=P(Hy), P2 := P(H,), and Py, := P(H12), being the
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projectors onto one-dimensional subspaces in H;, H,, and
‘Hi2, and the sets of mixed states D; := D(H;) = Conv Py,
D, :=D(H,) = Conv P,, and D, := D(H;,) = Conv Py,
being the mixtures of pure states, and P; = Extr Dy, P, =
ExtrD,, and P, = ExtrDy,, for subsystem 1,2 and the
whole system 12. One can obtain the reduced (or marginal)
states by the use of the partial trace operation, for example
try : D1 — Dy, which is linear, and try(X ® Y) = X(tr Y).
If the state vector ) € H, can be written as an elementary
tensor |¥) = |Y¥1) ® |y») with suitable state vectors [) €
‘H; and |y;) € Ha, then it is separable, or else it is entangled,

e, [¥) = =(1¥1) ® [¥2) + ¥ ® [¥y), with (Y ly) =
(Y2]¥5) = 0. The set of separable pure states is then

Psep :=1{m € Pi2| Amy € P1,Amr € Pr i m = 1 @ M2},
(2a)

that is, the rank-1 projectors with separable images, while the
set of entangled pure states is its complement Pyep, = P \ Pep,
and the set of separable mixed states is

Dyep := Conv Pyep, (2b)

while the set of entangled mixed states is its complement
Dyep = D \ Dyep. This definition is motivated by that the
separable mixed states can be created from uncorrelated
(product) states by the use of local (quantum) operations and
classical communication (LOCC) [30,31], while entangled
states cannot. Two points have to be emphasized here. On the
one hand, the set of separable mixed states are closed under
LOCC:; on the other hand, starting with an entangled state, one
can obtain separable states by means of LOCC. Geometrically,
the separable pure states are the extremal points of the convex
body of the separable mixed states,

Pyep = Extr Dyep. (2¢)
The situation is summarized as

Dsep - D12
Uu U 2d)
Psep CPIZ’

which represents an important point of view in the sequel.

Thanks to the Schmidt decomposition for bipartite state
vectors [4,24], it is easy to decide whether a pure state is
separable or not: For all = € P,

T E Psep — tnpneP < wuwrxeP:. @B
The mixed separability problem is, however, a hard optimiza-
tion task [1,2,23,32].

From the classical point of view, one faces several coun-
terintuitive consequences following from the existence of
entangled states. These are based more or less on the fact
that, as can be seen from (3), entangled pure states have
mixed marginals, which is completely unimaginable for the
classically thinking mind [33-35], since in the classical case
the marginals of a pure joint probability distribution are pure
ones.
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III. QUANTUM STATES AND ENTANGLEMENT FOR
MULTIPARTITE SYSTEMS

In this section, we rebuild the partial separability classi-
fication of multipartite mixed states in a more clarified way
than was done originally [2,3]. This classification is complete
in the sense of partial separability; that is, it utilizes all the
possible combinations of different kinds of partially separable
pure states. We also reveal the lattice theoretic structure
behind the class structure. For a quick summary on the very
basic elements of lattice theory we use in the sequel, see
Appendix A 1, based on [19].

The basic observation upon which the construction is built
is that the whole construction can be formulated by the use
of the notion of pure state entanglement with respect to a
bipartite split. During the construction, we separate the abstract
hierarchy of (the labeling of) the partial separability properties
from the concrete hierarchy of the state sets of pure and
mixed states, which results in a very transparent building. This
building is of four floors. The ground floor is the hierarchy
of subsystems (Sec. III A), then the first and second floors are
the hierarchic structures of the state sets of different partial
separability properties (Sec. IIIB and IIID), and the third
floor is the hierarchic structure of the classes of states showing
different entanglement properties (Sec. III F).

A. Level 0: Subsystems

First of all, let us introduce some convenient notations.
For n-partite systems (n > 0), the set of the labels of the
elementary subsystems is L = {1,2,...,n}. That is, for all
a € L, we have a Hilbert space H,, with 1 < dimH, < oo,
associated with the elementary subsystem of label a. A sub-
system (not elementary in general) is then labeled by a subset
K C L and has the Hilbert space Hx = ),.x Ha associated
with it. For K = {J, we have the one-dimensional Hilbert
space Hy = Span{|y)} = C. For labeling the complementary
subsystem, we have the notation K = L\ K. We have the
shorthand notation H = H,, for the Hilbert space of the whole
system. For a subsystem K, we have the set of pure states (1a),

Pk = P(Hk), (4a)
and the set of mixed states (1b),
Dk := Conv Pk, (4b)
and, by construction,
Px = Extr Dg. (40)

For K =@, we have Py =Dy = {|¥){¥]|}. We have the
shorthand notation P = P, and D = D;, for the pure and
mixed states of the whole system, respectively. Let K, K’ € L,
such that K C K'; then let the linear map trg : Lin Hg —
Lin Hgn i, the partial trace over K, be defined as

trg (X) Xo := (HtrXa) QR Xu (5)

a'eK’ ack a’'eK'\K

for X, € Lin'H,, adopting the convention that the empty
product is 1 € C, and the empty tensorial product is the
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normalized |[Y)(y| € Dy. (A slight abuse of the notation is
that we use the same trx for all K'.)

In a formal sense, the label of a subsystem is an element of
the power set

P, =2k (6)

of the labels of the elementary subsystems L, so we have the
power-set lattice of subsystems [19],

(P, <,

U,n,—4,L). @)
The size of that is | Py| = 2/41 = 2.

B. Level I: Partial separability hierarchy of the first kind

We would like to form mixtures from a given kind
of partially separable pure states. To this end, let o =
{K1,K>, ..., Ko/} = Ki|K3]| - - - | K| denote a splitting of the
system, that is, a partition of the labels L into parts, being
disjoint nonempty sets K; € L, which together amount to L.
We have the set of all the possible partitions

P :Z{“=K1IK2I-~-|Ka VKea:Keh\ {0

VK,K’ea:K;AK/=>KﬂK’=VJ,UK:L}. (8)
Kea

We call the partitions labels of the first kind, and we use them
for the labeling of such states. The number of them for all
n is given by the | Pi| = B, Bell numbers [36], given by the
recursive formula B, 41 = Y_¢_, (;) Bk, with By = By = 1.

There is a natural (partial) order on the set of the partitions.
For two partitions 8, € Py, B is a refinement of « (“B is finer
than «” or “« is coarser than B”), denoted with 8 < «, if «
can be obtained from § by joining some (maybe none) of the
parts of §; that is,

def.

B<a & VK eB, IKca: K CK. 9)

This defines a partial order on the set of partitions [19], and
(P, x) is a poset (partially ordered set). (For a summary on
the basic constructions in order theory, see Appendix A 1.)
For example, for the tripartite case 1|2|3 < 1|23 < 123. (In
the following, we omit the braces and also the comma, in the
cases when this does not cause confusion.) Moreover, there
are a top and a bottom element, which are the full n-partite
split and the trivial partition without split, respectively, L =
12 n<a<xT=12---n.

For the poset of partitions, one can define the greatest lower
bound, or meet, a A o, and the least upper bound, or join,
aVa,as

arnd ={KNK' 40| K ca,K' €a’}, (10a)
ava = /\ Ma,a'}, (10b)

so the set of partitions forms a lattice,
(P, 2, V,AL2]--+|n,12---n). (11)

[The definition (10b) comes from a general construction
(A9a).]

PHYSICAL REVIEW A 92, 042329 (2015)

It is important that the bipartitions K |K € P; can be used
for the generation of all partitions,

o= /\ K|K. (12)

Kea

(For the proof, see Appendix A 2.) This turns out to be crucial
later, when the multipartite entanglement measures are built
upon bipartite ones.

For a partition o € Pj, we have the set of a-separable pure
states,

Py = {n € LinH

VKea,EInKGPK:n=®nK},
Kea

(13a)
and the set of «-separable mixed states,

D, := Conv P,, (13b)

(that is, o is «a-separable if and only if it can be mixed by
the use of w-separable pure states) [37—41]. It also holds by
construction that

Py = Extr D,, (13¢)

there are no other extremal o-separable states than the pure
ones. For the 1-partite trivial split « = {K;} = {L}, we have
that the {L}-separable pure and mixed states Pj,; = P, = P
and Dy = Dy =D are obviously all the pure and mixed
states of the system. Note that for all « € Py, the state sets
D, are closed under LOCC; that is, for all LOCC map
A:D— D,

oD, = A)eD,. (14)

(For the proof, see Appendix A 3.)

Note that these definitions only demand the separability
with respect to a given split, independently of whether the
separability with respect to a finer split also holds. That is, the
‘P, and D, sets are containing (and also closed), and the sets

Pp:={P, | a € P},
Pip:={Dy | e P}

(15a)
(15b)

are posets with respect to the inclusion, (P p, <), (Prp, Q).
Moreover, the set-theoretical inclusion perfectly resembles the
ordering of the respective partitions,

B=a

— Pg <SPy, (16a)

and

B=<=a <= DyCD, (16b)

(that is, separability with respect to a finer split implies that
with respect to a coarser one) so the posets (P, <), (Prp, <),
and (P;,p, ©) are isomorphic. [That has already been proven in
[2,3] in a different construction. We give a more basic proof,
which uses only the notion of bipartite separability (3), in
Appendix A 4.]

Do the other structures, meet A and join Vv (10), resemble the
natural, set-theoretical intersection N and union U for the state
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sets (15a) and (15b)? We know from (A8) thata A o' < a0’ <
a Vv o'; this leads t0 Pyry' € Py, Py € Pove and Dypy C
Dy, Dy € Dyver due to (16a) and (16b). From these we
have

PaAa’ - Pa N ,sz’,
Da/\a’ - D(x N ,Do/’

Pa U Pa’ - Pa\/a’s
Da U Da/ - Dava“

(17a)
(17b)

These are what we have by the use of only the (16a) and (16b)
isomorphisms of the orderings. However, there is more to be
known for pure states if one takes into consideration the (13a)
definition of the P, sets of «-separable pure states. In this case
it can be proven that

Py NPy = (18)

anas

that is, a pure state is separable under the splits & and &’ if
and only if it is separable under their meet & A o’ (10a). (For
the proof, see Appendix A 5.) This means that P p is closed
under intersection, and

(Prp, S, 0, Prgpeeins Pizen) (19)

is a meet semilattice, and, due to (16a) and (18), this structure
is isomorphic to that of P; given in (11),

(Prip, €, 0, Pippn, Pi2ea)

=P, 2, A2 |12 ). (20)

[Note that, by (A9a), one can also define the join for the meet
N; however, this would not lead to the set-theoretical union,
but for N | {Py, Py} = Pave. Of course, P;p is not closed
under the set-theoretical union.] A corollary of (18) and (12)
is that

Pa = m PK\?’ (21)

Kea

that is, a pure state is separable under a split «, if and only
if it is separable under all bipartitions K |K, where K € . A
corollary of (21) and (3) is that it is easy to decide whether a
pure state is o-separable or not: For all 7 € P,

mnePy < VKea: trgmePk. (22)

(For the proof, see Appendix A 6.) On the other hand, because
of the convex hull construction (13b), there are no such results
for mixed states, we have only the poset

(Prp € ., Di2fin>Di12..n), (23)

and, due to (16b), this structure is isomorphic to that of Py
givenin (11),

(Prp, €.D1py..jnsDi2.n)

as was mentioned before. The mixed separability problem is,
again, a hard optimization task [1,2,23,32].

Note that a complementary notion can also be defined. A
pure state m € P is a-entangled, if it is not «-separable; that is,
7 € Py = P\ P,. For the preparation of these states, nonlocal
operations are needed among the K € o subsystems. Note that
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P, is not closed. A mixed state o € D is a-entangled, if it is
not a-separable; thatis, 0 € D, = D \ D,. For the preparation
of these states, it is not enough to use «-separable states only;
there is also a need for a-entangled states. Note that D, is
neither convex nor closed. For these complementary state sets
we have the sets

Pp:={Pu| a€P}, (25a)

Pp:={Dy| a € P}, (25b)

which are posets with respect to the inclusion, (P75, <),
(P.p, ©). For these complementary state sets we have the
reverse (16) order,

P, (26a)

!

B
and

& Dy2D, (26b)

U

(that is, entanglement with respect to a coarser split implies that
with respect to a finer one), so the posets (P, X), (P 5, 2),
and (Plﬁ, D) are isomorphic.

C. Examples

Writing out some examples explicitly might not be useless
here. The lattice P; for the cases n = 2 and 3 can be seen in the
upper-left parts of Figs. 1 and 2. As we have learned in (16a)
and (16b), we need to draw only this lattice for the inclusion
hierarchy of the sets of a-separable pure and mixed states P,
(13a) and D,, (13b).

CTa P Pu=0,(P)\ {0}
[OJC] o~ N
!
(GO} l/ ® ®
|

© @ pPp=0:(Pa)\ {0}

FIG. 1. (Color online) Lattices of the labels of the first and second
kinds and class labels, P;, Py, and Py, are illustrated for n = 2. The
partitions @ € Py are denoted by small pictograms; the labels of the
second kind « € Py are down-sets of partitions (only the maximal
elements are drawn). The class labels a € Py are up-sets of labels
of the second kind (only the minimal elements are drawn). The order
relation is denoted with an arrow: 8 — « means 8 <o, 8 —> o
means B < &, and f — « means f < «. By means of (16) and
(32), the P; and Py resemble the inclusion of the sets of a-separable
pure (P,), a-separable mixed (D,), and a-separable pure (P),
o-separable mixed states (D,) (see Secs. III B and III D). The lattice
Py is the class hierarchy (see Sec. III F), and by means of (54), it is
related to the LOCC convertibility of the classes (Cy).
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For the bipartite case we have Hj, = H; ® H,, and we
get back the content of Sec. II B. The sets of «-separable pure
states are

P12 = P(H12),
Pip = {7 € Pialr = m ® w2} = Phep.
Note that P1|2 C Pis.

Pi=0,(P)\ {0}

@% j@ ° T

oo ,. /\

SN ZD N s N

l N@(m \ {0}

N Lo e oo

P =N

j@(:)i@%@i@%j@i@%4/<.»ij@~)\§ E)“\\

=

0N oe
|

O]
[OC]

FIG. 2. (Color online) Lattices of the labels of the first and second
kinds and class labels, P;, Py, and Py, are illustrated for n = 3.
The partitions « € Py are denoted by small pictograms; the labels
of the second kind « € Py are down-sets of partitions, in which
case the different elements are drawn with different colors (only the
maximal elements are drawn). The class labels & € Py are up-sets
of labels of the second kind; these are written side by side (only
the minimal elements are drawn). The order relation is denoted with
an arrow: § — o means 8 <o, B — o means B <&, and f —> «
means B < a. By means of (16) and (32), the P; and Py resemble
the inclusion of the sets of a-separable pure (P,), a-separable mixed
(D,), and a-separable pure (P,), a-separable mixed states (Dy);
(see in Secs. III B and III D). The lattice Py is the class hierarchy
(see Sec. IIIF), and by means of (54), it is related to the LOCC
convertibility of the classes (Cy).

PHYSICAL REVIEW A 92, 042329 (2015)

The sets of «-separable mixed states are
Dy = Conv P12 = D(Ho),
D||2 = Conv P||2 = Dsep.

Note that, again, Djp € Dy».
For the tripartite case we have H o3 = Hi @ Hy ® Hs. The
sets of a-separable pure states are

Pi2s = P(Hi23),
Pape ={mw € Pio3 | m = 74 @ 7},
Pips ={r € Pi3 | 7 =m @ m2 ® 73},

with all bipartitions a|bc of {1,2,3}. Note that P23 € Pape S
P123. Note, on the other hand, the manifestation of (18): If a
pure state is separable under the splits 2|13 and 3|12, then it is
separable under 2|13 A 3|12 = 1|2]3, that is, fully separable.
The sets of «-separable mixed states are

D123 = Conv P13 = D(Hi2),
Dalbc = Conv ,Palbc’
D1|2|3 = Conv 'P1|2\3.

Note that, again, Dyjp;3 € Dappe S Di23. Note, on the other
hand, that there is no (18)-like result for mixed states: If a
mixed state is separable under the splits 2|13 and 3|12, then
it is not necessarily fully separable; we have only (17b) (see,
e.g., [39,42]).

D. Level II: Partial separability hierarchy of the second kind

An important observation in the theory of entanglement of
multipartite mixed states [39,42] is that there are mixed states
which cannot be mixed by the use of any given nontrivial
«-separable pure states, while they can be mixed by the use of
pure states of different nontrivial «-separability. For example,
for the tripartite case in Sec. III C, there are states 0 ¢ Dy,
which can be mixed by the use of bipartite entanglement in
subsystems 12, 13, and 23; that is, 0 € Conv(Pyj23 U Pyji3 U
P3j12). Such states should not be considered fully tripartite-
entangled, since they can be mixed without the use of genuine
tripartite entanglement, and these kinds of situations have to
be handled [39,42].

