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Entanglement in fermion systems
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We analyze the problem of quantifying entanglement in pure and mixed states of fermionic systems with a fixed
number parity yet not necessarily a fixed particle number. The mode entanglement between one single-particle
level and its orthogonal complement is first considered, and an entanglement entropy for such a partition of a
particular basis of the single-particle Hilbert space H is defined. The sum over all single-particle modes of this
entropy is introduced as a measure of the total entanglement of the system with respect to the chosen basis and
it is shown that its minimum over all bases of H is a function of the one-body density matrix. Furthermore,
we show that if minimization is extended to all bases related through a Bogoliubov transformation, then the
entanglement entropy is a function of the generalized one-body density matrix. These results are then used to
quantify entanglement in fermion systems with four single-particle levels. For general pure states of such a system
a closed expression for the fermionic concurrence is derived, which generalizes the Slater correlation measure
defined by J. Schliemann et al. [Phys. Rev. A 64, 022303 (2001)], implying that particle entanglement may be
seen as minimum mode entanglement. It is also shown that the entanglement entropy defined before is related
to this concurrence by an expression analogous to that in the two-qubit case. For mixed states of this system the
convex roof extension of the previous concurrence and entanglement entropy is evaluated analytically, extending
the results in previous reference to general states.
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I. INTRODUCTION

Quantum entanglement is not only one of the key features of
quantum mechanics but also an essential resource in quantum
information processing [1]. It plays a central role in quantum
teleportation [2] and quantum computation [3]. Consequently,
the understanding and quantification of this resource have
become a fundamental problem in quantum information theory
[4]. They have also provided deep insights into the structure
of correlations and quantum phase transitions in many-body
systems [5–7].

If |�AB〉 ∈ HA ⊗ HB is a pure state of a composite quantum
system, its entanglement is quantified by the entanglement
entropy S(ρA) = S(TrB |�AB〉〈�AB |) = S(ρB ), where S(ρ) =
−Trρ log2 ρ is the von Neumann entropy. It is then seen that
the notion of entanglement in such systems relies on the tensor
product structure of its state space [8]. In fermionic systems,
however, the situation is less clear since the state space no
longer has this structure due to indistinguishability.

When generalizing the notion of entanglement to systems of
indistinguishable particles [9–18] mainly two approaches have
been taken: mode entanglement [12–14,19,20] and quantum
correlations-particle entanglement [9–11,15–18,21–23]. In
the first case the parties share different modes of a given
basis of the single-particle (SP) Hilbert space. Therefore,
mode entanglement of a system does not remain invariant with
respect to unitary transformations in the SP space. The second
approach looks for correlations between particles and beyond
antisymmetrization. In [9] and [11] a fermionic analog of the
Schmidt decomposition and Schmidt number was introduced
to quantify entanglement in two-fermion systems, and also a
fermionic concurrence was defined. While these measures of
entanglement remain invariant under unitary transformations

*rossigno@fisica.unlp.edu.ar

in the SP space, they are restricted to states with a fixed particle
number, which is not the general case in fermionic systems.
The same problem arises in [15], where in order to share
particles between parties it is necessary to project the original
state onto subspaces with a definite particle number.

In this paper we first consider pure states of fermionic
systems within a grand-canonical context, so the particle
number is not necessarily fixed. Fermionic states with no
fixed number of fermions arise, for instance, when considering
the vacuum of quasiparticles defined through a Bogoliubov
transformation [20,21,24], as well as by simply applying
particle-hole transformations, such that the state is viewed
as a vacuum of certain fermion operators plus particle-hole
excitations. The fermion number parity of these states is
nonetheless fixed, in agreement with fermionic superselection
rules [25]. The entanglement between a single fermionic
mode and the remaining SP orthogonal space in such states
is first considered, and an entanglement entropy is defined
in order to quantify these correlations. We then propose the
sum over SP modes of this entropy as a measure of the
total mode entanglement associated with the chosen SP basis
and show that its minimum over all SP bases depends only
on the eigenvalues of the one-body density matrix ρSP

ij =
〈c†j ci〉, therefore being invariant under SP transformations.
Furthermore, it is shown that if the minimization is extended to
all quasiparticle bases, i.e., bases related through Bogoliubov
transformations, the minimum entanglement entropy is just
the von Neumann entropy of the generalized one-body density
matrix ρqsp, which contains, in addition, the pair creation and
annihilation contractions 〈c†j c†i 〉 and 〈cj ci〉. Its convex roof
extension for mixed states is also introduced. This quantity
allows us to rigorously identify mixed states which cannot
be written as convex mixtures of Slater determinants or
quasiparticle vacua (or, in general, fermionic Gaussian states
[21,22]), like thermal states of interacting fermion systems
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at sufficiently low temperatures, quantifying their quantum
correlations.

We then focus on fermionic systems with SP space
dimension 4. For general states it is shown that the minimum
over all quasiparticle bases of the entanglement entropy can
be written in terms of a fermionic analog of the concurrence
[22,23,26], which reduces to the Slater correlation measure
defined in [9] and [11] for two-fermion states. Its convex
roof extension for mixed states is also evaluated analytically,
extending explicitly the results in [9] to arbitrary mixed states
with a fixed number parity. This allows us to evaluate in closed
form the convex roof extension of the previous entanglement
entropy. A simple illustrative example is provided.