So we would also like to form mixtures from different
kinds of partially separable pure states. To this end, let «
be a nonempty down-set (A6a) in Pj, that is, a nonempty
a = {ag,00, ..., } S Prset, which contains every partition
which is finer than its maximal elements (see Appendix A 1).
We have the set of all the possible nonempty down-sets

Py =0 (P) \ {9}
sfaec2f\{#} |Vaeca: B<a = Bea}. 27

We call the nonempty down-sets of partitions labels of the
second kind, and we use them for the labeling of such
states. (For a nonempty down-set &, the set of its maximal
elements, max a, was called proper label and denoted in
the same way previously [2,3]. Since the set of maximal
elements of a nonempty down-set a determines & =], max «
uniquely, and vice versa, both max & and « are equally suitable
for the labeling of the sets of states with the given partial
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separability properties. The former one is perhaps more natural
and expressive in some sense, while the latter one leads to a
simpler and more transparent mathematical construction.)

The Py set of nonempty down-sets of the lattice P; forms
a lattice with respect to the inclusion, intersection, and union
[19], so we have

(PH, <,A,V ,J_,T)
= O P\ {0}, <, N, U {112 -+ n}, {12+ - - n}=P).
(28)

For example, for the tripartite case |{1]2|3} = {1]2]|3} <
1123} < J{1123,2]13} =< [ {123,2]13,3]12} =< [ {123} =
P

For adown-seta € Py, we have the set of a-separable pure

states
Poi=JPa= |J Pu

oea oemax o

(29a)

[that is, 7 is a-separable if and only if it is a-separable for
at least one o € «; on the other hand, because of (16a), it is
enough to use max « for the calculation of the union] and the
set of a-separable mixed states

Dy := Conv P, (29b)

(that is, o is a-separable if and only if it can be mixed by the
use of any a-separable pure states for which o € a). It also
holds by construction that

Py = Extr Dy, (29¢)

so there are no other extremal a-separable states than the pure
ones. For the « containing only the 1-partite trivial split & =
{a} = {{L}}, we have that the {{L}}-separable pure and mixed
states Py = P = P and Dy1yy = D, = D are obviously
all the pure and mixed states of the system. Note that for all
o € Py, the state sets D,, are closed under LOCC; that is, for
all LOCCmap A : D — D,

0€Dy = A(0)€ D,. (30)

(For the proof, see Appendix A 7.) Note that if |max | > 1,
then D, D U,eq Dy ; that is, an a-separable mixed state does
not need to be «-separable for any particular split @ € «.

Note that these definitions only demand the separability
with respect to any of the given splits, independently of
whether the separability with respect to finer splits also holds.
That is, the P, and D, sets are containing (and also closed),
and the sets

Prp = {Py | @ € Pp},
Pup :={Dy | @ € Py}

(31a)
(31b)

are posets with respect to the inclusion, (Pyp, <), (Pnp, <).
Moreover, the set-theoretical inclusion perfectly resembles the
ordering (inclusion) (28) of the respective labels of the second
kind,

B=a

— Pg C Pu, (32a)

and
B=a

& Dy C D, (32b)
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(that is, a separability lower in the hierarchy implies a higher
one), so the posets (P, <), (Pup, €), and (Pyp, ) are
isomorphic. (We recall the proof in Appendix A 8 from [2,3] in
a slightly modified form, adjusted to the present construction.)

Do the other structures meet A and join Vv (28) resemble
the natural, set-theoretical intersection N and union U for the
state sets (31a) and (31b)? We know from (A8) that & A &' <
o, <aVa, this leads t0 Pyry' € Py, Poy € Pyvar, and
Dore' € Dy, Dy € Dyvor due to (32a) and (32b). From these
we have

Poma’ - Pa N 7)(1'7
Du/\oc’ - Da N Du”

Pa U PO(/ - Pava’y
Doz U D(x’ - Dot\/oz’-

(33a)
(33b)

These are what we have by the use of only the (32a) and (32b)
isomorphisms of the orderings. However, there is more to be
known for pure states if one takes into consideration the (29a)
definition of the P, sets of a-separable pure states. In this case,
it can be proven that

Po N Py = Po U Py = Paver- (34)

(For the proof, see Appendix A9.) This means that Py p is
closed under intersection and union, and

L7

(Pup, S, 0, U Priappent Przeny) (35)

is a lattice, and due to (32a) and (34), this structure is
isomorphic to that of Py given in (28),

(PH,’P7 g ) N ) U 7lpl{l|2|...‘n},'P¢{124“”})
= (P, 2, A VL2 nd {122 0n)). (36)

It is again easy to decide whether a pure state is «-separable or
not: By definition (29a), we have to decide if it is «z-separable
(22) for at least one « € «. On the other hand, because of
the convex hull construction (29b), there is no such result for
mixed states; we have only the poset

(Pu,p, €, Dyj12)iny>Dyj12-n), 37

and, due to (32b), this structure is isomorphic to that of Py
given in (28),

(Pu,p, S . Dygip)inys Dygrzemy)
= (P, <, W{112] -+ n}, {12 - - n}),

as was mentioned before. The mixed separability problem is,
again, a hard optimization task [1,2,23,32].

Note that a complementary notion can also be defined. A
pure state m € P is a-entangled, if it is not «-separable; that is,
TEPy=P \ Py. This means that it is not separable under
any a € a splits. Note that P, is not closed. A mixed state
o0 € D is a-entangled, if it is not a-separable; that is, g €
Dy = D\ D,. For the preparation (by mixing) of these states,
it is not enough to use a-separable states only; there is also
a need for a-entangled states. Note that D, is neither convex
nor closed. For these complementary state sets we have the
sets

(38)

Pyp = {Pu | @ € Py}, (39a)

Pyp:={Dq | & € Py}, (39b)
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which are posets with respect to the inclusion, (P75, <),
(Pyp> ©). Because of the reverse order (26) of the «-entangled

state sets, the inclusion hierarchy of the P, and Dy, et-entangled
sets is O4(Pp) \ { P}, given by the up-set lattice O4(Py) of Py,
and for these complementary state sets we have then the reverse
(32) order

B=<a < Psg2P,, (40a)

and

B=<a < Dg2D, (40b)
(that is, entanglement higher in the hierarchy implies a lower
one) so the posets (P, <), (Pnﬁv D), and (Pnﬁ’ D) are
isomorphic.

Note that in this framework, complete in the sense of partial
separability, one can also describe the notion of k-separability
[39,42,43] and k-producibility [43—45]. A mixed state is
k-separable, if it can be mixed by the use of pure states being
separable into at least k parts. That is, the set of k-separable
states is given by Dy.sp := Dg,, where the B € Py label of
the second kind is such that

Br: VYBeB:
VB¢&B:

|B| > k and

1Bl < k. (41a)
(This is related to the natural gradation on the lattice of
partitions P.) These labels form a chain (a completely ordered
set), {112]---In} =B, 2 2By P =X --- 2B =1,
leading t0 Dyyj2...;n) = Da-sep €+ S Dk + 1)-sep © Dresep S
+++ € Digp =D by (32b). A mixed state is k-producible,
if it can be mixed by the use of pure states being separable
with respect to splits containing parts at most of size k. That
is, the set of k-producible states is given by Dy_prod := Dy,,
where the p; € Py label of the second kind is such
that

Yi: Vyeyr, YKey: |K|<kand
Vyéyr, IKey: |K|>k. (41b)
These labels form a chain, {1|2]|---|n} =y < -+ < Y1

<
Vi <. =< Yn= PI, leading to D[l\Zl\n} = Dl-prod c...C
D(k — 1)-prod - Dk—prod c...C Dn»prod =D by (32b)

E. Examples

Writing out some examples explicitly might not be useless
here. The lattices Py for the cases n = 2 and 3 can be seen
in the upper-right parts of Figs. 1 and 2. As we have learned
in (32a) and (32b), we need to draw only this lattice for the
inclusion hierarchy of the sets of a-separable pure and mixed
states P, (29a) and D, (29b).

For the bipartite case, we do not have additional structure
over that of the first kind (see Sec. III C), and we get back the
content of Sec. II B. The sets of a-separable pure states are

P2y = Pro = P(Hi2),
Piapy =P = Peep-

PHYSICAL REVIEW A 92, 042329 (2015)

Note that P12y € P,(12;. The sets of az-separable mixed states
are

D2y = Do = D(Hi2),
D1y = D1z = Deep-

Note that, again, 'D“1|2} - D“]z}.

For the tripartite case we do have additional structure over
that of the first kind (see Sec. III C). The sets of a-separable
pure states are

P23y = Pis = P(Hizs),
Pi23,2113,3112y = Pz U Pajiz U Pajia,
P ivlac,claby = Polac Y Pejab,
P iaibey = Pajpes
P = P,

with all bipartitions albc of {1,2,3}. Note that P 233 S
Priaber € Piabe,blacy S Pialbe.blac,claby S Pyii23y. Note, on
the other hand, how (34) works. The sets of «-separable mixed
states are

D123y = Conv P 123y = D(H123),
D 11123,2113,3112) = Conv P (1123 2/13,3112}
D iplac,claby = Conv P pjac.clab)»
Dytalbey = Conv P iajpe)
Dy = Conv Pyijag3).-

Note that, again, Dy € Diape) S Dijagpe.blacy S
Di{u\bc,blac,clab} - ’DL{123}' Note, on the other hand, that there
is no (34)-like result for mixed states, we have only (33b).

F. Level III: Partial separability classes

The state sets D, of given a-separability are containing
(32b); that is, if a state is a.-separable, o € Dy, it can also be
B-separable for a B lower in the hierarchy (P, <). Now we
construct the partial separability classes, which are the sets of
states having well-defined partial separability properties, that
is, being «-separable but not separable under any < .

The partial separability classes are defined as the intersec-
tions of the D, sets of states of different partial separability.
First we select a sublattice of Py,

(Pr=, <, ALV) S (P, X, AL,V), (42)

by the use of which we can tune how fine or coarse the arising
classification is and what kinds of entanglement are taken
into account. The elements of this (sub)lattice give rise to a
(sub)hierarchy, based on which the classification is carried
out. If the whole lattice is taken, Pj+ = Py, then we get
the complete classification in the sense of partial separability,
which utilizes all the possible combinations of different kinds
of partially separable pure states [2,3]. If only the principal
elements of Py are taken, thatis, P+ = {ee € Py |da € P :
o = |{a}}, then we get anincomplete classification introduced
in[37,38]. If P = {Br | k = 1,2, ...,n}is the set of labels of
the second kind labeling the different k-separability properties
(41a), then we get an intermediate classification, based on
k-separability [39,42,43]. If Py« ={yr | k=1,2,...,n} is
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the set of labels of the second kind labeling the different
k-producibility properties (41b), then we get another inter-
mediate classification, based on k-producibility [43—45].

Now we need to obtain all the classes, the possible
nonempty intersections of the D, sets (for a € Py+). In
general, the intersections can be labeled by a nonempty
a C Py« as

Co = )DaN () Da- (43)
g (353

However, because of the inclusions (32b), some of the
intersections are empty by construction,

Jaca,IBd¢a:axp = Cu=10. (44)

[This comes from (32b) and elementary set-algebra: If A € B,
then BN A = A\ B = ¢.] It will turn out later that if a class
is not empty by construction, then its label & is a nonempty
element of the up-set lattice of Py« (see Appendix A 1), which
is now denoted with

Prp := O4(Pux) \ {0}

={ee2™\{f}|Yaca: a<p = Bea}.
45)

Again, the Py set of nonempty up-sets of the lattice Py forms
a lattice with respect to the inclusion, intersection, and union
[19], so we have

(Pur, =, A V) = (O (Pr) \ {9}, ., N, U). (46)

With the above definitions in hand, we can prove that Py
is sufficient for the labeling of the classes in the above sense;
that is,

Co#V =
(For the proof, see Appendix A 10.) We also have the set
Prc:={Cy | o€ Py}. (48)

From (47), by the inclusion rules (32b) and (40b), it immedi-
ately follows that the classes (43) can be written as

() Dun [ Da (49)

aemax o acmina

o <€ P]H. (47)

Cy =

with the notation & = Py+ \ . [That is, because of (32a), it
is enough to use max & and min« for the calculation of the
intersections.] A conjecture is that the reverse implication also
holds in (47), even for the most detailed case when Pyj» = Py
[2,3].

Conjecture 1. The classes (43) given by all o € Py are
nonempty; hence,

Cg #0 << «acbPy. (50)

An advantage of the formulation by the labeling con-
structions is that, roughly speaking, by using that, “we have
separated the algebraic and the geometric part” of the problem
of the nonemptiness of the classes. At this point, it seems that
we have tackled all the algebraic issues of the problem, and this
conjecture cannot be proven without the investigation of the
geometry of D, more precisely, the geometry of the different
P, sets of extremal points.
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Having the (43) definition of the classes Cy for & € Py in
hand, we can also reconstruct the original state sets D,. By the
definition (43) we have

(51a)

so we need to collect every class C, Where & € o to reconstruct

De,
U C

Vae Py:
cea

Ce EDy — aca,

Dy = (51b)

These classes are labeled by the elements of the up-set of the
principal element 1{a} [being a principal element in O4(P)];
that is,

e € Py | € af = H{{a}}.
(For the proof, see Appendix A 11.) Using this, we have

Du= |J Cu

a=xt{Ma}}

(52a)

(52b)

After these technicalities, let us take a wider look at
the construction. We have that, interestingly, the partial
separability classes (49) are also endowed with a hierarchical
(lattice) structure (46). Although this structure arises in a very
natural way in the construction, the meaning of this hierarchy
is not fully understood at this point. Now we clarify that.

Since at this point we do not have a well-established notion,
based on which it could be meaningful to say that states in
a given class C, are “more entangled” than states in class
Cg, we are free to adopt (and we would really like to adopt)
the hierarchy (P, <) for this purpose, if doing this makes
any sense. Being more entangled is a notion strongly related
to LOCC convertibility, so one should make a trial of this
direction. Here we use the notations for the strong and weak
LOCC convertibility among different classes (different definite
partial separability properties),

LOCC,
Cﬁ — C&

Voe Cﬂ, 3 A LOCC map such that A(g) € Cy, (53a)

def.

LOCC,,
Cﬁ — Cg

doe CE’ 3 A LOCC map such that A(g) € Cy. (53b)

def.

(Note that we do not consider the question whether all states in
Cq can be reached by LOCC from the states in Cg.) The LOCC

convertibility Cg G Cy is also denoted with Cg >y Cq.
(In the literature, the same arrows and ordering signs are used
[46] for the notion of convertibility of states. Here we use the
notion of convertibility of classes.) Using that the state sets D,
are closed under LOCC (30), we have thatV «,8 € Py,

LOCC,,

LOCC,
Cg = C g — Cg EESS

cp 25 B=a (54

(The first implication is obvious; for the proof of the second
one, see Appendix A 12.) From this, we have that Pyc is a
poset with respect to the LOCC convertibility,

(Pmc, 25)- (55)

(For the proof, see Appendix A 13.) So we can move by LOCC
along the hierarchy (P, <); however, it can happen that
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Cp cannot be converted to C, for all & which is B < a. A
conjecture is that this is not the case; that is, the converse also
holds in (54).

Conjecture 2. ¥V o, € Pyp we have that

LOCC

Cpg — C = B=xg (56)

that is, the two posets are isomorphic,
(Pure, 2s) = (P, X). (57)

Note that if Conjecture 2 is true, then the notions of the
strong and the weak convertibility (53) would coincide. Note
also that Conjecture 2 implies Conjecture 1, since one could
not convert Cg to C, if the latter were empty. For the proof of
(54) it has been enough to use the set-theoretical notions of the
construction, however, this does not seem to be the case for the
proof of (56), one has to construct explicit protocol even for
the weak LOCC convertibility of classes. Anyway, (54) may
be enough for saying that states in a given class Cg are more
entangled than states in class Cy, if B < a. B

As coarse-grained cases, we may consider only the
k-separability or the k-producibility properties. We have
the PH* = {Bk | k= 1,2, . ,I’l} and the P]]* = {yk | k=
1,2, ...,n} lattices of the labels of the second kind, labeling
the different k-separability (41a), respectively k-producibility
(41b), properties in the two cases. Since these form chains, the
arising hierarchies (45) of the classes are also chains in both
cases. For the labeling of the k-separability classes, we have
the nonempty up-sets B = T{ﬂk} € O4(Px) \ {@} = PHIs
with the hierarchy {PI} = ﬂl - =< ﬂ =< ﬂ - =<
En = Pp+, leading to the k- separablhty classes by (49) belng

Cﬂ = C'k sep ent — D(k+ 1)-sep N Dk -sep = Dk sep \ D(k + 1)-sep for
k=1,2,...,n, called k-separable entangled. That is, a state
is k- separable entangled if it can be mixed by the use of
k-separable states, but cannot be mixed by the use of k + 1-
separable (“more separable”) states. If Conjecture 2 holds,
then the strong LOCC hierarchy Ci.epent s Cik + 1)-sep ent
follows. For the labeling of the k-producibility classes, we
have the nonempty up-sets Y, = = Myi} € Oy (Pix) \ {0} =
Py, with the hierarchy {PI} =y, 22y, 2y, =

-2y, = b, leading to the k produ01b1l1ty classes
by (49)’ being CL( = Ck—prod ent — D(k — 1)-prod N Dk»prod =
Diprod \ Dt — 1yproa for k =1,2,...,n, called genuine k-
partite entangled. That is, a state is genuine k-partite entangled
if it can be mixed by the use of k-producible states (entangle-
ment among at most k elementary subsystems), but cannot be
mixed by the use of k — 1-producible (“less entangled”) states
(entanglement among, at most, k — 1 elementary subsystems).
If Conjecture 2 holds, then the strong LOCC hierarchy
Ck-prodent s Ck — 1)-prod ent fOllows. So, in these two cases,
when the Py hierarchies of the labels of the classes are chains,
we have the expressive meaning for the (same) hierarchies of
the classes themselves.

G. Examples

Writing out some examples explicitly might not be useless
here. The lattices Py for Py = Py for the cases n = 2 and
3 can be seen in the lower-left parts of Fig. 1 and 2. The
classes have this hierarchical structure; however, this does not
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manifest itself in inclusion hierarchy (the classes are disjoint),
but the meaning of this is the LOCC convertibility (54).
For the bipartite case, we get back the content of Sec. II B,

Crpzy = Dy N Dyzy = Diz \ Dijp = Cents

Crvien = Dty N Dypizy = Dip = Coep,

being the entangled and separable state classes, respectively.
Note that every entangled bipartite state can be converted to
a separable one by means of LOCC, so Conjecture 2 holds in
the bipartite case, Cent 25 Coep-

For the tripartite case, we have 1 4+ 18 4+ 1 = 20 classes,
shown in Table I. The meaning of these is discussed in [2,3].

IV. ENTANGLEMENT MEASURES: BASICS

A very basic question of entanglement theory is how to
quantify entanglement [1]. There are many different measures
of entanglement obtained by the use of two main approaches,
the operational and the axiomatic ones [47-50]. Here we
follow more-or-less the axiomatic way, because, on the one
hand, it clearly distinguishes between relevant and irrelevant
properties of quantities, and, on the other hand, it allows
experimenting.

Starting with this section, we mainly deal with real-valued
functions over state spaces, which are convex sets. On convex
sets it is meaningful to define convex,

f(z PiQi) <Y pifen

(58a)

and concave,

g(z PiQi) > pigon), (58b)
1 1

functions. Since mixing is interpreted as forgetting some
classical information concerning the identity of a o; member
of an ensemble {(p;,0;)}, convexity and concavity reflect how
the given function is behaving in this process. For a collection
of tools on convexity, see Secs. 2 and 3 of [22].

A. Mixedness of states

Before turning to measuring entanglement of multipartite
states, in this and the next sections, we recall some important
notions in the characterization of states considered as a whole,
without respect to the existence of subsystems (tensor product
structure in the Hilbert space).

The mixedness of a quantum state can be characterized
by real-valued functions called entropies [21,51]. The most
widely used of them is the von Neumann entropy [52-54],

S(o) = —tr(o1np). (59a)

Other notable entropies are the one-parameter families of
quantum Tsallis entropies [55-58],

S;5(0) =

(tre? —1), ¢>0 (59b)
-4

(with SF = limgy_, S}; = S), and quantum Rényi entropies
[59],

S5y(0) =

1
Intro?, ¢ >0 (59¢)
—q
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TABLE I. Partial separability classes of mixed tripartite states; cf. the lower-left part of Fig. 2. Additionally, we show the labels of classes
in [2,3], and the classifications obtained by Seevinck and Uffink [39] and Diir and Cirac [38].

Class (Name) & & @ & @ @ & & mp mpy Ipes
Ciu23y (Tripartite entangled) ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ C 1 1 1
Crip23.2113,3112)) o4 z z z 4 4 Z - - 2.1 2.1 1
Ci{iiblac.clab)) 4 ¢ z ¢ C ra ¢ c c  22a 2.1 1
Ci{italbe.blac), Lalbe.clab)) o o oa Z Z C C C - 23.a 2.1 1
Caiut1123.2113), L(1123,312}, 4{2113,3/12}) o o o loa - C - C C 2.4 2.1 1
Chiitalbe)) o C o o o C C C - 2.5.a 2432 2.3,2,1
Cr{ialbel, Liblac.clabyy (Roundabout) 4 - oA va - - C - - 2.6.a 24,32 2321
Chri4(blac). Lclab)) o o C C C - C - - 2.7.a 2.7,6,5 3.3,.2,1
Chipqi23), 12113}, L3112y (Semiseparable) o - C C C C C C - 2.8 2.8 4
Cruippy (Fully separable) C - C C C C C C C 3 3 5

(with SlTS = limg_, S{;FS = S). The concurrence squared is a

qubit-normalized version of the ¢ = 2 Tsallis entropy,
C3(0) = 257°(0) = 2(1 — r*:; (59d)

for qubits, it obeys 0 < C%(0) < 1. (The same holds if log, is
used in the definitions of von Neumann and Rényi entropies.)

All of these are non-negative, vanishing exactly for pure
states,

5(0),5,%(0),5; (@) = 0,
50),5,°(0),85(0) =0

and their maximal values are

(60a)
0P CD, (60b)

(dimH)' =4 — 1

5(0).55(0) < IndimH,  57%(0) < -

. (60c)

It is also important to know that not all Rényi entropies are
concave (58b) [21],

S(Z piQi) > Y piSten,

61a)
O (Z PiQi) > ZP:‘S;S(Qi) forallg > 0, (61b)

S}f(Zm@) > piSpe) ifg <1 (61c)

(For some useful tools in matrix analysis, see Appendix B 1
and [26,53,60].)

A common property of these functions is that they are
monotonically increasing in bistochastic quantum channels
o,

S(@(0)) > S(o), (622)
5,5(@(0)) = S,°(0), (62b)
SR (@) = S5(0). (62¢)

(For the theory of quantum channels, see, for example,
[21,24,26-28].)

In quantum probability theory, contrary to the classical,
the entropy is not monotonically decreasing for the restriction
to subsystems (partial trace), e.g., using the notation gx =
trg ok k> S(Okk’) ;é S(ok), for the disjoint subsystems K
and K'. [For pure states, this is entanglement itself; see (3)
and (60b).] However, the subadditivity holds in some cases
[61,62],

S(oxx) < Sox) + S(ox), (63a)
S (0kk) < S;%(0k) + S, (o) forg > 1. (63b)

Unfortunately, the Rényi entropies are not subadditive [63].

B. Distinguishability of states

There are several quantities measuring the distinguishabil-
ity of two quantum states; here we consider only the Umegaki
relative entropy or quantum Kullback-Leibler divergence
[53,64]. For the density matrices o,w € D, it is given as

DX (g|lw) = tro(Ing — Inw). (64)

This expresses the statistical distinguishability of the state o
from the state w [21,65]. It is non-negative and vanishes if and
only if the two states are equal,

D" (gllw) > 0,
DX lw) =0 <—

(65a)
0= w. (65b)

It is not a distance, but only a divergence, since it is not
symmetric, and only a weak version of the triangle inequality
holds [21]. It is also jointly convex,

D** (Z pioi Zpiw,-) <Y piD*illwi).  (66)

from which the convexity (58a) follows in both arguments
separately. An important property of the relative entropy is
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that it is monotonically decreasing in quantum channels @,
D@ (o) (@) < D*(o]lw). (67)

For nice summaries on the properties and meaning of the
relative entropy, see, for example, [21,53,66]. There are also
Rényi and Tsallis versions [67-71].

C. LOCC monotonicity: Entanglement measures
The most fundamental property of entanglement measures
[47-50] is the monotonicity under LOCC (local operation
and classical communication, [7,31]). An f:D — R is
(nonincreasing) monotonic under LOCC, if

f(A@) < f(@) (68a)

for any LOCC transformation A, which expresses that (i)
like any reasonable notion of correlation, entanglement does
not increase locally and (ii) while classical correlation does,
entanglement does not increase by classical communication
(“classical interaction”) either. An f : D — R is nonincreas-
ing on average under LOCC, if

Y pif@) < flo, (68b)

for all ¢ — {(p;,0;)} ensembles resulted from LOCC trans-
formation A, where the LOCC is constituted as A = Zi A,
where the A;’s are the suboperations of the LOCC realizing
the outcomes of selective measurements and o = pi[A,-(Q),
with p; = tr A;(o). This latter condition is stronger than the
former one if the function is convex (58a),

f(ZPiQi> <Y pifen

for all ensembles {(p;,0;)}, which expresses that entanglement
cannot increase for mixing. This is a plausible property, since
mixing is interpreted as forgetting some classical information
concerning the identity of a ¢; member of an ensemble
{(pi,0:)}, which can be done locally [50]. An f:D — R
is called an entanglement monotone if (68b) and (68c) hold
[50]. There is common agreement that LOCC monotonicity
(68a) is the only necessary postulate for a function to be an
entanglement measure [1]; however, the stronger condition
(68b) is often satisfied too, and it is often easier to prove.
[On the other hand, the description of forgetting classical
information is debated by some authors; then convexity is
not demanded [48,72], and the only requirement for an
entanglement measure is (68b).]

If f is defined only for pure states, f :P — R, then
only (68b) makes sense; the restriction of that is that a pure
function is nonincreasing on average under pure LOCC, or
entanglement monotone, if

Y pif(r) < feo). (69)

(68c)

Here 7w +— {(p;,m})}is the ensemble of pure states arising from
the pure LOCC suboperations A;, and 7/ = #Ai(n) € P with
pi = tr A;(;r). That is, mathematically, one can decompose
the LOCC A into pure suboperations having only one Kraus
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operator each, leading to much simpler constructions. Note
that not all 7/ results of these operations may be accessible
physically, only the outcomes of the LOCC, which are formed
by partial mixtures of this ensemble [49].

Clearly, functions obeying any particular one of the re-
quirements in (68) and (69) form a convex cone, that is, their
sums and multiples by non-negative real numbers also obey
the particular requirement.

Since fully separable states can be reversibly converted
into each other by means of LOCC, it follows that if a function
obeys (68a), then it takes the same (minimal) value for all fully
separable states [50].

D. Discriminance: Indicator functions
In the sequel, we extensively use another property of func-
tions f : D — R on state spaces, which is the discriminance
with respect to a convex set D, C D; that is,

o0€eD, <— f(o)=0. (70a)

So the vanishing of the function gives a necessary and sufficient
criterion for that subset. In this paper we deal only with
functions having this property, which are often called indicator
functions with respect to a kind of state. Discriminance
with respect to Dy, is an important property for functions
measuring bipartite entanglement (Sec. II B).

If f is defined only for pure states, f : P — R, then the
discriminance for the closed set P, C P is

TeP, & f(r)=0. (70b)

Discriminance with respect to Py, is an important property for
functions measuring pure bipartite entanglement (Sec. II B).

E. Local entropies: Pure state measures

A possible way of obtaining entanglement measures for
mixed states is to obtain measures for pure states first, then to
extend them to the whole set of mixed states. In the present and
the following two sections, we recall this way of construction.

It is proven by Vidal [49,50] that any properly chosen
function applied to one of the reduced density matrices of
a pure state leads to a measure of pure state entanglement in
the sense of (69).

Theorem 1. Let F : D(Hg) — R be

(i) a symmetric and extensible function of the eigenvalues,
and

(i1) concave (58b),

F< > p,-gl) > piFen; (71)
then f : P — R defined as
fx(r) = F(trgm) (72)

is an entanglement monotone (69).

[We recall the simpler proof of Horodecki [49] in Ap-
pendix B 3. It turns out that, roughly speaking, the entan-
glement monotonicity (69) is actually the concavity on the
subsystem.]

This construction characterizes the entanglement of the
subsystem K with the rest of the system K, that is, bipartite
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entanglement with respect to the split K |K . For the role of F,
entropies are usually used; see Sec. IV G.

F. Convex roof extensions: Mixed state measures

The pure state entanglement measures can be extended to
mixed states by the use of the so-called convex roof extension
[6,7,73-75]. It is motivated by the practical approach of the
optimal mixing of the mixed state from pure states, that is,
using as little of pure state entanglement as possible. For a
continuous function f : P — R, its convex roof extension
fY:ConvP =D — Ris defined as

fY@) = min > pif), (73)

i PiTti=0 i

where the minimization takes place over all {(p;,m;)} pure
state decompositions of p. It follows from Schrodinger’s mix-
ture theorem [76], also called Gisin-Hughston-Jozsa-Wootters
lemma [77,78], that the decompositions of a mixed state into
an ensemble of m pure states are labeled by the elements of
a Stiefel manifold, which is a compact complex manifold. On
the other hand, the Carathéodory theorem ensures that we need
only finite m, or, to be more precise, m < (rk 0)* < (dimH)?,
shown by Uhlmann [79]. These observations guarantee the
existence of the minimum in (73).

Obviously, for pure states the convex roof extension is
trivial (1d),

VoeeP: f@)=f).

The convex roof extension of a function is convex (68c),

fY (Z PiQi) < pifen:

moreover, it is the largest convex function taking the same
values for pure states as the original function [79]. On the other
hand, it is bounded by the bounds of the original function,

min f () < )< max f (7). (74c)

(74a)

(74b)

Itis proven by Vidal [49,50] that if a function f : P — Ris
nonincreasing on average for pure states (69), then its convex
roof extension is also nonincreasing on average for mixed
states (68b). That is, we have the following theorem.

Theorem 2. For a continuous f : P — R,

Yopf@)< fr)y = > pifPe) < o)
l l (75a)

for all 7 — {(p;,7/)} and 0 — {(p;.0!)} ensembles resulting
from LOCC.

(We recall the simpler proof of Horodecki [49] in Appendix
B 4.) Because of (74b) and (75a), f“(p) is also an entangle-
ment monotone (68b) and (68c).

It is remarkable that in Theorem 1 a reverse implication
holds in the bipartite case: All bipartite mixed entanglement
monotones [satisfying (68b) and (68c)] restricted for pure
states can be expressed by an F satisfying (i) and (ii) of
Theorem 1 applied to the reduced density matrix.
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The convex roof extension preserves the discriminance
property (70b) if we additionally assume that f > 0,

[7 € P & f(m) =0]

= [peConvP, =D, & (o) =0], (75b)

which can be used for the detection of mixed-state entan-
glement. (For the proof, see Appendix B5.) Note that this
property is based more or less only on that P, = Extr D, and
D, = Conv Px.

The convex roof extension also preserves the invariance
properties of a function. For a G € GL(H),

VreP: f(GnG) = f(x)
— VoeD: fUGoG"H = o).

(For the proof, see Appendix B 6.) Another important property
of the convex roof construction is the monotonicity. For
functions f,g : P — R,

(75¢)

< VoeD: fo) < g 0.
(76a)

Vo eP: flr)<glm)

(For the proof, see Appendix A 7.) It is also easy to check the
following properties:

(cf)Y =cfY forc>0, (76b)
(f+8)7 > f7+4", (76¢)
[min{ £,¢}]” < min{f",g"}. (76d)
(For the proof, see Appendix B 8.)
G. Examples

For recalling some well-known examples, let us consider
the bipartite case, with the notations of Sec. II B. Particular
choices for functions fulfilling the requirements in Theorem
1 are some entropies given in Sec. IV A. Since the entangled
pure states are the ones which have mixed marginals (3), it is,
at least, expressive to say that “the more mixed the marginals,
the more entangled is the state.” In particular, using the F =
S : Dy — R von Neumann entropy (59a) in construction (72)
leads to the “entanglement entropy,”

E@r) := S(try ), (77a)

which is also called simply “entanglement” [5]. (Note that,
because of the Schmidt decomposition, the spectra of the
marginals of a bipartite pure state are the same, apart from
the multiplicity of the zero eigenvalues.) Apart from the von
Neumann entropy, the Tsallis entropies (59b) for all 0 < g and
the Rényi entropies (59¢) for all 0 < ¢ < 1 [50] are known to
be concave (61), and all of them are symmetric and extensible
functions of the eigenvalues. They lead to the “Tsallis or Rényi
entropy of entanglement,”

E}(m) = S, m) for0 <gq, (77b)

EJ(m) := Sy(tym)  for0<gq < 1. (77¢)

A particular choice is the “concurrence (of entanglement),”
with the concurrence (59d),

E€(n) := C(try ). (77d)
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All of the above functions measure the pure bipartite entan-
glement in the sense that they satisfy (69) by Theorem 1, and
they are indicators of pure separability, that is, discriminant
(70b) with respect to Py, of (2a) by (3) and (60b).

Having these pure measures in hand, thanks to Theorem 2,
we can extend them to mixed states by the use of convex
roof extension (73). The resulting measures are called “entan-
glement of formation” [7], “Tsallis or Rényi entanglement of
formation” [50], and “concurrence of formation” [80],

E°"(0) := EY(0), (78a)
E;F(o) = E}" (o), for0 <g, (78b)
ERF(g) := ER(g), for0<q <1, (78
E€F(0) := E<(0). (78d)

All of these functions measure the mixed bipartite entan-
glement in the sense that they satisfy (68b) and (68c) by
Theorem 2, and they are indicators of mixed separability,
that is, discriminant (70a) with respect to Dy, by (75b). A
remarkable result of Wootters is a closed formula for the
minimization in the convex roof extension in the entanglement
of formation (through that for the concurrence of formation)
for the case when dim H; = dim H, = 2, that s, for two qubits
[80,81].