II. FORMALISM

A. Single-level entanglement entropy

We start by considering a pure state |�〉 of a fermion
system with an n-dimensional SP Hilbert space H. The system
is described by a set of fermion annihilation and creation
operators {cj ,c

†
j } satisfying

cicj + cj ci = 0, cic
†
j + c

†
j ci = δij , (1)

such that {c†j |0〉,j = 1, . . . ,n} is an orthonormal basis of SP
states (|0〉 denotes the vacuum of the operators cj ). We work
within a general grand-canonical context, in which |�〉 is
not necessarily a state with a definite value of the fermion
number N = ∑

j c
†
j cj . It may be, for instance, a vacuum

of quasiparticle operators aν , related to the cj ’s through a
Bogoliubov transformation [24]. In this case, it is a sum of
pure states with different fermion numbers (see Appendix),
yet all having the same number parity,

P = exp

⎡
⎣iπ

∑
j

c
†
j cj

⎤
⎦, (2)

such that P |�〉 = ±|�〉. Let us also recall that the elementary
particle-hole Bogoliubov transformation

cj → c
†
j , c

†
j → cj (3)

leaves the anticommutation relations unchanged, so that,
formally, it is a matter of choice whether one considers the
particles or the holes as the “true” fermions. We take this
basic symmetry into account in all the following correlation
measures, such that they all remain invariant under the previous
transformation. We just assume that all pure states involved
have a definite number parity [25], which implies that 〈cj 〉 = 0
and also 〈O〉 = 0 for any operator O which is a product of an
odd number of fermion operators cj , c

†
j .

We now consider a partition (A,B) of H, where A denotes
the single mode or “level” j , and B the remaining orthogonal
SP space. Equation (1) implies that the operators,

�j = c
†
j cj , �j̄ = cj c

†
j , �j + �j̄ = 1, (4)

constitute a basic set of orthogonal projectors, defining a
standard projective measurement on level j . Accordingly, we

may decompose any state |�〉 as

|�〉 = c
†
j cj |�〉 + cj c

†
j |�〉 (5)

= √
pj |�j 〉 + √

pj̄ |�j̄ 〉, (6)

where the first (second) term in (5) selects the component of
|�〉 where state j is occupied (empty) and |�j 〉 = 1√

p
j

c
†
j cj |�〉

and |�j̄ 〉 = 1√
pj̄

cj c
†
j |�〉 are the corresponding normalized

states. Here pj (pj̄ ) is the probability of finding level j

occupied (empty) in |�〉:
pj = 〈�|c†j cj |�〉, pj̄ = 〈�|cj c

†
j |�〉 = 1 − pj . (7)

For an operator OA depending just on cj and c
†
j , and OB

depending just on the complementary set {ck,c
†
k,k �= j}, we

then obtain, assuming P |�〉 = ±|�〉,
〈�|OA(B)|�〉 = pj 〈�j |OA(B)|�j 〉 + pj̄ 〈�j̄ |OA(B)|�j̄ 〉

= trA(B)ρA(B)OA(B), (8)

where ρA = pjc
†
j |0〉〈0|cj + pj̄ |0〉〈0| and ρB =

pjcj |�j 〉〈�j |c†j + pj̄ |�j̄ 〉〈�j̄ | represent reduced density
operators for systems A and B, respectively.

The entanglement between A and B can then be quantified
by the entropy of the elementary distribution {pj ,pj̄ =
1 − pj },
S(ρA) = S(ρB) = −pj log2 pj − (1 − pj ) log2(1 − pj ) (9)

= h(pj ), (10)

where S(ρ) = −Trρ log2 ρ is the von Neumann entropy and
h(p) = −p log2 p − (1 − p) log2(p) [0 � h(p) � 1]. This
entropy remains obviously invariant after a particle-hole
transformation, (3). For a pure state |�〉, Eq. (9) vanishes if
and only if (iff) |�〉 is separable with respect to this level, i.e.,
iff the level j is either occupied (pj = 1) or empty (pj = 0) in
|�〉, such that |�〉 = c

†
j cj |�〉 or |�〉 = cj c

†
j |�〉, respectively.

Its maximum value 1 is attained for pj = 1/2.

B. One-body entanglement entropy

The sum

Sc =
∑

j

h(pj ) (11)

is a measure of the entanglement associated with the SP basis
determined by the operators c

†
j . Equation (11) vanishes iff each

level j of this basis is disentangled from its complementary
SP space, i.e., iff each level is either occupied or empty in
|�〉, such that |�〉 is a Slater determinant in this basis, |�〉 =
c
†
j1

. . . c
†
jm

|0〉, for some subset of levels {j1, . . . ,jm}.
Equation (11) depends on the choice of SP basis, i.e., on the

choice of fermion operators c = (c1 . . . ,cn)T . We now consider
the minimum of (11) over all SP bases of H, i.e.,

SSP = Min
c′

Sc′ , (12)

where Sc′ = ∑
j h(p′

j ), with p′
j = 〈�|c′†

j c
′
j |�〉 and c′ =

(c′
1, . . . ,c

′
n)T an arbitrary set of fermion operators related to
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the cj ’s through a unitary transformation,

c′ = U †c , (13)

with U an n × n unitary matrix [such that the fermionic
relations (1) are preserved]. Equation (12) vanishes iff |�〉
is a Slater determinant, i.e., |�〉 = c′†

k1
. . . c′†

km
|0〉 for some

operators c′
k of the form (13). Hence, SSP = 0 iff there is an SP

basis where every level is disentangled from its complementary
SP space.

Defining the SP density matrix ρSP = 1 − 〈cc†〉 (with
〈O〉 ≡ 〈�|O|�〉), of elements

ρSP
ij = 〈c†j ci〉, (14)

it is seen that the minimum, (12), is reached for those operators
c′ which diagonalize ρSP, i.e., satisfying

〈c′†
kc

′
l〉 = (U †ρSPU )lk = p′

kδkl, (15)

with p′
k the eigenvalues of ρSP.