V. SUMS AND MEANS: A DETOUR

In the sequel, we will need to construct entanglement mea-
sures as functions of more basic ones in a systematic way. For
these, we need some properties to hold, such as monotonicity,
homogeneity, concavity, and permutation invariance in many
cases. The g-sums and g-means or the more general quasisums
and quasiarithmetic means turn out to be suitable tools in
this situation. g-means equate things, which is sometimes
undesirable for our investigations, so g-sums turn out to be
more suitable in these cases. Apart from this, they share
the properties most important for us, such as monotonicity,
convexity or concavity, and vanishing properties. Moreover,
the g-sums and g-means of homogeneous functions of a given
degree is of the same degree, which is a property which seems
to be of great importance in the topic of entanglement of pure
states.

A. The meaning of sums and means

Let us suppose that we have a non-negative quantity X,
which can characterize m different entities as Xy, ..., X,, and
which can also characterize these entities “together” as a fotal
value Xo. Suppose, moreover, that we have a “law” telling
us that the total value of this quantity and the values for the
individual entities are connected by a summation for their gth
powers, as

Y =X =X+ 4+ X2.
Then, on the one hand, the total value is
Xt()[ = (Xi] + te + Xz,l)l/qa

which is called g-sum. (For g > 1, this is the same as the
g-norm, restricted for the positive hyperoctant of R"”; however,
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we do not need to have vector space structure for the m-tuples
(X1, ...,Xn). Thisis why we do not use the name g-norm.) On
the other hand, a natural question is what is the “mean” value
of this quantity in this situation, that is, what is the uniform
value for all X; which leads to the same Y under the same law,

Y:X(lj+"'+Xzz :Xrl{‘nean_’_"'—i_xr({]ean:mqunean'
This leads to

1 1/q
Xmezm - |:—(X(1]++an):| s
m
which is called g-mean (or Holder mean).

For ¢ = 1, we get back the sum and the arithmetic mean
for Xior and X ppean. Well-known examples are the total and the
mean resistance of m resistors connected in series (or total
and mean conductance in parallel) or the total and the mean
capacity of m capacitors connected in parallel. For ¢ = —1,
we get back the harmonic sum and the harmonic mean for
Xiot and Xppean. Well-known examples are the total and the
mean resistance of m resistors connected in parallel (or total
and mean conductance in series) or the total and the mean
capacity of m capacitors connected in series. For g = 2, we
get back the quadratic sum and the quadratic mean for X and
X mean- If we consider an m-dimensional hypercuboid of edges
of length X ;, then the quadratic sum of the length of the edges
is the length of the diagonal, while then the quadratic mean
of those is the uniform length of edges of an m-dimensional
hypercube having diagonal of the same length as the original
hypercuboid.

A conceptually (but mathematically not too much) different
situation is when the “law” is about products,

Y=X;x---xX,.
This leads to the
Xmean = (Xl X oo X Xm)l/m

geometric mean. We will see that this can be obtained as the
g-mean for g = 0.

If we consider an m-dimensional hypercuboid of edges of
length X ; again, then the geometric mean of the length of the
edges is the length of the edge of a hypercube of the same
volume. In this case, the meaning of Y is the volume.

A more general, but still relevant, situation is when the
“law” involves summation of more distorted values, as

Y = h(Xio) = A(X1) + - - + h(X)
for some invertible /. Then, on the one hand, the total value is
Xt =7 (X)) + -+ + h(X)),

which might be called, say, quasisum. On the other hand, for
the uniform value this leads to the quasiarithmetic mean (or
Kolmogorov mean),

1
Xmean = h_l (;(h(xl) + -+ h(X/n)))‘

The h(x) = x4 gives back the g-mean for g # 0, while h(x) =
In(x) gives back the geometric mean.

For the definitions and properties of g-sums, g-means,
quasisums, and quasiarithmetic means, see Appendixes C 1
and C2.
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B. Sums and means of entanglement measures

Some g-sums and g-means preserve entanglement mono-
tonicity and discriminance for pure states. We have, in general,
the following lemma about entanglement monotonicity.

Lemma 1. Let f; : P — R be non-negative functions for
j =1,...,m, which are pure entanglement monotones (69).
If G : R™ — R is monotonically increasing in all arguments
and concave, then G(fi, ..., f;») : P — R is an entanglement
monotone (69); that is,

Y G )T < Gfin o fu)T)  (T92)

for all # +— {(p;,7/)} ensembles resulting from LOCC.

This is a simple consequence of the monotonicity and the
concavity (see Appendix D 1). Note that similar results can
be proven for mixed states for the properties (68a) and (68b);
however, the convexity (68c) would, of course, fail. Because of
the monotonicity and (C6b) and (C7b), we have the following.

Corollary 1. The g-sum (C1) and g-mean (C2) of f; : P —
R entanglement monotones (69) are entanglement monotones
(69) for g < 1; that s,

D PNy ) < Ng(frs - fu) ()

forO0#£q < 1, (79b)
Do piMy(fis o @) < My(fis o f)(T)
forg < 1, (79c¢)

for all ¥ — {(p;,n])} ensemble resulting from LOCC.

We have, in general, the following lemma about entangle-
ment discriminance.

Lemma 2. Let f; : P — R be non-negative functions for

j =1,...,m,which are discriminant with respecttoa P, € P

set (70b). If G : R™ — R obeys the vanishing properties
Gx)=0 <= 3j:x;=0, (80)

then G(f1, ..., fm) : P — Ris also discriminant with respect

to the same set (70b).

(This is obvious.) Because of (C3) and (C4), we have the
following.

Corollary 2. The g-sum (C1) and g-mean (C2) of indicators
with respect to a P, € P set (70b) are also indicators with
respect to the same set (70b).

A more interesting situation arises when the different f;
functions are discriminant with respect to different sets, as we
will see in the sequel.

VI. ENTANGLEMENT MEASURES FOR
MULTIPARTITE SYSTEMS

In Sec. III we introduced the different meaningful kinds of
partial separability and built up a hierarchy of those. Now
we construct a hierarchy of entanglement measures which
resembles this hierarchic structure.

In Sec. IV, we had two main requirements for quantities
measuring bipartite entanglement: the LOCC monotonicity in
the sense of (68a) and the discriminance (70a) with respect to
the given partial separability. For the hierarchy of quantities
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measuring multipartite entanglement, we introduce a third
requirement, the multipartite monotonicity, which reflects a
natural relation among these quantities and connects them to
the hierarchy of entanglement. By this property we can grasp
the hierarchy of multipartite entanglement by the measures.
These three requirements seem to be mandatory. Also, a fourth
one should be satisfied by these measures, being meaningful
in some sense. This last one is quite hard to fulfill, but not
impossible.

The construction of measures here reflects the construction
of the partial separability hierarchy in Sec. III. It is based on
the measures of pure bipartite entanglement (Sec. VI A), upon
which the first and second kind hierarchies of measures of pure
multipartite entanglement are built (Secs. VIB and VID). We
turn to mixed states only in the final step (Sec. VIF), by the
use of convex roof extension, as has been done in the bipartite
construction in Sec. IV G. Then follows the detection of the
classes (Sec. VIH).

A. Level 0: Bipartite entanglement

Following Sec. IVE, let F' : Dg — R satisfy (i) and (ii) of
Theorem 1, and

F(o) 2 0,
Flo)=0 <= pe€PxCDg.

(81a)

(81b)

With this, in the sense of Theorem 1, the function
fk=Fotrg : P—R (82)

is an entanglement monotone (69) indicator function (70b)
withrespect to Pz, thatis, for the pure bipartite entanglement

with respect to the bipartite split K| K. The latter is
which is the consequence of (81b) and (3).

k(@) =0 <

B. Level I: Multipartite entanglement measures of the first kind

In Sec. IIIB, we have the (P, X) partial separability
hierarchy of the first kind (11). Now we consider the f, :
P — R functions, different for all @ € P; labels of the first
kind (partitions), with the set of them

Pp={fa:P—>Rlaeh (84)

and we formulate their important properties expected for
the measuring of the pure «-entanglement. Entanglement
monotonicity (69) is, of course, mandatory for all pure state
measures. The others are as follows.

For the « label of the first kind (partition), the function
fo 1 P — Riscalled a pure a-indicator function (or indicator
Sfunction of the first kind with respect to P,,), if it is discriminant
(70b) with respect to P,, that is, if it vanishes exactly for
«-separable pure states (13a),

T € Py.

fa(@)=0 <= (85a)

Using (21), one can formulate the vanishing of the o-indicator
function f,, by the vanishing (83) of the functions fx of (82)
as

fu=0 & VYKea:fx=0. (85b)
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From the inclusion hierarchy (16a), we immediately have that
the indicator functions (85a) obey
B2a

— (fp=0= f,=0).

That is, separability with respect to a finer split implies
separability with respect to a coarser one, as it has to do. We
call this property weak multipartite monotonicity of the first
kind, and it provides the Py  set of functions with the same
hierarchical structure as that of P; in (11) and Py p in (15a).
Thatis, if the implication (fg =0 = f, = 0)is denoted with
fp € f«, then we have the isomorphism of the lattices

(86a)

(Prr, ©) = (P, X). (86b)

In addition to this, one can formulate a stronger property for
the set of functions P s, having motivation in the theory of
quantization of entanglement. For the Py labels of the first
kind (partition), the set of functions Py p is called multipartite-
monotonic of the first kind, if

B=a

=  fs= fu (87a)

(The map « +— f,, is monotonically decreasing with respect to
the labels of the first kind, and the pointwise relation of real-
valued functions over the same domain.) That is, entanglement
with respect to a coarser partition cannot be higher than
entanglement with respect to a finer one. By this property
we attempt to grasp the hierarchy of multipartite entanglement
by the measures. Since, e.g., the tripartite entanglement is
considered to be a more powerful resource than the bipartite
entanglement [82], one feels that a state can contain a smaller
amount of that than of the bipartite entanglement. (This may
or may not seem to be plausible enough; anyway, multipartite
monotonicity holds automatically in some constructions.) So,
in this case we also have

(Pry, 2)= (P, 2). (87b)

The multipartite monotonicity (87a) is indeed stronger than its
weak version (vanishing implications) (86a), since the latter
one follows from the former one.

With the above definitions in hand, we construct multipar-
tite monotonic (87a) hierarchies of entanglement measures for
pure states for the hierarchy of the first kind, consisting of
entanglement monotonic (69) a-indicator functions (85a). Let
us start with the construction of a-indicators, then check the
monotonicity properties.

There are several ways of constructing a-indicator func-
tions (85a), based on the K |f—indicators (82) as in (85b).
Perhaps the simplest one is the sum,

th :ZZfK-

Kea

(88a)

It clearly obeys «-discriminance (85a) through (85b) and
entanglement monotonicity (69). (For convenience, one can
also use the definition f, := % Y kew [k, leading to frkig =
[k for the bipartite splits.) Another candidate is the arithmetic
mean,

1
Jo = ol ZfK =M (fx,+ - fKu)-

Kea

(88b)
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which is just a sum, multiplied by a factor ﬁ, which does
not ruin the entanglement monotonicity and c-discriminance.
One can notice that we can use g-sums (C1) and g-means (C2)
with general parameters ¢,

fa = Nq(le""’me)’ O<
fa = Mq(le,...,fK‘a‘), 0<

Indeed, g-sums and g-means are concave for g < 1 [see (C6b)
and (C7b)], which is needed for the entanglement monotonic-
ity (69) (see Corollary 1), while the proper vanishing properties
(C3a) and (C4a) are satisfied for 0 < g, which is needed for
the «-discriminance (85a) through (85b).

Now we would like to argue that, from the constructions
above, the simplest choice is the best motivated: the sum (88a).
First of all, as we have learned in Sec. V A, using g-sums or
g-means would infer an underlying “law,” telling us that the
sum of the gth power of the functions fx is meaningful. This
seems to be true for ¢ = 1 only, if we start with functions
(82) based on entropies as in the bipartite case in Sec. IV G.
However, in this case, a sum may have more meaning than the
arithmetic (g = 1) mean. Let us see why. Taking F = § with
the von Neumann entropy (59a), we simply get

<L (88c)
<

q
g<l1.  (88d)

fa(m) := S(mk,) + S(g,) + - + S(mg,), (89)

the sum of the entropies of disjoint subsystems given by
the split o = K|K3|---|K)y. [From here, we adopt the
convenient notation that pox = trg 0, mg = trg 7w (the latter
is generally not pure) in the writing out of a function, if ¢ or
7 is argument of the function.] This possesses an expressive
meaning. Let us consider an information-geometrical correla-
tion measure, called also relative entropy of correlation, with
respect to a partition @ = K|K>| - - - | K|y,

, min DX (gllwk, ® wk, ® -+ ® wk,) (90a)
e

wKEDK

being the minimal distinguishability of a state from the set
of uncorrelated states, with respect to the relative entropy
(64). This characterizes all the correlations (classical and
quantum [83]) contained in the state o with respect to the
split @ = K{|K>|---|K|y. (In quantum information theory,
such geometry-based approach is widely used for the mea-
suring of entanglement. Perhaps the most relevant geometric
entanglement measure is the relative entropy of entanglement
[84], and there are several others [85-87]. For an overview
and references, see section 15.6 of [21]. Note that, contrary
to these entanglement measures, we have here a correlation
measure.) Moreover, it can be proven [83] that

argmin DX o ®a)1< ={wg =0k |V K €a};
VKea:
D

Kea
wg € Pk

(90b)

that is, the state least indistinguishable from ¢ and uncorrelated
with respect to « is formed by the marginals of o. (The proof
is recalled in Appendix B 2.) So we can write out the relative
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entropy of correlation (90a) as

min { DXF ® = DKL
VKea: { (Q CU[() } e
Kea

wg € Dk
=Y S(ex) — S(0) =: Lu(0). ©1)

Kea

®QK>

Kea

which is a possible multipartite generalization of the mutual
information [88], which we call here a-mutual information.
(It is also called “among-the-clusters correlation information”
[88]. For the finest split 1|2]| - - - |n, this is also called “corre-
lation information” [88], or “multipartite mutual information”
[89], also considered by Lindblad [90] and used [91] to
describe correlations within multipartite quantum systems.)
Now, applying this to a pure state 7 € P C D, since S() = 0,
we have that (88a) is actually

Ja(r) = fx(r) = S(zg) = S(mg) — ()
:DKL<7T ®nK> = I,(7). (92)
Kea

That is, for pure states, the sum of the von Neumann entropies
of disjoint subsystems given by the split o« = K|K>| - - - [K|q
is a meaningful quantity, and it characterizes the whole amount
of correlation contained in the state 7 with respect to that split,
being the o-mutual information above.

This reasoning enlightens also the meaning of entanglement
itself [which holds also in the bipartite case (77a)]. In classical
probability theory, pure states are always uncorrelated, so if
in the quantum case a pure state shows correlation, then this
correlation is considered to be of quantum origin, and this
correlation is defined to be the entanglement. From this point
of view, it is plausible to think that the quantum versions of
classical correlation measures applied to pure quantum states
are pure entanglement measures, both in the bipartite and
in the multipartite scenario. However, the details should be
clarified in this principle; entanglement monotonicity should
be checked for the concrete measures. (For further discussion,
see Sec. VII.)

By this reasoning, let us define the «-entanglement entropy,
or simply a-entanglement E, : P — R, as

1 1
Eo(m) i= S la(m) = 5 3, S(x), 93)

Kea

by the use of the von Neumann entropy (59a). This is the direct
Level I multipartite generalization of the entanglement entropy
(77a). [Note that while the or-mutual information I, is defined
over the whole state space D, E, is defined only for the pure
states P, in accordance with (77a).] Note that

1 1
0< Ey(m) < 5 IndimM = > IndimH, (94)

ael

by (60c).

Until this point, we have taken into consideration only
the entanglement monotonicity (69) and the «-discriminance
(85a). The multipartite monotonicity (87a) is an additional
concern, which might be satisfied too. For the measures
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(93) based on the von Neumann entropy (59a), the multi-
partite monotonicity (87a) is a simple consequence of the
subadditivity (63a) of the von Neumann entropy. The ¢ > 1
Tsallis entropies (59b) are also suitable (63b); however, Rényi
entropies (59¢) are not. Note that, since means equate things,
using arithmetic mean (88b) instead of sum (88a) ruins the
multipartite monotonicity for these cases.

C. Examples

Writing out some examples explicitly might not be useless
here (cf. Sec. IIIC). Here we consider the «-entanglement
entropy (93), arising from the construction (92) using the
von Neumann entropy (59a). Since the resulting functions are
multipartite monotonic (87a) indicator functions (85a), we can
read off these relations from the lattice P;, which can be seen
for the cases n =2 and 3 in the upper-left parts of Figs 1
and 2. [Note that we have adopted the convenient notation
that mx = trg w (generally not pure) in the writing out of a
function having 7 as its argument. On the other hand, from
the definition of the partial trace (5), we have m;, = 7.]

For the bipartite case, we get back the content of Sec. IV G,

Ep(m) = 3S(m12) = 0,
Ep(m) = 3(S(m1) + S(m2)) = S(7a).

Note that the multipartite monotonicity (87a) holds, Eqjx(mw) >
E1,(r). We have also the discriminance (85a),

mePn << Epm =0,
7 e€Pip <= Ejp@) =0.
For the tripartite case,
Eyp3(n) = 55(m123) = 0,
Eappe(m) = 5(S(0) + S(w4)) = S(a),
Eipp(r) = %(S(ﬂl) + S(m2) + S(73)),

with all bipartitions a|bc of {1,2,3}. Note that the multipartite
monotonicity (87a) holds, Eqp;3(m) = Eqpe(m) = Ei23().
‘We have also the discriminance (85a),

7 eP < En@@ =0,
7T €Pupe = Egpe(m) =0,
T € 73]\2\3 < E1|2|3(7T) =0.

D. Level II: Multipartite entanglement measures of the second
kind
In Sec. IIID, we have the (Py, <) partial separability
hierarchy of the second kind (28). Now, similarly to Sec. VI B,
we consider the f,, : P — R functions, different foralle € Py
labels of the second kind, with the set of them

Prs={fe:P—>R|ae Pyl (95)

and we formulate their important properties expected for
the measuring of the pure a-entanglement. Entanglement
monotonicity (69) is, of course, mandatory for all pure state
measures. The others are as follows.
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For the o label of the second kind (nonempty down-set of
partitions), the function f, : P — R iscalled pure a-indicator
function (or indicator function of the second kind with respect
to Py), if it is discriminant (70b) with respect to P,, that is, if
it vanishes exactly for a-separable pure states (29a),

fa(m)=0 —

T € Py. (96a)

Using (29a), one can formulate the vanishing of the ee-indicator
function f, by the vanishing of the «-indicator functions f,,
of (85a) as

fa=0 <<= 3dJaeca:f,=0. (96b)

From the inclusion hierarchy (32a), we immediately have that
the indicator functions (96a) obey
—

B=xa (f6=0 = fu=0).

That is, a separability lower in the hierarchy implies a higher
one, as it has to do. We call this property weak multipartite
monotonicity of the second kind, and it provides the Py ¢
set of functions with the same hierarchical structure as that
of Py in (28) and Py p in (31a). That is, if the implication
(fsg = 0= fu =0) is denoted with fg C f,, then we have
the isomorphism of the lattices

(P, s, ©) = (P, X).

(97a)

(97b)

In addition to this, one can formulate a stronger property for the
set of functions Py, s, having some motivation in the theory of
quantization of entanglement. For the Py labels of the second
kind, the set of functions Py p is called multipartite-monotonic
of the second kind, if
B=e

=  f3> fa (98a)

(The map o — f, is monotonically decreasing with respect
to the labels of the second kind, and the pointwise relation
of real-valued functions over the same domain.) That is,
entanglement higher in the hierarchy cannot be higher than
entanglement lower in there. By this property we attempt
to grasp the hierarchy of multipartite entanglement by the
measures. (This may or may not seem to be plausible enough;
anyway, multipartite monotonicity holds automatically in
some constructions.) So, in this case we also have

(Pn,r, 2) = (P, X).

The multipartite monotonicity (98a) is indeed stronger than its
weak version (vanishing implications) (97a), since the latter
one follows from the former one.

With the above definitions in hand, we construct a multi-
partite monotonic (98a) hierarchy of entanglement measures
for pure states for the hierarchy of the second kind, consisting
of entanglement monotonic (69) a-indicator functions (96a).
Let us start with the construction of a-indicators, then check
the monotonicity properties.

There are several ways of constructing e-indicator func-
tions (96a), based on the «-indicators (85a). Perhaps the
simplest one is the product,

fot = l_[ frx-

oea

(98b)

(99a)
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Unfortunately, while it clearly obeys a-discriminance (96a)
through (96b), it lacks for entanglement monotonicity (69).
This is because the set of functions obeying (69) is not closed
under multiplication, which is related to the fact that the
product of two concave functions is not concave in general.
Moreover, arecent result of Eltschka et al. [92,93] suggests that
homogeneous functions obeying (69) cannot be of arbitrarily
high degree. (See Theorem I in [92] concerning a special class
of functions.) This is an indication for using some g-sums
(Cla) or g-means (C2a), since they do not change the degree.
The geometric mean (C2d),

1/le|
Jo = |:H faj| ZMO(fotw“"fa\a\)’ (99b)

(04112

obeys a-discriminance (96a) as the product (99a) does, and it
turns out to be entanglement monotonic (69) [2,3].

One can notice that we can use g-sums (C1) and ¢g-means
(C2) with general parameters ¢,

fo = Nq(fal,...,fa‘a‘), q <0,

fu = My(fars s fuw)s 4 <O.

Indeed, g-sums and g-means are concave for g < 1 [see (C6b)
and (C7b)], which is needed for the entanglement monotonic-
ity (69) (see Corollary 1), while the proper vanishing properties
(C3b) and (C4b) are satisfied for ¢ < 0 and g < 0, which is
needed for the a-discriminance (96a) through (96b).

However, geometric means, or all ¢ #1 g-means of
indicator functions of the first kind constructed from entropies
in the way of Sec. VI B, do not seem to make any sense in this
situation. As we have learned in Sec. V A, using the g-mean
of entropies would infer an underlying “law” telling us that
the sum is the gth power of the functions f, is meaningful,
which seems to be true only for ¢ = 1. We have two ways of
getting out from this deadlock. The first one is to use some
transformed quantities for the indicator functions of the first
kind, the second one is to use the —oo-mean (C2c), that is, the
minimum, which does make sense.

To follow the first way, let us start with the a-entanglement
(93), Ey(m) = %Zkga S(wk), which is an “entropy-type”
quantity. Only the sum of entropy-type quantities seems
to be meaningful; however, a sum does not fulfill the «-
discriminancy (96a) through (96b). Although, a product does
fulfill the a-discriminancy (96a) through (96b), the product of
entropy-type quantities seems to be meaningless. A product
which is meaningful is the product of “probability-type”
quantities. Indeed, in information theory (both classical [94]
and quantum [24,27]) entropy-type quantities appear often
as arguments of e¢*, leading to probability-type quantities,
e.g., in coding, or hypothesis testing situations [21,24-28,94].
So, following this way, for the indicator functions of the first
kind, we use the f, := g o E, transformed version of the
«-entanglement (93), based on the o-mutual information (91),
by the use of the continuous invertible function g : R — R.
Then we take the geometric mean of these indicator functions,
preserving entanglement monotonicity and discriminance, and
then we do the transformation back in order to get an entropy-
type quantity again. This function g (i) should be the same

(99¢)

(99d)
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for all « (for simplicity), (ii) should map from non-negative to
non-negative values (for being meaningful), (iii) should map
zero to zero [to preserve a-discriminancy (96b)], (iv) should
be invertible, (v) should be monotonically increasing, and (vi)
should be concave [this seems to be necessary but not sufficient
for the entanglement monotonicity (69)]. A particular function
obeying these requirements is

gx):=1—¢", (100)

being a perfect candidate for the conversion from entropy- to
probability-type quantities. With this, let

fo =8 (Mo(g(Eq)), .. ..8(Eq,)))

1/lal
=—In|1- []‘[(1 - e_E")i|

oeo

= Mlnog(Eotl s aE(XM)a (101)

also formulated by the quasiarithmetic mean (C11) for
h =Inog. It is far from obvious that this function is an
entanglement monotone (69). (For the proof, see Appendix
D2.) On the other hand, it is clearly an e-indicator (96a)
through (96b). Its only drawback is that it is not multipartite
monotonic (98a). Using product instead of the geometric mean
in the construction would give multipartite monotonicity;
however, that would ruin entanglement monotonicity. The first
way seems to end here.

To follow the second way, which is actually the simpler and
also better motivated one, take (99d) or (99¢) with g — —oo
with the indicator functions f,(7) = I,(7) = ) g, S(Tk)as
in (92), that is,

fa = M—oo(law cee 71%1\) = min(lal’ T ’I"““‘)'

This also possesses an expressive meaning. To clarify this,
recall that the ¢-mutual information 7, in (91) characterizes
all the correlations in the sense of statistical distinguishability,
that is, the distinguishability of the state from the closest (least
distinguishable) uncorrelated state with respect to . Now the
quantity min(/y,, . . ., 1y, ) is the distinguishability of the state
from the closest (least distinguishable) uncorrelated state with
respect to any o € &, and, using (90b) as in (91), we define the
Level II version of the mutual information as

KL
poto) =, (o7 o[ )

min{Z,(0)} = min min
wg € Dk
- Ioflelg {Z S(QK)} — S(0) =: Iy(0), (103)

Kea

(102)

which is also a geometric measure of correlation, we call it
a-mutual information. Now, applying this to a pure state 7 €

; C Zj, Sl'IICG S(ﬂ) — O, we ha\/e that
Kea

(104)

fa(m) =min{l,(7)} = min min {DKL <7r
aEa e V K c o :

wKEDK

= min {Z S(nm} = Io().

Kea
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That is, the minimal among the sums of the von Neumann
entropies of disjoint subsystems given by the different splits
o € a is a meaningful quantity, characterizing the distin-
guishability of the state from the closest (least distinguishable)
uncorrelated state with respect to any o € «o.

By this reasoning, let us define the «-entanglement entropy,
or simply a-entanglement E, : P — R as

Eq(mr) := min{Eq(m)}, (105)
by the use of the «-entanglement (93). This is the Level II
multipartite generalization of the entanglement entropy (77a).
[Note that while the e-mutual information I, is defined over
the whole state space D, E, is defined only for the pure states
‘P, in accordance with (93).] Note that

1 1
0 < Eg(m) < 5IndimH = 5 > IndimH,

ael

(106)

by (94).

This function is an entanglement monotone (69) e-indicator
(96b); moreover, it can easily be checked that it is also
multipartite monotonic (98a). Note that, because the f, = E,
Level I functions are multipartite monotonic (87a), in the
minimization during the calculation of the f, = E, Level II
functions, it is enough to consider only the functions labeled
by max &,

E, = min{Ey,} = min {E,}. (107)
aceo aemax o

E. Examples

Writing out some examples explicitly might not be useless
here (cf. Sec. IIIE). Here we consider the a-entanglement
entropy (105), arising from the construction (104) based on
the a-entanglement entropy (93), arising from the construction
(92) using the von Neumann entropy (59a). Since the resulting
functions are multipartite monotonic (98a) indicator functions
(96a), we can read off these relations from the lattice Py, which
can be seen for the cases n = 2 and 3 in the upper-right parts
of Figs. 1 and 2. [Note that we have adopted the convenient
notation that 7x = trgm (generally not pure) in the writing
out of a function having 7 as its argument. On the other hand,
from the definition of the partial trace (5), we have 7, = .]

For the bipartite case, based on Sec. VIE, we get back the
content of Sec. IV G,

E12)(w) = min{Ep(), E12(m)} = Epp(r) =0,
E (112)(m) = min{Ey2(7)} = E1p(w) = S(7,).

Note that the multipartite monotonicity (98a) holds,
E j112(r) 2 E 12y(7r). We have also the discriminance (96a),

7 ePiy = Euy@) =0,
T €Pp = Ejup) =0.
For the tripartite case, based on Sec. VIE,
E | (123)() = min{ Eyp3(7), Evp23(77), Eo13(70),
E312(7), E123(77)}

=E13(7) =0,
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E (123,213,312 () = min{ E;3(77), E1123(77),

E3(m), E3pa(m))
=min{E23(7), E213(7), E312(7)}
=min{S(71),S(72),S(m2)},

E | blac,clapy(r) =min{ E112;3(7), Epjac(77), Ecjap(7)}
=min{Ep|4c(77), Ecjap(77)}
=min{S(7),S(7.)},

E (apey(7r) =min{Ep3(77), Eq1pe (7))}
=E () = S(7y),
E | (123)(7r) = min{ Ep3(7r)}
=E1p3() = 3(S(m1) + S(m2) + S(3)).

Note that the  multipartite  monotonicity (98a)
holds, E123)(m) 2 Eyape)(7) 2 Eajbe,blacy (7T) 2
Ei{a\bc,blac,clab}(”) > E¢{123}(7'[). We have also the
discriminance (96a),

7 € Pz — E\123)(r) =0,
T € P32z = E 1123211331123 () = 0,
7T € Pibica,clab) — E | (blac,clany () = 0,
7 € Piiape) — E appey () =0,
T € Prupp = E () =0.

F. Multipartite entanglement measures for mixed states

Now it is easy to step from the pure states to mixed ones,
thanks to the useful properties of the convex roof extension,
listed in Sec. IV F. So for the functions f, € Py, we have its
convex roof extension (73) over mixed states,

£ (@)= _min Z pi fu(i), (108)
Zi piTti=
and let us define the set of these functions as
Puypo={fy:D—>R| fy € Puys}. (109)

If the function f, is an entanglement monotone, that is,
nonincreasing on average for pure states (69) [for example the
a-entanglement entropy in (105)], then, thanks to Theorem 2,
its convex roof extension (73) is also nonincreasing on average
(68b) and also convex (68¢), so itis an entanglement monotone.

If the function f,, is a pure a-indicator (96a) [for example
the a-entanglement entropy in (105)], then, thanks to (75b),
its convex roof extension (108) is a mixed e-indicator,
= fi@=0

0 € Dy (110a)

Again, by (32b), the weak multipartite monotonicity of the
second kind (97a) for mixed states,

(ff=0= f/=0),

follows from this automatically. Again, this provides the Py, s
set of functions with the same hierarchical structure as that of
Py in (28) and Py p in (31b).

If the set of functions Py, s in (95) is multipartite monotonic
of the second kind (98a) [for example the a-entanglement
entropy in (105)], then, thanks to (76a), the set (109) of their

fxa — (110b)
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convex roof extension (108) is also multipartite monotonic of
the second kind for mixed states,

B=a = [fi=f) (111a)
So, in this case we also have
(P, pv, 2) = (P, X). (111b)

By this reasoning, let us define the a-entanglement of
formation, as the convex roof extension of the a-entanglement

entropy (105) as
EF .= EY. (112)

This is the multipartite generalization of the entanglement of
formation (78a). Note that in this case,

E (mm{E }) mln{EU} (113)
which is a consequence of (76d). Note that
1
< EY(m) < 5 Indim 7 = Zlndlm'H (114)
aEL
by (74c) and (106).
G. Examples

Writing out some examples explicitly might not be useless
here (cf. Sec. III E). Here we consider the a-entanglement of
formation (112), which is the convex roof extension of the
o-entanglement entropy (105), arising from the construction
(104) based on the «-entanglement entropy (93), arising from
the construction (92) using the von Neumann entropy (59a).
Since the resulting functions are multipartite monotonic (98a)
indicator functions (110a), we can read off these relations from
the lattice Py, which can be seen for the cases n = 2 and 3 in
the upper-right part of Figs. 1 and 2.

For the bipartite case, based on Sec. VIE, we get back the
content of Sec. IV G,

Ei’l{:lz}(g) = E}15(0) = Ep(0) =0,
E(0) = Ejyny(0) = E(0) = E™(0).

Note that the multipartite monotonicity (111a) holds,
E ﬁfl ) (o) 2 E il{iz} (0). We have also the discriminance (110a),

0Dy < Efp =0,
0€Dyupy <  Efjn=0.
For the tripartite case, based on Sec. VIE,
EOF123 () ZEU 23y @) = E:J23(Q) =0,
{1|2% 213,312 (@)
< mm{E1|23(Q)aE2|13(Q),E§J|12(Q)},
Ei)l[:blac.c\ab}(g) ZEUb\ac claby(©)
<min{Ey,.(0), Egp(0)},
EOFalbc (@) =E}upey(@) =

¢{1|2|3}(Q) =Ef{a|bc;(a) =E

E${1\23 13.3n23(0) =

a\bc(Q),
ﬁ2|3(9)~
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TABLE II. Detection of the partial separability classes of mixed tripartite states by indicator functions (cf., Table I).