Proof. Equations (13)–(15) imply that pj = ρSP
jj =∑

k |U 2
jk|p′

k . Hence, concavity of the function h(p) en-
tails

∑
j h(pj ) �

∑
j,k |U 2

jk|h(p′
k) = ∑

k h(p′
k), with equality

reached iff the pj ’s are already the eigenvalues of ρSP. �
The minimum value (12) can then be expressed as

SSP =
∑

k

h(p′
k) = tr h(ρSP) , (16)

being now apparent that SSP vanishes iff the eigenvalues p′
k

are either 0 or 1, i.e., iff (ρSP)2 = ρSP, a condition ensuring
that |�〉 is a Slater determinant [24].

Equation (16) has, in addition, the obvious meaning of
quantifying how mixed or “hot” is |�〉 with respect to the set
of all one-body operators of the form

O =
∑
i,j

oij c
†
i cj , (17)

since their averages are completely determined just by ρSP:
〈�|O|�〉 = tr ρSPo. Accordingly, SSP remains invariant under
one-body unitary transformations |�〉 → exp(−iO)|�〉, with
O any Hermitian one-body operator of the form (17), since
they lead to a unitary transformation of ρSP (ρSP → UρSPU †,
with U = e−io) and hence do not affect its eigenvalues.

C. Generalized one-body entanglement entropy

A quasiparticle vacuum, for instance, a superfluid or super-
conducting state in the BCS approximation [24], will lead to
SSP > 0, since ρSP will be mixed, i.e., it will have eigenvalues
distinct from 0 or 1 (see Appendix). If fermion quasiparticles
are to be allowed, we can extend the minimization in (12) to
all single-quasiparticle bases, i.e.,

Sqsp = Min
a

Sa, (18)

where Sa = ∑
ν h(〈a†

νaν〉) and a denotes a set of fermion
operators aν linearly related to the original operators cj , c

†
j

through a general Bogoliubov transformation [24]:

aν =
∑

j

Ūjνcj + Vjνc
†
j . (19)

Equation (19) can be written as(
a
a†

)
= W†

(
c
c†

)
, W =

(
U V

V̄ Ū

)
, (20)

where the 2n × 2n matrix W should be unitary (i.e., UU † +
V V † = 1, UV T + V UT = 0) in order for the operators aν, a†

μ

to fulfill the fermionic anticommutation relations, (1).
One should then consider the extended 2n × 2n density

matrix

ρqsp = 1 −
〈(

c
c†

)(
c† c

)〉 =
(

ρSP κ

−κ̄ 1 − ρ̄SP

)
, (21)

where κ is an n × n antisymmetric matrix containing the pair
annihilation averages

κij = 〈cj ci〉, (22)

with −κ̄ij = 〈c†j c†i 〉 and (1 − ρ̄SP)ij = 〈cj c
†
i 〉. Equation (21)

is a Hermitic matrix which can always be diagonalized by a
suitable transformation, (20), such that

1 −
〈(

a
a†

)(
a a†)〉 = W†ρqspW =

(
f 0
0 1 − f

)
, (23)

with fμν = fνδμν and fν , 1 − fν the eigenvalues of ρqsp

(which always come in pairs (fν,1 − fν), with fν ∈ [0,1]),
entailing

〈a†
νaμ〉 = δμνfν, 〈aμaν〉 = 0. (24)

It can then be easily shown that the minimum, (18), is

Sqsp = −
∑

ν

fν log2 fν + (1 − fν) log2(1 − fν) (25)

= −tr′ ρqsp log2 ρqsp, (26)

where tr′ denotes the trace in the extended SP space.
Proof. Since both pj = 〈c†j cj 〉 and 1 − pj are the diagonal

elements of ρqsp, denoting by qj and λν the full set of diagonal
elements and eigenvalues of ρqsp, we obtain qj = ∑

ν |W2
jν |λν ,

and hence, due to the concavity of f (p) = −p log2 p, Sc =∑
j f (qj ) �

∑
j,ν |W2

jν |f (λν) = ∑
ν f (λν) = Sqsp. �.

Equation (26) vanishes iff fν is either 0 or 1 for all ν,
i.e., iff |�〉 is a particle or quasiparticle Slater determinant.
By an elementary particle-hole transformation we can always
change such a state to a quasiparticle vacuum, so that we can
say Sqsp = 0 iff |�〉 is a quasiparticle vacuum. In other words,
Sqsp = 0 iff there is a single-quasiparticle basis where every
level is disentangled from the rest.

Equation (18) also measures the mixedness of |�〉 with
respect to the set of all generalized one-body operators, of the
form

O =
∑
i,j

o11
ij c

†
i cj + 1

2

(
o20

ij cicj + o02
ij c

†
i c

†
j

) − 1

2
tr o11 (27)

= 1

2
(c† c)O

(
c
c†

)
, O =

(
o11 o02

o20 −(o11)T

)
, (28)

i.e., general quadratic functions of c, c† [the constant term in
(27) is just added for convenience], since their averages are
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completely determined by ρqsp:

〈�|O|�〉 = tr
[
ρSP o11 − 1

2o11 + 1
2 (κo20 − k̄o02)

]
= 1

2 tr′ ρqspO. (29)

The present scheme allows us then to properly treat states
which do not have a definite fermion number and lead
to nonzero contractions 〈cicj 〉. The whole formalism then
becomes strictly invariant under arbitrary particle-hole trans-
formations, (3), applied to some subset of levels, which will
move elements from ρSP to κ , and vice versa, but which will not
alter the spectrum of ρqsp. The latter remains actually invariant
under arbitrary quasiparticle unitary transformations |�〉 →
exp[−iO]|�〉, where O is a Hermitian generalized one-body
operator of the form (27), since they just lead to a unitary
transformation of ρqsp, i.e., ρqsp → WρqspW†, with W =
e−iO.