S

C 3 3 3 s s : 2 3
5 = F ) £ £ g g 5

55 53 55 53 55 53 53 55 55

Class ES K K S &Y
Cipy23y >0 >0 >0 >0 >0 >0 >0 >0 =0
CTN (1]23,2113,3]12}} >0 >0 >0 >0 >0 >0 >0 =0 =0
CM“},‘MYC‘QH) >0 >0 >0 >0 = >0 >0 =0 =0
CT(HHM( blac}, L{albc,clab}} >0 >0 >0 >0 >0 =0 =0 =0 =0
Cor{ud1123,2113), 111123,3112}, 4(2113,3/12}} >0 >0 >0 >0 =0 =0 =0 =0 =0
Cr{ialbel) >0 = >0 >0 >0 =0 =0 =0 =0
Cﬁ(lmb() Ublac,clab}} >0 =0 >0 >0 =0 =0 =0 =0 =0
Chidiblac), Viclab)) >0 >0 =0 = =0 =0 =0 =0 =0
Cruunps), y3), 432y >0 =0 =0 =0 =0 =0 =0 =0 =0
Crunpay =0 =0 =0 =0 =0 =0 =0 =0 =0

Note that the multipartite monotonicity (111a) holds,
E$I{:1|2|3}(Q)>E$I{:a\bc}(g)>Eil{:albc,bluc}('g)>Eil{:albc,blac,c\ab}(g)
>F %23](@). We have also the discriminance (110a),

0 € D3y < E° 123}(Q) =0,
0 € D3 2nzzng - EQN 3o, 3|12}(~Q) =0,
0 € Dyfplac.clab) — E$Fb|ac claby(@) =0,
0 € D jajpey — Ei albe} (@) = 0,
0 € Dy — E @) =

H. Level III: Detection of the classes

By the use of the mixed «-indicators (110a), one can detect
also the classes (43),

and

0€Cy (115)

Yaga: fu#0)
Vaeca: fo=0),
which is a simple consequence of (110a). Because of the
weak multipartite monotonicity of the second kind for mixed
states (110b) [vanishing implications, satisfied by a system
of indicator functions (110a) automatically], it is enough to
consider only the functions labeled by min & and max &,

Va emaxa : fo #0)

€ly — 116)
@5 { fu=0); (

Va € mne :

cf. (49).

1. Examples

Writing out some examples explicitly might not be useless
here (cf. Sec. III G). For the detection of the classes, here we
consider the a-entanglement of formation (112), which is the
convex roof extension of the a-entanglement entropy (105),
arising from the construction (104) based on the measures of
the first kind (92) using the von Neumann entropy (59a).

For the bipartite case, we get back the content of Sec. IV G,
{ Efip(@) #0 and
Eiﬂ{:lz](Q) =0,
{ E{fip(@ =0 and
Eil{:n}(é?) =0,

for the detection of the separable and entangled state classes.

For the tripartite case, the detection of the classes is shown
in Table II.

0 € Cryizy = Cent

0 € Ciyppy Csep

VII. SUMMARY, REMARKS, AND OPEN QUESTIONS

In this work, we have considered the entanglement clas-

sification and quantification problem for multipartite mixed
states.

A. On the classification of multipartite entanglement

In the first part of the paper we have constructed the partial
separability classification for multipartite quantum systems
(Sec. III). We have worked out the hierarchical structure of
different kinds of partial separability Py, which has turned out
to be the down-set lattice of the lattice of the partitions of the
subsystems P; (Secs. III B and III D), and also the structure
of the entanglement classes Py, which has turned out to be
also hierarchical, being the up-set lattice of the lattice above
(Sec. IITF). The hierarchy of the classes has turned out to be
related to the LOCC convertibility: If a state from a class can
be mapped into another one, then that class can be found higher
in the hierarchy.

Now, we list some remarks and open questions.

(i) The partial separability classification is a more fine-
grained classification than the Seevinck-Uffink classification
[39], which is a more fine-grained classification than the
Dur-Cirac-Tarrach classification [37], while it is more coarse-
grained classification than the SLOCC classification [46],
which is more coarse-grained classification than the LOCC
classification [46,95]. It considers only the partial separability
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properties, but it does this in the fullest detail. The more coarse-
grained (Seevinck-Uffink, Diir-Cirac-Tarrach classification)
classifications and the classifications based on k-separability
[39,42,43] and k-producibility [43—45] can naturally be de-
scribed in this framework.

(i1) We can elucidate the meaning of the different kinds of
state sets arising in the classification structure in a unified way,
using the standard ensemble approach of statistical physics.

States in 'D: We are uncertain about the (pure) state, by
which the system is described (Sec. IIT A).

States in Dy: We are uncertain about the (pure) state, by
which the system is described, but we are certain about the
split with respect to which the state is separable (Sec. I1I B).

States in D,: We are uncertain about the (pure) state, by
which the system is described, and we are also uncertain about
the split with respect to which the state is separable, but we
are certain about the possible splits with respect to which the
state is separable (Sec. III D).

States in C: We are uncertain about the (pure) state, by
which the system is described, and we are also uncertain about
the split with respect to which the state is separable, but we are
certain about the possible splits with respect to which the state
is separable, and we are also certain about the possible splits
with respect to which the state is not separable (Sec. III F).

(iii) The nonemptiness of the classes was only conjectured
(Conjecture 1). More fully, we could not give necessary and
sufficient condition for the nonemptiness of the classes in
the purely algebraic language of labels. Probably, methods
from geometry or matrix analysis would be needed to solve
this puzzle (Sec. Il F). For a constructive proof, it would be
interesting to construct representative states for all classes
Cy. For this, it can be helpful to consider not the full state
space, but only some special subsets, which can be generic
enough for intersecting with a sufficient number of different
classes, such as the noisy GHZ-W mixture (noisy mixture of
Greenberger-Horne-Zeilinger state with Wolfgang state) [32],
or GHZ-symmetric states [96], or the magic simplex [97], or
mixtures of symmetric Dicke states [98].

(iv) A more challenging issue is to find utilization for
the quantum states of the different classes. It seems to be
promising to find or develop information theoretic tasks, such
as multipartite secret sharing protocols [99].

(v) In close connection with item (iii), a further geometry-
related conjecture could be drafted about the nonempty classes:
They are of nonzero measure. It is known in the bipartite case
that the set of separable states is of nonzero measure [21,42],
which might motivate this conjecture.

(vi) Note that in the classification, Levels I and II of the
construction are related to LOCC closedness (14) and (30)
(state sets D, are closed under LOCC), while Level III of the
construction is related to LOCC convertibility (54) (if a state
from a class Cg can be mapped into Cg, then 8 < o).

(vii) In Level III of the construction, we have the lattice
Py of class labels (46). We could partially clarify the meaning
of the poset (P, X); it is related to the LOCC convertibility
[see (54) in Sec. IITF]. On the other hand, being an up-set
lattice, the meet and the join (46) arise naturally; however,
their meaning is not clear. On the other hand, we have the
poset (Prrc, =) of classes (55), with the ordering > related
to the (strong) LOCC convertibility (53a). Can a meet and a
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Jjoin also be defined in some motivated way here? Or what is
the meaning of the class corresponding to the meet or join of
the labels of two classes? If Conjecture 2 holds, then these
have the meaning of greatest lower and least upper bounds
with respect to LOCC convertibility.

(viii) The most important open question is to prove
Conjecture 2 in Level III of the construction, which would
establish a stronger connection between the class hierarchy
(46) and the strong LOCC convertibility (53a). Based on
this, one could compare the different well-defined partial
separability properties; that is, we could say that states in a
given class Cg are “more entangled” than states in class Cq if
B=xa
" (ix) Can a gradation be defined for the lattice Pyy?
Because of (54), that would lead to an integer-valued measure
of entanglement (monotonically decreasing with respect to
LOCC).

(x) Note that the partial separability properties cannot give
a full answer for the entanglement inside the subsystems.
Of course, if o € D is separable with respect to the split
a, then trgo € Dk is separable with respect to the split
which can be obtained by dropping the elementary subsystems
a € K from a. (That is, if 0 € D,, then trg @ € Dy, Where
alg ={K'N K # @|K’' € a}.) However, even if we know the
class of o, we can not give the class of trg 0. A well-known
example for this is the case of the GHZ and W states of
three qubits [95], both of them are tripartite entangled. The
bipartite subsystems of the GHZ state are separable; that
is, if o = |GHZ)(GHZ| € CT[${123}} - D“123), then tr;p €
Crutizyy = Csep = Dyq1py- Bipartite subsystems of the W state
are entangled; that is, if o = |[W)(W| € C¢{“123}} C D¢{123},
then tr3 0 € CTN{U}} = Cemt C D“[z}.

(xi) The partial separability classification is about the
question: “From which kinds of pure entangled states can a
given state be mixed?” Another question [38], which is also
important from the point of view of quantum information,
but which we have not considered, is: “Which kinds of pure
entangled states can be distilled out from a given state?”’

B. On the quantification of multipartite entanglement

In the second part of the paper, we have constructed
entanglement measures for multipartite quantum systems
(Sec. VI). Besides the usual entanglement monotonicity and
discriminance, we have introduced the multipartite monotonic-
ity, as a plausible property, which endows the set of multipartite
entanglement measures with the same hierarchical structure
as the partial separability shows. We have succeeded in
constructing a hierarchy of entanglement measures satisfying
these requirements (Secs. VID and VIF), which is the direct
generalization of the entanglement entropy for pure states and
the entanglement of formation for mixed states [see in (105)
and (112)]. These measures have information-geometrical
meaning related to the statistical distinguishability. A side
result is another, not multipartite monotonic generalization of
the entanglement entropy for pure states and the entanglement
of formation for mixed states [see in (101)].

Now, we list some remarks and open questions.

(xii) There are wide-ranging possibilities for the general-
ization of the results, from which we can conclude that the
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entanglement monotonicity together with the discriminance
property does not yield a condition too strong. The multipartite
monotonicity is, however, more demanding.

(xiii) The discriminance, or indicator properties (85a) and
(96a), could be omitted, of course, as is done sometimes in
the literature. This is a part of the construction which can
be detached from the part dealing with the entanglement
monotonicity. However, we think that the indicator properties
are important. If a quantity is zero for some entangled states,
then it measures not the entanglement, but something else
(which can also be related to entanglement, of course).

(xiv) The multipartite monotonicity properties, on the
other hand, may or may not be considered plausible enough.
The weak multipartite monotonicity properties (vanishing
implications) (86a) and (97a) are direct consequences of the
indicator properties (85a) and (96a) and reflect the hierarchy
of multipartite entanglement in a weak sense. The multipartite
monotonicity properties (87a) and (98a), on the other hand,
are stronger requirements.

In Level I of the construction, the meaning of the multipar-
tite monotonicity seems to be clear: Entanglement with respect
to a coarser partition cannot be stronger than entanglement
with respect to a finer one. Since, e.g., the tripartite entangle-
ment is considered to be a more powerful resource than the
bipartite entanglement [82], one feels that a state can contain
a smaller amount of that than of the bipartite entanglement.

In Level II of the construction, the meaning of the
multipartite monotonicity is not so clear. We have, on the one
hand, the mathematical analogy with Level I: entanglement
higher in the hierarchy cannot be stronger than entanglement
lower in there. (Since the sublattice formed by the principal
elements of Py is isomorphic to Py, at least for this sublattice
the meaning is clear.) We have, on the other hand, an
interpretation from a statistical approach: Entanglement, as a
resource (the same, unified “notion” for all splits), is weaker
for a given state if we are more uncertain about the split with
respect to which the state is separable and we are certain only
about the possible splits with respect to which the state is
separable [cf. item (ii)]. Note that if we follow the particular
way of construction based on the statistical distinguishability
in information-geometry (103), then the multipartite
monotonicity properties follow automatically. In this case,
we have another interpretation for this, a third one, coming
from information geometry. Entanglement (the same, unified
“notion” for all splits), regarded to be the distinguishability
from a subset of states, is lower for a given state if one allows
a bigger subset from which the distinguishability is measured.

In summary, using the multipartite monotonicity, we at-
tempt to grasp the hierarchy of multipartite entanglement with
the measures. This seems to make the entanglement measures
with respect to different splits (or different down-sets of splits
in Level II) be the manifestations of some “unified” notion of
entanglement. This is why we take multipartite monotonicity
to be very serious.

(xv) The multipartite monotonicity (87a) and (98a) means
a set of bounds among the measures characterizing the
multipartite entanglement in the whole system. [These fall
between the global bounds (94), (106), and (114).] It would
also be important to obtain bounds among these measures
and the measures characterizing the multipartite entanglement
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inside multipartite subsystems [cf. item (x) in Sec. VII A],
leading to “monogamylike” inequalities [7,100,101] (not
necessarily linear ones). Finding such bounds is also important
not only for multipartite entanglement measures, but also
for multipartite quantum correlation measures and even for
multipartite classical correlation measures. Knowing these
bounds would highly improve our knowledge of correlation
and entanglement in quantum systems. Note that such bounds
can follow from known entropic inequalities [102—104].

(xvi) A recent approach for the investigation of the structure
of multipartite entanglement is based on the entropy vector
formalism [105,106]. There the convex roof extensions of
subsystem entropies are considered. Using (76c), one can
obtain inequalities between the a-entanglement of formations
and the sums of the elements of the entropy vector.

(xvii) The construction of multipartite entanglement mea-
sures is transparent: The way of that leads parallel to the
construction of the partial separability, so the connection with
the partial separability hierarchy is clear. However, another
way has shown up in Sec. VID, different from the one we
have followed, based on the K|K-entanglement measures
(Secs. VIB and VID), which leads to the same result, but
shows a deeper motivation; see in the next two items.

(xviii) Apart from its beautiful properties, what are the
principles making the entropy of the subsystem a good choice
for measuring the entanglement in bipartite pure states? There
are several ways for introducing the entanglement entropy for
measuring bipartite entanglement.

The most fundamental approach is based upon that entan-
glement is considered to be a resource in quantum information
theory, and, related to that, for bipartite pure states, the
entanglement cost and the distillable entanglement equal to
the entropy of entanglement. These results are based on coding
theory and quantum communication, which are based on that
there is a maximally entangled state with respect to LOCC
(unique, up to local unitaries) in the bipartite case. Since in
multipartite systems there is no unique maximally entangled
state, this approach cannot be generalized for more than two
subsystems. (A great overview of this can be found in Sec. 12.5
of [24]. For some recent results on maximally entangled state
sets in the multipartite scenario, see [107-111].)

Another approach is that, since a bipartite state is entangled
if and only if its subsystems are mixed (3), then it is at least
plausible to think that “the more mixed the marginals, the
more entangled is the state.” Then a measure of mixedness
(entropies) of the subsystem should lead to a motivated
measure of entanglement of the whole system. [A slight
shortcoming of this reasoning is that not all entropies do the
job. It follows from Theorem 1 that only the concave entropies
(61) work for this.] However, it is not clear how to generalize
this approach for the multipartite scenario. One possibility is
that if one considers the entanglement with respect to a split,
then one simply sums up the measures of mixedness of the
subsystems with respect to that split, and one gets Level I of our
construction (89). However, it is not clear how to step further.

There is a third approach, which coincides with the
construction we have carried out (Secs. VIB and VID), but
based on different principles; see the next item.

(xix) We have seen that when we write the sum of the
von Neumann entropies of the subsystems in a split (89), we
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actually have a classical correlation measure (with respect
to that split) for pure states (92). This reasoning enlightens
also the meaning of entanglement itself, which holds also
in the bipartite case (77a). In classical probability theory,
pure states are always uncorrelated, so if in the quantum
case a pure state shows correlation, then this correlation is
considered to be of quantum origin, and this correlation is
defined to be the entanglement. From this point of view, it
is plausible to think that the quantum versions of classical
correlation measures applied to pure quantum states are pure
entanglement measures (then they should be extended to mixed
states) in both the bipartite and the multipartite scenarios.
However, entanglement monotonicity should be checked; it
does not seem to be fulfilled automatically.

(xx) As we can see from this reasoning, one can find other
ways for forming the first kind of hierarchy of entanglement
measures. Using some distance or divergence D", one can
directly have E5"(r) = D&"(1, ® keq Tk ), OF One can also
follow the more fundamental way and define a generalized
geometric measure of correlation (generalized o-mutual infor-
mation) 15" (0) = MiNy eq: wgeng DE"(0, ®kea @k ), Which
leads to the candidate of pure state entanglement measure
EE™ () = I (7). [The a-discriminance (85a) is automati-
cally satisfied by this construction. On the other hand, it can
happen, of course, that this construction does not lead to a
closed form, in general.] Here one has several choices again
for the role of D™ (see Secs. 12, 13, and 14 in [21]). One can
use the trace distance, which has also a statistical meaning, or
other distance measures, being less motivated, or Rényi, Tsallis
generalizations of the Kullback-Leibler divergence. We note
again that entanglement monotonicity does not seem to be
fulfilled automatically. This leads to the next question.

(xx1) What are the basic properties of correlation measures,
leading to entanglement measures in the construction in the
previous item?

For entanglement measures, we have the two main re-
quirements, the (entanglement) discriminance, and the LOCC
monotonicity. This latter is composed of two well-understood
parts: First, as any correlation, entanglement does not increase
locally, and, second, while classical correlation does, entangle-
ment does not increase by classical communication (“classical
interaction”) either.

For correlation measures, we could also formulate two
main requirements, a correlation discriminance (correlation
indicator property): a correlation measure vanishes exactly for
uncorrelated states; and a (nonincreasing) monotonicity under
LO (local operations): a correlation does not increase locally.

Now, are these properties sufficient in the construction
above? That is, if we have an Ifen(g) LO-monotone correlation
indicator, then is E5(m) = I§*(x) an LOCC-monotone
entanglement indicator?