We note that a transformation aν ↔ a†
ν obviously changes

fν ↔ 1 − fν , so that there is no unique way to select which
of the eigenvalues of ρqsp will be the fν’s or the 1 − f ′

νs.
One can choose the fν’s as the lowest eigenvalues (such
that |�〉 becomes a quasiparticle vacuum when Sqsp = 0),
but it is also possible to set Det[U ] �= 0, which ensures that
the vacuum of the aν has the same number parity as |0〉
[Eq. (A1)]. These choices do not affect the entropy Sqsp.
We also remark that the maximally entangled state, i.e., that
with the maximum Sqsp, corresponds to the exceptional case
fν = 1/2 ∀ ν, where Sqsp = n and ρqsp = I2n/2 becomes
proportional to the identity matrix, then remaining invariant
under any Bogoliubov transformation.

D. Generalized entropic inequalities and quadratic entropy

From their definitions, it follows that the entropies (11),
(16), and (26) satisfy the inequality chain

Sc � SSP � Sqsp. (30)

Equation (30) actually holds for more general entropic forms.

If ρ̃SP = (ρ
SP 0
0 1 − ρSP) is the extended ρSP and ρ̃SP

d the diagonal

of ρ̃SP, we obtain, with the same previous arguments,

Sf

(
ρ̃SP

d

)
� Sf (ρ̃SP) � Sf (ρqsp), (31)

where

Sf (ρ) = tr f (ρ), (32)

with f : [0,1] → R a strictly concave function satisfying
f (0) = f (1) = 0, represents a generalized entropic form
[27,28]. Moreover, these matrices fulfill the majorization
relation [29]

ρ̃SP
d ≺ ρ̃SP ≺ ρqsp, (33)

where ρ ≺ ρ ′ means here
∑j

i=1 λi �
∑j

i=1 λ′
i for j =

1, . . . ,2n − 1, with λi and λ′
i the eigenvalues of ρ and ρ ′

sorted in decreasing order, since the sorted set of diagonal
elements in an orthonormal basis of a Hermitian operator is
always majorized by the sorted set of its eigenvalues [29].
Equation (33) allows us to extend (31) to any Schur-concave
function [29] of the extended density matrices.

A particularly useful example, which plays an important
role in the next section, is the quadratic entropy S2(ρ) (also
denoted the linear entropy), obtained for f (p) = 2p(1 − p),

S2(ρqsp) = 2 tr′ [ρqsp(1 − ρqsp)] = 4 tr[ρSP(1 − ρSP) − κ†κ]

(34)

= 4
∑

ν

fν(1 − fν), (35)

where the factor 2 has been chosen such that its maximum
value for a single level is 1. Unlike the von Neumman entropy,
(26), S2(ρqsp) can be evaluated just by taking the trace in
(34), without explicit knowledge of the eigenvalues fν of
ρqsp. Yet, like Sqsp, it is non-negative and vanishes iff |�〉
is a quasiparticle vacuum or Slater determinant. Equation
(31) implies, in particular, that

∑
j pj (1 − pj ) �

∑
k p′

k(1 −
p′

k) �
∑

ν fν(1 − fν).

E. Mixed states

Let us now consider mixed fermion states, assumed to be
convex mixtures of pure states with definite number parity, i.e.,

ρ =
∑

i

qi |�i〉〈�i |, (36)

where qi � 0,
∑

i qi = 1, and P |�i〉 = ±|�i〉, such that
[ρ,P ] = 0. We can define an entanglement measure for these
mixed states in a way similar to the entanglement of formation
[30,31], through the convex roof extension of Sqsp,

Eqsp(ρ) = Min
{q ′

i ,|� ′
i 〉}

∑
i

q ′
iS

qsp(|� ′
i〉), (37)

where ρ = ∑
i q

′
i |� ′

i〉〈� ′
i |, q ′

i � 0, and the minimization is
over all decompositions of ρ as convex mixtures of pure states,
assumed, again, to be of definite number parity. Equation (37)
vanishes iff ρ is a convex mixture of particle or quasiparticle
Slater determinants, i.e., of suitable quasiparticle vacua, and
reduces to Sqsp for pure states. This quantity is evaluated
exactly in the particular system in the next section.

As a general application of Eqsp, let us consider an inter-
acting fermion system at finite temperature T . For attractive
two-body couplings, the static path approximation (SPA)
[32,33] will lead to a classically correlated density operator
ρSPA, which is a convex mixture of (noncommuting) thermal
states diagonal in a basis of particle or quasiparticle Slater
determinants, associated with different values of the running
effective order parameters. Hence, Eqsp(ρSPA) = 0, in agree-
ment with the fact that ρSPA contains just static fluctuations
around the mean field. This correlated but still unentangled
approximation can be derived from the auxiliary field path
integral representation [34] and becomes exact at sufficiently
high T [33]. Its breakdown at low T reflects the onset of
entanglement, i.e., of a finite value of Eqsp(ρ). Equation
(37) defines a limit temperature TL above which Eqsp = 0.
Mixtures of fermionic Gaussian states are also important in
noisy fermionic quantum computation models [22,35].
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III. THE CASE OF FOUR SINGLE-PARTICLE LEVELS

We now examine in detail the special case of a fermion
system with SP space dimension n = 4. This is the lowest
dimension at which nontrivial fermionic entanglement arises,
i.e., at which Sqsp can be nonzero, as will be verified. We extend
the results in [9], which considered just pure or mixed states
with a definite fermion number, to general states which do
not necessarily have a definite fermion number, yet still have
a definite number parity P . This SP space can accommodate
eight linearly independent pure states of the same number
parity, so that the Hilbert-space dimension for fixed P is 8.

A. Pure states

1. Odd-parity states

We first consider pure states |�〉 of this system with
odd number parity: P |�〉 = −|�〉. These states are then
linear combinations of single-fermion states and three-fermion
states, so a general odd state can be written as (Fig. 1, top)

|�〉 =
4∑

i=1

(αic
†
i |0〉 + β̄ici |0̄〉), (38)

where |0̄〉 = c
†
1c

†
2c

†
3c

†
4|0〉 is the completely occupied state and

|α|2 + |β|2 = 1, with α, β four-dimensional complex vectors.
It is easily seen that the single-hole states ci |0̄〉 are

ci |0̄〉 = 1

3!

∑
j,k,l

εijklc
†
j c

†
kc

†
l |0〉, (39)

where εijkl denotes the completely antisymmetric Levi-Civita
tensor in dimension 4. The elements of the generalized one-
body density matrix, (21), are then given by

FIG. 1. (Color online) Schematic representation of pure fermion
states with odd (top) or even (bottom) number parity. A general
state with a definite number parity is a superposition of the eight
states indicated to the left of the dashed vertical line, where a filled
circle indicates an occupied level. In the normal form (ρqsp diagonal),
obtained after a suitable Bogoliubov transformation, it can be reduced
to the superposition of two states like those indicated on the right. The
state is entangled (in the sense of not being a quasiparticle vacuum or
Slater determinant) iff the product C [Eq. (43)] of the coefficients of
the left and right groups of four states is nonzero, implying nonzero
weight for both states of the normal representation.

ρSP
ij = 〈c†j ci〉 = αiᾱj − βiβ̄j + |β|2δij , (40)

κij = 〈cj ci〉 =
∑
k,l

εijkl ᾱl β̄k, (41)

i.e., ρSP = αα† − ββ† + |β|2I4. We now show that the en-
suing eigenvalues fν of the 8 × 8 matrix ρqsp are fourfold
degenerate and given by

f± = 1 ±
√

1 − C2(|�〉)
2

, (42)

where C(|�〉) is fully determined by the S2 entropy, (34),

C(|�〉) =
√

S2(ρqsp)/4 =
√

tr [ρSP(I4 − ρSP) − κ†κ]

= 2|β†α| = 2|
4∑

i=1

β̄iαi |, (43)

and plays the role of a pure-state fermionic concurrence. It
satisfies 0 � C � 1, and as shown in the next subsection, it is
the generalization of the Slater correlation measure defined in
[9] and [11] for two fermion states. It also coincides with the
quadratic invariant derived in [23] using a spinor classification-
based approach. The entanglement entropy, (25), becomes

Sqsp = 4h(f+) = −4(f+ log2 f+ + f− log2 f−). (44)

Proof. We first consider a unitary transformation c → U c
of the operators cj , such that

α → U †α, β → Det[U †]U †β (45)

in (38), which does not affect the value of C(|�〉) [Eq. (43)].
By choosing an orthonormal basis of C4 such that the original
vectors α and β are generated by the first two elements [for
instance, e1 ∝ α and e2 ∝ β − (α†β)α/|α|2], we can use this
first transformation to set α3 = α4 = 0, β3 = β4 = 0 in the
new basis. In this case, Eqs. (40) and (41) lead to

ρSP =

⎛
⎜⎜⎜⎝

|α1|2 + |β2|2 α1ᾱ2 − β1β̄2 0 0

α2ᾱ1 − β2β̄1 |α2|2 + |β1|2 0 0

0 0 |β|2 0

0 0 0 |β|2

⎞
⎟⎟⎟⎠,

κ =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 ᾱ2β̄1 − ᾱ1β̄2

0 0 ᾱ1β̄2 − ᾱ2β̄1 0

⎞
⎟⎟⎟⎠. (46)

It is then seen that the diagonalization of ρqsp is achieved
through (i) a unitary transformation of the operators c1, c2,

c1 = ua1 + va2, c2 = −v̄a1 + ua2, (47)

with u
|v| =

√
f+−f−±2ε

2(f+−f−) and ε = |α2
1 | + |β2

2 | − 1
2 , which diago-

nalizes the first 2 × 2 block of ρSP and 1 − ρ̄SP; plus (ii) a
Bogoliubov transformation of the operators c3, c4,

c3 = u′a3 + v′a†
4, c

†
4 = −v̄′a3 + u′a†

4, (48)

with u′
|v′| =

√
f+−f−±2ε′
2(f+−f−) and ε′ = |β2| − 1

2 , which diagonalizes

the rest of ρqsp, comprising, again, two 2 × 2 blocks (|β|2 ±κ34

±κ̄34 |α|2 ).
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These four 2 × 2 blocks all have trace 1 and determinant
C2(|�〉)/4, leading then to the same eigenvalues f± of Eq. (42)
(a 2 × 2 matrix with trace t and determinant d has eigenvalues
t±√

t2−4d
2 ). �

Note from (46) that if ρqsp is diagonal (ρSP diagonal
and κ = 0) and C(|�〉) < 1, then necessarily α2 = β2 = 0
or α1 = β1 = 0 in (46). This implies that after the previous
transformations, |�〉 can be written in the normal form
(top-right scheme in Fig. 1),

|�〉 = α′a†
1|0a〉 + β̄ ′a1|0̄a〉, (49)

i.e., β ′ ∝ α′, with |0a〉 the vacuum of the a operators, |0̄a〉 =
a
†
1a

†
2a

†
3a

†
4|0a〉, and |α′|2 = f+, |β ′|2 = f− if |α′| � |β ′|, such

that C(|�〉) = 2|α′β̄ ′|. This state leads to

ρqsp
a = 1 −

〈(
a
a†

)
(a† a)

〉

=

⎛
⎜⎜⎜⎝

|α′|2 0 0 0

0 |β ′|2I3 0 0

0 0 |β ′|2 0

0 0 |α′|2I3

⎞
⎟⎟⎟⎠.