(xxii) In the last step of the construction of the entanglement
measures, we have used convex roof extension to step from
pure states to mixed states (see Sec. VIF). Convex roof exten-
sions are hard to evaluate. However, sufficiently motivated
mixed-state entanglement measures, such as entanglement
cost, distillation entanglement, or squashed entanglement,
always seem to be hard to evaluate, since they always
contain an optimization problem [1,47-49]. Among these,
the optimization task in the convex roof extension seem
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to be the simplest one. These optimization problems have
no solutions in a closed form in general cases. There are
few explicit analytic solutions for the convex roof extension
[80,81,112-114].

(xxiii) An advantage of the convex roof extension is that
it works independently of the dimensions of the subsystems,
so the mixed-state entanglement measures by that work for
arbitrary dimensions. However, the numerical optimization
depends strongly on the rank of the state, which can be
high if the dimension is high, resulting in extremely slow
convergence, which makes the numerical task infeasible in
practice, even for small systems. A recent result is that
computing a large class of bipartite entanglement measures
(for example the entanglement of formation) is NP-hard
(non-deterministic polynomial-time hard) [115], and the same
seems to hold for the «-entanglement of formation. It is a
common belief that some kind of difficult optimization task
cannot be circumvented if one deals with the entanglement of
mixed states.

(xxiv) It is then an important research direction for practical
calculations to obtain upper and lower bounds for convex roof
measures, the evaluation of which is feasible [96,116,117].

(xxv) Entanglement entropy (77a) is additive (extensive);
then so is a-entanglement entropy (105). The conjecture about
the additivity of the entanglement of formation (78a) is proven
to be false [118]; then so is the additivity of the e-entanglement
of formation (112).

(xxvi) Since the convex roof extensions of semialgebraic
functions are known to be semialgebraic functions [119,120],
it can be useful to use LU-invariant homogeneous polynomials
[121-125] for the role of entanglement measures in Level I of
the construction, which leads to semialgebraic functions in
Level II. This holds, in particular, if one sets out from Tsallis
entropy for integer ¢ > 2 in the construction (82)-(88a)-(99d)-
(108).

(xxvii) Convex roof extension preserves all the required
properties of functions (see Sec. VIF). Are there any other
extension methods to step from pure states to mixed states?

(xxviii) Investigating the correlation and entanglement
pattern in many-body states can be of practical importance
in the properties of strongly correlated systems [126,127] on
the one hand and also in optimizing numerical methods in
many-body physics [17,18,128] on the other.

ACKNOWLEDGMENTS

Discussions with Jens Siewert, Frank Verstraete, Jens
Eisert, Christian Krumnow, Max Pfeffer, Ors Legeza, Péter
Vrana and Istvan Kovics are gratefully acknowledged. This
project was supported financially by the New Széchenyi
Plan of Hungary (project ID: TAMOP-4.2.2.B-10/12010-9),
the Hungarian Scientific Research Fund (project ID: OTKA-
K100908) and the “Lendiilet” program of the Hungarian
Academy of Sciences.

APPENDIX A: ON THE LATTICE STRUCTURE OF THE
CLASSIFICATION
1. Posets and lattices: Basics

Here we list some definitions and notations in order theory,
following [19] and [20].
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A partially ordered set, or poset, (P, <)is aset P endowed
with a partial order <, being a reflexive, antisymmetric, and
transitive relation, that is, for all x,y,z € P,

x <x, (Ala)
x<yandy<x = x=1y, (A1b)
x<yandy<z = x=<2z. (Alc)

For the posets (P, <) and (Q, X),amap ¢ : P — Qisan
order isomorphism when

= o(x) 2 ().

It follows easily from the reflexivity and antisymmetry of the
partial order that such a map is bijective,

x =y (A2)

() =9(y) <= ¢(x) = ¢(y)and ¢(y) < P(x)
< x=<yandy=<x
= x=)y. (A3)

A poset P may have a bottom and a top element, denoted
with L, T € P, if

VieP:Ll<x<T. (A4)

[If the bottom and top exist, then they are unique ones, which
is the consequence of the antisymmetry (A 1b) of the ordering.]

One can define the minimal and maximal elements of a
subset Q C P as

mnQ={xeQ|(yeQandy <x) = y=x}, (ASa)

maxQ={xeQ|(yeQandx <y) = y=x}. (ASb)

A subset Q C P is a down-set, or order ideal, if

xeQady=<xx) =— yeQ (A6a)

(it is “closed downwards”). The set of all down-sets of P is
denoted with O (P). Similarly, a subset Q C P is an up-set,
or order filter, if

xeQadx=<xy) — yeQ (A6b)

(it is “closed upwards”). The set of all up-sets of P is denoted
with O4(P). For a subset Q C P one can define

1O0={xeP|IyecQ:x =y}

1Q={xeP|IyeQ:y=x}

which are a down-set and an up-set, respectively.

The greatest lower bound or meet, x Ay € P, and the least
upper bound or join, x V'y € P, of the elements x and y in a
poset are defined, respectively, as

(A7a)
(ATb)

xAy=xx,y)and (z 2 x,y = 2=xAY), (ABa)

(x,y=xVvyand (x,y <z = x Ay <2). (A8b)

A poset P is called a lattice, if for all x,y € P pairs, x A y
and x Vv y exist. A poset P is called a complete lattice, if for
all Q C P subsets, /\ Q and \/ Q exist. Every finite lattice is
complete. A finite lattice always has bottom and top elements.
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If only the meet or only the join can be defined, then the poset
is called a meet semilattice or join semilattice, respectively. A
finite meet semilattice always has a bottom element; a finite
join semilattice always has a top element.

Let P be a finite meet semilattice having a top element T.
Then the join can be defined as

xvy=\1txyh (A9a)

so P is a lattice (see Proposition 3.3.1 in [20]). Dually, let P
be a finite join semilattice having a bottom element L. Then
the meet can be defined as

xAy=\/{lxy) (A9b)

so P is a lattice.

Closing this section, we recall some examples [19,20],
which are used in the constructions in the body of the text.
For a set X, its power set 2X ={A C X}isa complete lattice
with the ordering C (inclusion), the meet N (intersection),
the join U (union), the bottom element L = @, and the top
element T = X. The O (P) set of all down-sets (ideals) of a
poset P is a lattice, called down-set lattice, with the ordering
C (inclusion), the meet N (intersection), the join U (union), the
bottom element L = (4, and the top element T = P. Dually,
the O4(P) set of all up-sets (filters) of a poset P is a lattice,
called up-set lattice, with the ordering C (inclusion), the meet
N (intersection), the join U (union), the bottom element L. = @,
and the top element T = P.The O (P) \ {#} [or O;(P) \ {4}]
set of all nonempty down-sets (or nonempty up-sets) of a poset
P is not a lattice, in general. However, if P is a lattice, then
there is a bottom and a top element L, T € P, and {L} (or
{T}) is the bottom element of O (P)\ {#} (or O4+(P)\ {4}),
which makes it a lattice.

2. Construction of the labels of the first kind by bipartitions

For the proof of (12), we need by (A8a) that (i) « < K K
for all K € o and (ii) if 8 < K|K for all K € o then 8 < «.
For (i), we have that o = K| K| - - - |K\a\ =< Ki|(Uj¢in) =
K; |E, since every K is either identical to K; or contained in
K; (the K; sets are disjoint ones) and (9) holds. For (ii), let
B = K||K}| - Ky < K|K forall K € a; then, by definition
(9), for all Kj’ € B thereisa K; € o such that K} C K;, which
means that § < o by definition (9).

(Another proof, using the duality principle of order theory,
could also be given: The K |K bipartitions are the atoms of the
dual lattice [19].)

3. LOCC closedness of the first kind for mixed states

For the proof of (14) first we use that every LOCC map A
is also an SO map; that is, it can be written in the form

A=) <® Aa.i>g(® Aaf,,)T, (A10a)

i ael a'elL

with

(A10b)

> (@ Aaﬁz‘)T (® Aa,,) ~1.

i a'el ael
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(Note that the reverse is not true.) By definition (13b), an
«-separable state can be written in the form

0= ri Q.
J

Kea

(Al1)

so if o € D,, then

A=Y (@ Aa,,) Z pi Rk, <® Aa,’l_)T

i ael Kea a'el

-EnL (® A) (® ”K-f) <® A”“)T

i ael Kea a'el

- E® (®)(®) |

i Kea ack a'ekK

€D,

so A(p) € ConvD, = D,.

4. Order isomorphisms of the first kind

Here we prove (16a) and (16b).
For the proof of (16a), using the definition (13a), we can
reformulate Pg € P, as follows:

7 €Pg L VK €B, Irg €Px : n=®n}<,

K'ep

7T=®JT[(

Kea

— VKea, 3TrmgePg:

To see the = implication in (16a), note that if 8 < «, then, by
definition (9), one can collect every K’ € § for which K’ C K,
and construct 7g = ®K’€,B,K’§K 7y, € Pk. This can be done
for all K € «, leading to the implication above. To see the <
implication in (16a), we prove the contrapositive statement,

Bra = Pz P (A12)
For this, we have

B Ao

by (9). Now, if 7 € Pg, then it can be written as m =
Qxrep T With i, € Py (132). Then for all K € a,

) /
trgm = trf® Ty = ®tr;m<, Tk

K'ep K'ep

€ Py,.

def.

< 3K'ep, VKea: K ¢K (Al3)

(Al4)

If B £a, then by (A13) we have that one always finds
K’ € B and K € «, for which K'N K # ¢, while K' ¢ K
(equivalently, K'\ K = K'NK # @). Then, for such K’
and K, if we chose m € P such that 7, is entangled with
respect to the (K’ N K)|(K’ N K) split, then trgng Ty is not
pure; then trg 7 ¢ Px by (3), so Pg € Py. (Note that this
reasoning works only if dim Hxnx > 1, and dim H g > 1,
which follows from that dimH, > 1, which was a general
condition posed in Sec. III A. Subsystems described with
one-dimensional Hilbert spaces are always uncorrelated from
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the others, which makes questions related to correlations
ill defined. In the multipartite scenario, on the other hand,
we use one-dimensional Hilbert spaces for representing “no
subsystem,” being a different notion, convenient in the tensor
algebra.)

For the proof of (16b), we have (16a), and we claim

Pﬂ gpa

which comes from the geometry of quantum states. The =
implication is obvious from (13b), while for the <= implication
one has Pg =ExtrDg C Dg CD,, so any w € Pg is an
element of D, ; moreover, it is a pure state, so it is an element
also of Extr D, = P, (13c), which is exactly what we need.

It is general for posets that if & — P, is an order isomor-
phism as in (16a), then the two posets are isomorphic; that is,
in our case, the map « — P, is bijective (see Appendix A 1).
The same holds for o — D, based on (16b).

— Dﬁ - Dou

5. Meet semilattice isomorphism of the first kind for pure states

For the proof of (18), let m € P, NPy, where o =
Ki|K3|---|Kjo and o’ = K{|K)] - - - |K|/a,‘; then from defini-
tion (13a) we have

n=®m<= ®7r}<,,

Kea K'ea’

with mx € Pk, mg, € Pgo. Forall K € o, we have

trgw =g = trg Ty 2 ;
g T =g = I Ty = Thnks
K ed K ed

KNK #0 KNK #0

leading to the decomposition

/ .
@ =® ® o

Kea Kea K edo
KNK' #0

that is, 7 is separable with respect to the split {K N K’ #
@ K € a,K' € '}, whichis just @ A o’ by (10a), so we have
Py NPy € Pyrar- The reverse inclusion is the first one in
(17a), which completes the proof.

6. Decision of «-separability

For the proof of (22), note that the = direction is obvious
from the definition (13a) of «-separable pure states, while for
the <= direction, we have thatif trgzm € Pk, thennw € PKlg by
(3), which holds for all K € «; then (21) leads to the left-hand
side.

7. LOCC closedness of the second kind for mixed states

For the proof of (30), first we use, by definition (29b), that
every ¢ € D, can be written in the form o = > j pjmj, where
for all j, m; € Py, € D, for at least one o € . Since Dy, is
closed under LOCC (see Appendix A 3), we have that for a
0 € Dy,

A=A pimi | =D pi Al .
j j —

€ D,
if7; € Dy
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s0 A(p) € Conv Uyeq Dy = Dy, because of definitions (29a),
(29b), and (29c¢).

8. Order isomorphisms of the second kind

Here we prove (32a) and (32b).
For the proof of (32a), using the definitions (28) and (29a),
we have

p<a & pca
— {PplBeBlS{Pulacal
= UrclUr.
BeB aea
29a Ps < Pa,

where the second implication is because o — P, is bijective
due to (16a), while the third one is obvious.

For the proof of (32b), we have (32a), and we claim

PSPy <= DgC 0Dy,

which can be proven in the same way as the parallel result of
the first kind in Appendix A 4.

Again, it is general for posets that if & — Py is an order
isomorphism as in (32a), then the two posets are isomorphic;

that is, in our case, the map a > P, is bijective (see Appendix
A 1). The same holds for & — D, based on (32b).

9. Lattice isomorphism of the second kind for pure states

Here we prove (34).
For the first part,
29
Pu P = | JPun | P
aca a'ea’
(18)
= U (Pa N Pot’) = U Pat/\ot’
o En o Eo
o ea o ea
(28) (29a)
< U Pp = U P =" Paras
BeaNa’ peana’

where the first and last equations are by definition (29a), the
last but one equation is by definition (28), the second equation
is the distributivity of N over U, and the third equation is (18)
from Level 1. The inclusion is from that for all ¢ € & and
o ca,ana <aeaand a Ao’ <o’ € a’ hold, because
o and o’ are down-sets (27),soax Aa’ € a Na’, S0 all Pyae
sets in the left-hand side appear in the right-hand side as a Pg.
The reverse inclusion in the first part of (34) is the first one in
(33a), which completes the proof.
For the second part, we have

Pa U Poc’ (22) U Pa U U P = U P(x (221) Pa\/u’»

aca o'ea’ acala’

where the first and third equations are by definition (29a); and
the second one is obvious using elementary set algebra.
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10. Lattice of the labels of the classes

For the proof of (47), we start with the contrapositive form
of (44),

Ca#9 = Vaca VPé¢a :aip
= Vaca:B¢a = app)
<— Vaca:(xa=xp = Bea),

where the last implication is the contrapositive reformulation
of the parentheses, leading just to the definition of the up-set
lattice Py in (45).

11. Reconstruction of the state sets from classes

For the proof of (52a), we have the equivalent statement
that for all & € Py+, and all o c Py,

o € tH{Ma}}

(A70)

= MB € Py | < B}}

(47b)

= {B€Pul{BehPr|a=p}=pB}
(A15)

eea <—

To see the = direction, note that if & € «, then for all 8 € Py«
for whicha < B holds, also 8 € « holds, because & is an up-set
(45). This means that 1o} < a [see (46)], so a € MM a}}
[see (A7b)]. To see the < direction, note that if o € {f €
Pu [ {B € Pu+ | < B} < B}, then {B € Pu+ | < B} 2 o;
onthe otherhand, € { € Py | & < B},s0x € a [see (46)].

12. LOCC convertibility of the classes
For the proof of (54), we prove the contrapositive statement

Brta

46
(46)

LOCCy,
L ¢ /> Ca

The first implication is the definition of the level III hierarchy
(46); the second one is (51a); and the third one is the
LOCC closedness of D, in (30) applied for the weak LOCC
convertibility (53b).

dyebPi: yePandy ¢a

Ay c Py CﬂgDyannggDy

13. Poset of the classes

For the proof of that the strong LOCC convertibility of
the classes (53a) is a partial order, we have to prove that the
properties (A1) are satisfied. For the proof of the reflexivity
(Ala), note that Cy >, Cy by choosing the identity channel
(which is also a LOCC) for A in (53a). For the proof of the
antisymmetry (A1b),

Cp > Coand Cq >,Cp =

where the first implication is (54), the second one is by the
antisymmetry (Alb) of the partial order (46), the third one
is by definition (43). For the proof of the transitivity (Alc),
if C, >, Cg and Cg >, Cy, then, by definition (53a), for all
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o € C, thereisa A LOCC such that A(g) € Cg, and for this, by
definition (53a), there is a A’ LOCC such that A'[A(0)] € Cq,
and the composition of LOCC operations is also an LOCC
operation. [Note that this is the point where the weak LOCC
convertibility (53b) would not be sufficient.]

APPENDIX B: ON ENTANGLEMENT MEASURES
1. Convexity and concavity of operator functions

Here we recall a useful result in the theory of trace functions
from Sec. 2.2 of [60].

Let f : R — Rbecontinuousand F = trof : Linga H —
R the associated trace function; then if f is monotonically
increasing (decreasing), then F' is monotonically increasing
(decreasing), and if f is convex (concave), then F is convex
(concave).

Based on these, the (61a) and (61b) concavity of the von
Neumann (59a) and Tsallis (59b) entropies can be proven using
the functions f(x) = —xInx and f(x) = ﬁ(xq — x). For
the (61c) concavity of the Rényi entropy (59c), we have that
f(x) = x? is concave if and only if ¢ < 1, then so is F(p) =
tr o7, while In(x) is concave and monotonically increasing, so
Intr o7 is also concave. However, for g > 1, F(po) = tro? is
convex; while — In(x) is convex and monotonically decreasing,
so the concavity or convexity cannot be decided using this
method.