On the other hand, in the maximally entangled case C(|�〉) =
1, f± = 1/2 and ρqsp = I8/2 in any basis, i.e., after any
Bogoliubov transformation. In this case β = eiφα, with |α| =
|β| = 1/

√
2, and the form (49) is obtained just by choosing e1

in the direction of α.
It is apparent that if β = 0 in (38), |�〉 can be written as

a single-fermion state a
†
1|0〉, where a

†
1 = ∑

i αic
†
i . Similarly,

if α = 0, |�〉 can be written as a single-hole state a1|0̄〉, with
a1 = ∑

i β̄ici . Accordingly, C(|�〉) = 0 in these cases. The
vanishing of C(|�〉) for nonzero but orthogonal α and β

[Eq. (43)] generalizes the previous result, showing that in this
case |�〉 can still be written as a single quasiparticle (β ′ = 0) or
quasihole (α′ = 0) after a suitable Bogoliubov transformation
of the original operators. This includes the three-level case,
where, for instance, the fourth level is empty, which implies
α4 = 0 and βi = 0 for i = 1,2,3, leading necessarily to
β†α = 0.

We also mention that the four eigenvalues of ρSP in Eq. (46)
are f± and |β|2, the latter twofold degenerate. Since C(|�〉) �
2|α||β|,

f+ � 1 +
√

1 − 4|α|2||β|2
2

= Max[|α|2,|β|2],

thus verifying that the eigenvalues of ρSP are majorized
by those of ρqsp and, hence, that SSP � Sqsp, SSP

2 � S
qsp
2 =

4C2(|�〉).
Dualization. Equations (38) and (43) indicate that state ci |0̄〉

plays the role of the partner or dual of state c
†
i |0〉. We may

obtain the partner state with the Hermitian operator

T = − 1

3!

∑
i,j,k,l

εijkl[c
†
i c

†
j c

†
kcl + c

†
i cj ckcl], (50)

such that for i = 1, . . . ,4, T c
†
i |0〉 = ci |0̄〉, T ci |0̄〉 = c

†
i |0〉. We

can then express Eq. (43) as

C(|�〉) = |〈�̃|�〉|, |�̃〉 = T |�〉∗, (51)

where |�〉∗ = ∑
j ᾱic

†
i |0〉 + βici |0̄〉 denotes the conjugated

state in this basis. Note that the 8 × 8 matrix that represents T

in the basis (c†1|0〉, . . . ,c†4|0〉,c1|0̄〉, . . . ,c4|0̄〉) is just

T =
(

0 I4

I4 0

)
. (52)

A generalization of (50) for higher dimensions is considered
in [23].

2. Even-parity states

We now consider pure states of even number parity, P |�〉 =
|�〉. They can be obtained, for instance, by changing a particle
for a hole in the odd-parity states. An even state is then a linear
combination of the eight states shown in the bottom plots in
Fig. 1, comprising the vacuum |0〉, six two-fermion states, and
the completely full state |0̄〉 = c

†
1c

†
2c

†
3c

†
4|0〉. We can write this

state as

|�〉 = α1|0〉 − β̄1|0̄〉 +
4∑

j=2

αjc
†
j c

†
1|0〉 + β̄j c1cj |0̄〉, (53)

which is just Eq. (38) with the replacements c
†
1 ↔ c1 and

|0〉 ↔ c
†
1|0〉, implying |0̄〉 ↔ −c1|0̄〉. Note that

c1cj |0̄〉 = 1

2!

∑
k,l

εj1klc
†
kc

†
l |0〉. (54)

In this notation, the eigenvalues of ρqsp are then given by
Eq. (42) with the same expression, (43), for C(|�〉). The
entanglement entropy Sqsp is given, again, by Eq. (44).
Note, however, the minus sign in the term associated with
β̄1. Expression (43) reduces to that in [9] for the case of
two-fermion states (α1 = β1 = 0).

The state, (53), is then a Slater determinant or quasiparticle
vacuum iff C(|�〉) = 0. As a check, the quasiparticle vacuum,
(A1), corresponds in the present case to

α ∝ (1,T21,T31,T41),
(55)

β̄ ∝ (−T21T43 − T31T24 − T41T32,T43,T24,T32),

therefore verifying that
∑4

i=1 β̄iαi = 0. It is also shown that in
the three-level case (i.e., level 4 empty, implying α4 = 0 and
βj = 0 for j = 1,2,3), C(|�〉) is always 0.

The normal form, (49), becomes here

|�〉 = α′|0a〉 − β̄ ′|0̄a〉, (56)

i.e., a superposition of the vacuum and the maximally occupied
state (bottom-right scheme in Fig. 1) for the diagonalizing
quasiparticle operators. Of course, after a trivial particle-hole
transformation aj ↔ a

†
j for j = 1,2, we may always rewrite

(56) as a sum of two two-fermion states, i.e.,

|�〉 = α′a†
2a

†
1|0a〉 + β̄ ′a†

4a
†
3|0a〉, (57)

which extends the results in [9] valid for two-fermion states to
arbitrary definite-parity states.

The dualization operator, (50), here takes the form

T = −c
†
1c

†
2c

†
3c

†
4 − c4c2c3c1 − 1

4

∑
i,j,k,l

εijklc
†
i c

†
j ckcl, (58)
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which satisfies

T |0〉 = −|0̄〉, T |0̄〉 = −|0〉,
T c

†
i c

†
j |0〉 = 1

2

∑
k,l

εijklc
†
kc

†
l |0〉,

i.e., T c
†
i c

†
1|0〉 = c1ci |0̄〉, T c1ci |0̄〉 = c

†
i c

†
1|0〉. It is repre-

sented in the special basis {|0〉,c†2c†1|0〉, c†3c†1|0〉,c†4c†1|0〉,
−|0̄〉,c†4c†3|0〉,c†2c†4|0〉,c†3c†2|0〉} by the same matrix, (52). We
can then write, again, C(|�〉) in the form (51). If α1 = β1 = 0,
the ensuing expression reduces to that in [9].

The two-fermion states considered in [9] and [11] are only
a particular case of the more general even states, (53). For
two-fermion states the contractions 〈cicj 〉 obviously vanish
(κ = 0), and the eigenvalues fν of the generalized one-body
density matrix ρqsp reduce to those of the one-body density
matrix ρSP, implying that SSP = Sqsp.

B. Mixed states and analytic evaluation of the concurrence

The fermionic concurrence for mixed states can be defined
by the convex roof extension of Eq. (43). For two-fermion
states an explicit expression was derived in [9]. We here
generalize this expression to the present general states. Let

ρ =
∑

k

λk|�k〉〈�k| (59)

be a mixed state with eigenvectors |�k〉 and eigenvalues λk ,
with λk > 0 for k = 1 . . . ,r and r � 8 the rank of ρ. We
assume that all |�k〉’s have the same number parity, such that
they are of the form (38) or (53), i.e., |�k〉 = ∑4

i=1 αkic
†
i |0〉 +

β̄kici |0̄〉 in the odd case. Every convex decomposition ρ =∑r ′
j=1 pj |�j 〉〈�j | can be obtained from these eigenvectors

through an r ′ × r matrix U with orthonormal columns (U †U =
Ir ) such that

√
pj |�j 〉 = ∑r

k=1 Ujk

√
λk|�k〉. Note that the

states |�j 〉 are normalized, so that pj = ∑r
k=1 λk|Ujk|2.

The average fermionic concurrence (generalized Slater
measure) of this decomposition is

〈C({pj ,|�j 〉})〉 =
∑

j

pjC(|�j 〉) =
∑

j

pj |〈�̃j |�j 〉|

=
∑

j

∣∣∣∣∣
∑
k,l

UjkUjl

√
λkλl〈�̃k|�l〉

∣∣∣∣∣. (60)

The matrix C of elements,

Ckl =
√

λkλl〈�̃k|�l〉 =
√

λkλl(β
†
l αk + β

†
kαl), (61)

is complex symmetric. Therefore, it admits a decomposition
of the form [9] C = V DV T , where V is a unitary matrix and
D is a real diagonal matrix whose diagonal elements dk � 0
are the square root of the eigenvalues of CC† = CC̄, sorted in
descending order. Defining S = UV , Eq. (60) then reads

〈C({pj ,|�j 〉})〉 =
∑

j

∣∣∣∣∣
∑

k

S2
jkdk

∣∣∣∣∣. (62)

Since
∑

j | ∑k S2
jkdk| �

∑
j (d1|S2

j1| − ∑
k�2 |S2

jk|dk) =
d1 − ∑

k�2 dk , a necessary condition for the separability of ρ,

i.e., for ρ to be a convex mixture of Slater determinants with
the same number parity, is

d1 �
∑
k�2

dk. (63)

As in the case of two-fermion states, we now show, following
the scheme in [9], that this is also a sufficient condition for
separability. Indeed, from (62) it is seen that ρ is separable
if there is a matrix S with orthonormal columns such that for
every j , ∣∣∣∣∣

r∑
k=1

dkS
2
jk

∣∣∣∣∣ = 0. (64)

Now, provided condition (63) is fulfilled, there are always
phases θk,k = 2, . . . ,r such that d1 = |∑r

k=2 dke
iθk |. Then

a matrix with elements Sjk = e
i(θk+μjkπ)

√
r ′ , where μjk = 0,1

and θ1 = 0, will give the desired decomposition if the signs
eiμjkπ can be arranged such that the condition S†S = Ir is
satisfied. This can be ensured by taking r ′ = 2 if r = 2,
r ′ = 4 if r = 3,4 [9], and r ′ = 8 if 5 � r � 8, where we
can set μj1 = 0 ∀ j and (μ1k, . . . ,μ8k) as (0,0,0,0,1,1,1,1),
(0,0,1,1,0,0,1,1), (0,0,1,1,1,1,0,0), (0,1,0,1,0,1,0,1),
(0,1,0,1,1,0,1,0), (0,1,1,0,0,1,1,0), (0,1,1,0,1,0,0,1) for
k = 2, . . . ,8. This completes the proof.

On the other hand, if condition (63) does not hold, the
average, (62), is not smaller than d1 − ∑r

k=2 dk . This lower
bound may be achieved with the same construction used
above, choosing θk = π/2 for k � 2. Then the minimizing
decomposition is that where all the components have the same
concurrence, which is the concurrence of state ρ,

C(ρ) = Min{pj ,|�j 〉}
∑

j

pjC(|�j 〉) = Max

[
d1 −

r∑
k=2

dk,0

]
.

(65)
Using the dualization matrix, (52), we may also obtain the
eigenvalues dk as those of

R =
√

ρ1/2Tρ∗Tρ1/2, (66)

where ρ∗ means conjugation in the basis where T takes the
form (52).

Once C is obtained, we can evaluate the convex roof
extension, (37), of Sqsp as

Eqsp(ρ) = 4h

(
1 +

√
1 − C2(ρ)

2

)
, (67)

in the same way as in the two-qubit case [26], since for pure

states we have, similarly, Sqsp = 4h(
1+

√
1−C2(|�〉)

2 ) [Eq. (44)],
which is a convex increasing function of C(|�〉). The quantity
1+

√
1−C2(ρ)
2 is also the maximum fidelity between ρ and a

convex mixture of Gaussian states, as shown in [22] with a
different treatment based on group representation theory.