2. Uncorrelated state with minimal relative entropy

Here we recall the proof of (90b) from [83]. Fora o € D,
and a partition o, we use the notation og := trg 0 € Dk for
all K € o, and let wg € Dk forall K € «. Suppose that (90a)
takes its minimum at {wg }. Then

0 < DKL<Q

®QK) - DKL(@

Kea

Qo

Kea

@ _ (Q ln®g;<> +tr (Q ln®wk>

Kea Kea

= - ok nok) + Y trox Inwg)

Kea Kea
=—1r <®Qk ln®gk> +tr (®Q[( ln®w,<)
Kea Kea Kea Kea
4 om(@e|@0)
Kea Kea

where the first and last equalities are the (64) definition
of the relative entropy and the second and third equalities
are from the linearity of the trace and the additivity of the
logarithm, In(w; @ w; @ ---)=In(w; VIR - IR w; ®
the relative entropy is non-negative (65a), then the above is
zero, which leads to that wg = gk because of (65b).
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3. Pure entanglement measures

Here we recall Horodecki’s proof [49] for Theorem 1 given
in Sec. IV.

A function is symmetric in its arguments if it does not
change its value for the permutation of its arguments, and
it is expansible if it takes the same values for arguments
(x1,...,x4) and (xq,...,x4,0). So, first of all, from (i) it
follows that

F(trg ) = F(trg ), (B1)

since the two arguments have the same spectrum, apart from
the multiplicity of the zero eigenvalue. Let us decompose the
LOCC A into the pure operations A; consisting of single
Kraus operators each, A;(-) = A[(-)A}L. These operations are
separable ones, that is, A; = A|; ® A2; ®---® A, ;, and
they can further be decomposed into the composition of A, ;(-)
acting nontrivially on the ath subsystem only. Applying these
to the initial (pure) state w results in the ensemble of pure
states 7] = %Aai(n) [with probabilities p; = tr A, ;()].
The resulting mixed states are then v’ = ). p;m;.

Take a A, ;, and let K, = K if a is not contained in K, and
K. = K otherwise. Then A, ; leaves subsystem K, invariant,
tr,(jrr/ = trg- 7, which leads to

trg-m =trg- ' = Zpi trg-m; fora ¢ K,. (B2)
i

Now we can write

(72)

(B1) (B2)
fxk(@) = Flrg ) = F(Zpi trK*ni/)
i

(72)

(B1)
> piF(rg ) = Y pifr(r),
i i

where the first and last equalities are that both subsystems can
be used (B1) in construction (72), the second one is (B2), and
the inequality is the concavity (ii) of Theorem 1.

4. Convex roof extension preserves entanglement monotonicity

Here we recall Horodecki’s proof [49] for Theorem 2 given
in Sec. IV.
Let f : P — R be a function satisfying (69), that is,

Y o pifG) < f(r) (B3)

for all 7w — {(p;,7/)} ensembles resulting from a LOCC A
consisting of the A; pure operations. Take an f-optimal
pure decomposition {(g;,7;)} of o, thatis, ¢ = Zj gjm;,and
>_; 4; f(m;) in the right-hand side of (73) takes its minimum,
o)

) =) q;f). (B4)
J

Applying the A; pure operators to the pure states 7; of
this ensemble results in the ensembles of pure states 7 ; =

ﬁAi(nj) [with probabilities p;; = tr A;(7r;)]. Applying the
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A; pure operators to the mixed state o results in
E qjNhi(mj) = — E q;PjiT},
1 .
J

(BS)
[with probability pi =trA;(o) = Zj gitrAi(mj) =
Zj q;pj,il- With these, we can write

o = —A (@) =
pi

2@ E Y g fap)
J

(B3)

> Zq,Zp,zf(n,,)(W)Zq, Zp,,f ;)
= Zi:l’ig

: Z‘ijj,ifu(n_;’,i)
J
(74b)

Z Z pif (% Z%’Pj,i”},i> @ Z pif @),
J 1

where the first equality is the optimality (B4), the first
inequality is due to the entanglement monotonicity of f on
pure states (B3), the second equality is (74a), the second
inequality is the convexity of the convex roof extension (74b),
and the last equality is (BS).

Note that this reasoning does not depend on whether
{(gj,m;)} is a result of a LOCC or some other class of
operations, as far as (B3) holds.

5. Convex roof extension preserves discriminance

For the proof of (75b), let P, € P and D, = Conv P, C
D = Conv P, and let f : P — [0,00); then

0eD, <<= peConvP,
— o= Zp,-m with 7r; € P,
70a .
0= Zpim with f(7;) =0
= [fYo=0,

where the first and second implications are from the assump-
tions above and the third implication is the assumption in
(75b), which is the discriminance property (70a) for the pure
state function. The condition f > 0 is necessary for the last
implication: To see the = direction, note that the minimum
in the convex roof extension (73) of a non-negative function
is zero (74c), which is attained if the left-hand side holds, and
to see the <= direction, note that if the convex roof extension
(73) of a non-negative function vanishes, then there exists a
decomposition for pure states for which the function vanishes.

6. Convex roof extension preserves the invariance

For the proof of (75¢), note that the <= direction is obvious
from (74a), while for the = direction we have

Zpl Sf(m)

UGo6H' 2 min
> pimi=Go Gt
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= min i f(Gr] Gt
. min_ Xi:pf( )
(73
= min_ 3w S e,

where the first and last equalities are the definition of the
convex roof extension (73), the second one is by using the
notation 7} = G '7;(GNH~!, and the third one is the condition
in the left-hand side of (75¢).

7. Convex roof extension is monotonic

For the proof of (76a), note that the <= direction is obvious
from (74a), while for the = direction take a g-optimal
decomposition {(p;,m;)} of g, that is, 0 = ), p;m; for which
the next equality holds in the convex roof minimization (73),

and
= Zp,-g(m) = Zpif(”i)

> Zp, FCORERI

Z/p,rr,—g

g ()

where the first inequality is the left-hand side in (76a), the
second one is because a g-optimal decomposition is not
necessarily f-optimal, and the last equality is the definition
(73) of the convex roof extension.

8. Some other properties of convex roof extension

The proof of (76b) is obvious from the definition (73) of
the convex roof extension.

For the proof of (76c), take an (f + g)-optimal decompo-
sition {(p;,7;)} of o, that is, o = ), p;m; for which the next
equality holds in the convex roof minimization (73), and

(f + 2
=Y pif () + g(m)

= (Z pif (m)) + (Z pig(m-))
Zp, (xf)+  min_ > pigl))

Y+ g%,

where the inequality is because an ( f + g)-optimal decompo-
sition is not necessarily f-optimal or g-optimal, and the last
equality is the definition (73) of the convex roof extension.

For the proof of (76d), note that min{f,g} < f,g, so
(min{ f.g})"” < fY.g" by (76a), from which (min{f,g}" <
min{ £V, g"} follows.

> mm
> PyTh=0

@

APPENDIX C: ON THE PROPERTIES OF SUMS AND
MEANS

1. Definitions and properties of g-sums and g-means

Let x = (xq,...,x,) € R", x> (. (The latter is meant
elementwisely, x; >0, j =1,...,m.)
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The g-sums of x are defined for nonzero g € R parameters
as

1/q

Ny(x) := Z qu.
=1

It can be defined for positive and negative infinities by its
limits, leading to

for g # 0. (Cla)

Nioo(X) := liT N, (x) = max(x;), (C1b)
q—>+00 J

N_(x) = qlim Ny (x) = min(x;). (Clo)
——00 J

Since lim,_, o+ N, (x) = oo and lim,_, - N,(x) = 0, N, cannot
be made continuous in ¢ = 0. We have the usual sum Ny, the
harmonic sum N_, and the quadratic sum N,.

The g-means or power-means of x is defined for nonzero
q € R parameters as

1/q

for g # 0. (C2a)

It can be defined for parameter zero and for positive and
negative infinities by its limits, leading to

Mi(x) = qEToo My (x) = mJaX(x i) (C2b)
M_oo(x) ;= lim _M,(x) = min(x;), (C2c)
q—>—00 J .

(C2d)

My(x) := ;IL% M,x) = | []x
J

We have the geometric mean My, the usual arithmetic mean
M, the harmonic mean M_;, and the quadratic mean M.

The g-sums and g-means above are defined for strictly
positive x;’s; however, we would like to use them for non-
negative values, too. For g > 0, the definitions (C1) and (C2)
work well for x; = 0 values. For g < 0, notice that

1/1q1
1

MX)=M_,,x)=|m———— ,
q() |f1|() ﬁ"'"""ﬁ
showing that lim, o+ M,(x) = 0, and the same holds for N,.
So defining forg < 0 and ¢ < 0 and for any x; = 0 the g-sum
and g-mean by their limit, N, (x) = M,(x) = 0, allows us to
use g-sum and g-mean of X > 0 non-negative numbers.

Let us see the most important properties of g-sums and
g-means. N, is continuous for 0 #g € R, N, > 0, M, is
continuous for g € R, M, > 0, and they have the following
vanishing properties:

ifg>0:. N =0 <<= Vj:x;=0, (C3a)

ifg<0: NX)=0 <<= 3Jj:x;=0, (C3b)
and

ifg>0: M;x)=0 <<= Vj:x;=0(Cda)

ifg<0: Mx)=0 <<= 3Jj:x;=0. (C4b)
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They are homogeneous functions; that is,
forc 2 0: Ny(cx) = cNy(x), My(cx) =cMy(x). (C5)

For all 0#g € R, Ny(x) and for all g € R, M,(x) are
monotonically increasing for all arguments x; (see Appendix
C3), and their convexity and concavity properties are

Nq(ZpiXi> <Y piNyx) = gq>1, (C6a)

Ny (Z pixi> > piNx) &= 0#£g <],

(C6b)

and

M, (Z pm) <Y piMx) < g>=1, (CT

M, <Z pixi) > ZpiMq(Xi) < g¢g<1 (CTb

(see Appendix C4). On the other hand, for all x > 0, N,(x)
is monotonically decreasing for the parameter ¢, and it has a
discontinuity in g = 0, as

0< q < q/ —— Mq(x) 2 Mq’(x)5 (Cga)
q < q/ <0 = M,x > M/(x), (C8b)
g<0<qg = M,x)<Myx). (C8c)

On the other hand, for all x > 0, M,(x) is monotonically
increasing for the parameter g, which is the g-mean inequality,

g<q = M <My, (C9)

with equality if and only if x; = --- = x,,,. From this, it
immediately follows that the g-mean of numbers is between
the minimal (C2c) and the maximal (C2b) ones. On the other
hand, the inequality between the arithmetic and geometric
means My(x) < M;(x) is a particular case of this.

2. Definitions and properties of quasisums and
quasiarithmetic means

Letx = (x1, ...,x,) € R™, x > 0.Fora continuous strictly
monotonic function /& : R — R, let the quasisum of x be
defined as

Np(x) :=h~! Zh(xj) ,

j=1

(C10)
and the quasiarithmetic mean of x is defined as [129,130]

My(x) :=h~" %Zh(xj) (C11)
j=1

Note that in the two cases, & and the linearly, respec-
tively, affinely transformed functions ah, respectively, ah + b
(with a,b € R,a # 0) lead to the same functions, N, =
Ngpn, and My = Myp4p. The choice h(x) = x9 gives back
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the g-sum and g-mean for g # 0, while h(x) = In(x)
gives back the geometric mean. For the quite general
function class of the quasiarithmetic means, only few of
the properties can be known, in general [130-132], most
of which are true also for the quasisums with minor
modifications.

3. Monotonicity

For the monotonicity of the g-sums (Cla) and g-means
(C2a) for x > 0, we have for the latter one for g # 0 that

1/g—1
IM,x) 1 et
ax;  mla Zxk 5 =20

(C12)
|

PM0 _ 1 Va2
_ g—1_q-1
ijax 1/q( 4)(Zxk> Yi T

Then, taking an u € R™, we are interested in the sign of

Z M0 1
Ajaxax i ml/a

i
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The same holds for N,. We have for the geometric mean My
(C2d),

9 Mo(x)

1/m
1
3 :-(ka> x>0 (C13)
Xi m
k

4. Convexity, concavity

Foran f : R — R,ifdom f is open and the gif g) Hessian
i
exists, then f is convex (concave) if and only if dom f is

convex and g L ;? is positive (negative) semidefinite [22].

For the convex1ty or concavity of the g-sums (Cla) and
g-means (C2a) for x > 0, we have for the latter one for g 7~ 0
that the Hessian from (C12) is as follows,

(C14)

1/g—1
(q — 1><Zx;’> 8%
k

<q—1>(§x2)w_2 () () - ()

i (Zxk)wz Z(X?”)Z;W?”1)2—<Z(uix?/21)(x?/2)>2

(C15)

i

The square bracket [ ] is non-negative, which is the Cauchy-Bunyakovsky-Schwarz inequality for the vectors of components

u; xq/ "and x! ?. So we have that M, is convex for g >

For qg =0, the Hessian from (C1 3) is as follows,

1/m 1/m
82 My(x) 1 o 1 .
oxjox,  m? l:[xk N T lzlxk %%

Then, taking an u € R™, we are interested in the sign of

32 My(x)
E Uj—F—1U;
T 0x;0x;

i

| 1/m
w{11)

1 and M, is concave for g <

(1) () e

(.

1. The same holds for N,.

(C16)

_mZ 252

J

(C17)

The square bracket [ ] is nonpositive, which is the Cauchy-Bunyakovsky-Schwarz inequality for the vectors of components 1

and uixi_' , so we have that M is concave.

APPENDIX D: ON CONSTRUCTIONS OF ENTANGLEMENT MONOTONES

1. By concavity

For the proof of Lemma 1, let A = )", A; a LOCC with the decomposition into pure suboperations A; and 7/ =

with probability p; = tr A;(;r). Then we can write

%Ai(ﬂ')

Y PG ) =Y piGAG), - fu(T]) < G (Z pifiG), .y pifm(np)

<G(fi(m), ...

(@) = G(f1, ...

(),

where the first inequality is the concavity of G and the second inequality is the assumption (69) together with the monotonicity

G.

042329-31



SZILARD SZALAY

PHYSICAL REVIEW A 92, 042329 (2015)

2. A new entanglement monotone

For the proof of that My .4(Eq,, ..., E

m

) 10 (101) is an entanglement monotone, first we claim the monotonicity and concavity
of the quasiarithmetic mean My, = g~' o Mpo g, with g(x) =1 —¢™*

, written out as

1/m
Mlnog(x) =—In|1- (H(l - e_x,‘)) = —In[l — Hl/m]’

k=1

where we use the shorthand notation IT := [];_,(1 — e™*). Let x > 0, then we have that

— = —7 I

oIl
0x;
First, let us see the first partial derivatives,
OMiee® 11
ax; 1-—TYmm ax;

so the function is monotonically increasing in all arguments.
Then the Hessian is

alenog(X) _

tym—1 9T
I

o 1 (1. e 1
=———|—TI1"/" +
dx;0x; dx; 1 —TII/m {m l—e™ 1 -—TIVmmpm

L
L Thum e oy (D1)
l—e=x =

inl/m e + ! lnl/m ii
ax; l—e 1-—TYVmm dx; 1 —ei

1oe mm (1 e
= | — —H m
ml—e> (1—TY"2 |m 1—e*
I 5 e
b T qym| e
+ 1—TIYmm |:(l—e"f)2

—X; —X;

1 Hl/m

- [nl/m ¢ ¢ _La-

m2 (1 — IT/my2 l—e % 1—ew
1 Hl/m e i e i (1
= —m
m2 (1 _ Hl/m)Z eXi ]l —e X

Then, taking an u € R™, we are interested in the sign of

1 111 e | e "
e I /m|_=
—MVmm|ml—e 1 —e

92 My o, (X 1 m/m
Z uj i )”i = 1/my2 Z
9x;0x; m2 (1 — I1V/m) -

I—[l/m e e _ 1— Hl/m 67Xi
)1 L ¢ )( —e )
S: e N
—ql/my i ‘ D2
)(1_ex,-)2] (D2)
uje™ ? 1 uZe
| —ma-1n )Z—(l =7 | (D3)

We claim that the square bracket [ ] is nonpositive, which follows from

1 1

2 2
e’ - Ve m
(D) <2 (1) e e 2 (1 o

l

where the first inequality is the Cauchy-Bunyakovsky-Schwarz inequality for the Vectors of components ¢ — and /e, and

the second inequality is ) jevsm(l —

1/m

n/m=TJa—e™
J

I1'/™), which is rearranged as m/m <1 - ; Zj e i,

1 N l— .
<Z;(1‘e ’>=1—;Z€ j,

J

which is the inequality between the geometric and arithmetic means [see Eq. (C9) for ¢ = 0 and ¢’ = 1]. So we can conclude

that the function Mi, ., : R™ — R is concave. Now, Miyoo(Eq,, ...,

1 holds for that, which completes the proof.

E,, ) in (101) is an entanglement monotone, since Lemma
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