A general mixed state ρ satisfying [ρ,P ] = 0 will be a
convex mixture of pure states with even and odd number parity.
It can be written as a convex mixture of even and odd parts,
i.e.,

ρ = p+ρ+ + p−ρ−, (68)
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where ρ± = 1
2p±

(1 ± P )ρ are the even and odd components of
ρ, and p± = Tr ρ(1 ± P )/2 the corresponding probabilities.
Since we just consider pure states with a definite number parity,
for the general mixed states, (68), we may just take Eqsp(ρ) =
p+Eqsp(ρ+) + p−Eqsp(ρ−), with Eqsp(ρ±) evaluated with
Eqs. (65) and (67).

As an illustration, we consider a definite-parity mixture of
a maximally entangled state |�〉 (C(|�〉) = 1) with the fully
mixed state,

ρ = p|�〉〈�| + (1 − p)I8/8, (69)

where 0 � p � 1. In the odd-parity case, |�〉 can be written
in the form

|�〉 = 1√
2
(c†1|0〉 + c1|0̄〉) = 1√

2
(c†1 + c

†
2c

†
3c

†
4)|0〉, (70)

whereas in the even-parity case we can take |�〉 = 1√
2
(|0〉 +

|0̄〉) or 1√
2
(c†1c

†
2 + c

†
3c

†
4)|0〉. A direct calculation using (65)

leads to

C(ρ) = Max

[
7p − 3

4
,0

]
, (71)

indicating entanglement for p > 3/7, i.e., q > 1/2, where
q = 〈�|ρ|�〉 = p + (1 − p)/8 is the total weight of |�〉.
A similar calculation but considering just two-fermion
states, ρ2 = p|�〉〈�| + (1 − p)I6/6, leads instead to C(ρ2) =
Max[ 5p−2

3 ,0], implying entanglement above a slightly smaller
value of p [p > 2/5, entailing, again, q = p + (1 − p)/6 >

1/2], with C(ρ2) > C(ρ) for p ∈ (2/5,1). As in the two-qubit
case, the existence of a finite threshold probability p for
nonzero C, and hence Eqsp, implies a finite limit temperature
for entanglement TL if ρ represents a thermal state [ q

(1−p)/8 ∝
e−β(E0−E1), with E0 the energy of |�〉 and E1 > E0 that of the
remaining seven levels], which is larger in the second canonical
case.

IV. CONCLUSIONS

We have presented a general consistent formalism for
describing entanglement-like correlations in general fermion
states with no definite fermion number yet a fixed number
parity. We have first defined a single-level entanglement
entropy that quantifies the entanglement between an SP mode
and its orthogonal complement, through the definition of
suitable reduced states for such a partition of a given basis
of the SP space. The sum over all SP modes of this entropy,
Sc, can be taken as a measure of the total entanglement of
the system with respect to this basis, and its minimum over
all SP bases, SSP, is shown to be a function of the one-body
density matrix, then being invariant with respect to unitary
transformations in the SP space. Moreover, if minimization
is extended over all quasiparticle bases, the resulting en-
tanglement entropy, Sqsp, is a function of the generalized
one-body density matrix, therefore remaining invariant under
general Bogoliubov transformations. This entropy vanishes iff
there is an SP or quasiparticle basis in which every level is
separable from its orthogonal complement, i.e., iff each of
these levels is either empty or occupied. These entanglement
entropies satisfy the inequality chain Sc � SSP � Sqsp. The

convex roof extension of Sqsp was also introduced, its vanishing
rigorously identifying classically correlated mixed fermion
states which can be expressed as convex mixtures of pure states
or quasiparticle vacua, like those emerging at sufficiently high
temperatures in interacting many-fermion systems through
approaches like the SPA.

In the case of fermion systems with four SP levels, a
fermionic analog of the two-qubit pure-state concurrence was
defined in terms of ρqsp, which reduces to the Slater correlation
measure defined in [9] and [11] for two-fermion states. The
eigenvalues of the generalized one-body density matrix, which
are fourfold degenerate, can be written as functions of this
concurrence, and consequently, the entanglement entropy Sqsp

is related to the fermionic concurrence by an expression
analogous to that in the two-qubit case. This result suggests
that particle entanglement may be seen as a minimum mode
entanglement. For mixed states with fixed number parity in this
system, an explicit expression for the fermionic concurrence,
defined as the convex roof extension of the pure-state concur-
rence, was derived, in complete analogy with the two-qubit
case, which generalizes the result in [9] and [11] and provides
a closed analytic expression for the convex roof extension of
Sqsp.
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APPENDIX: QUASIPARTICLE VACUUM

According to the Thouless theorem [36] the vacuum |0a〉 of
the quasiparticle fermion operators, (19), is given, if Det U �=
0, by [24]

|0a〉 = γ exp

⎡
⎣1

2

∑
i,j

Tij c
†
i c

†
j

⎤
⎦|0〉

= γ

⎡
⎣1 + 1

2

∑
i,j

Tij c
†
i c

†
j + . . .

⎤
⎦|0〉, (A1)

where γ = √|Det U | and T = −U−1V is an antisymmetric
matrix, with |0〉 the vacuum of the cj operators. Equation (A1)
can be verified by directly applying aν to (A1) [if Det U = 0,
|0a〉 can be obtained by applying additional creation operators
c
†
j to Eq. (A1)].

If |�〉 = |0a〉, then fν = 〈0a|a†
νaν |0a〉 = 0 ∀ ν, implying

that Sqsp = 0. However, it is easy to see that

ρSP = 1 − 〈0a|cc†|0a〉 = V V †, (A2)

implying that SSP > 0 if V �= 0. The eigenvalues pk of ρSP

are then just the square of the singular values of V . The state
|�〉 appears, therefore, mixed at the SP level, reflecting that it
cannot be written as a Slater determinant in operators of the
form (13).
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