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We characterize both entanglement and quantum coherence in a molecular system by connecting the linear
entropy of electronic-nuclear entanglement with Wigner-Yanase skew information measuring vibronic coherence
and local quantum uncertainty on electronic energy. Linear entropy of entanglement and quantifiers of quantum
coherence are derived for a molecular system described in a bipartite Hilbert space H = Hel

⊗
Hvib of finite

dimension Nel × Nv , and relations between them are established. For the specific case of the electronic-vibrational
entanglement, we find the linear entropy of entanglement as having a more complex informational content than
the von Neumann entropy. By keeping the information carried by the vibronic coherences in a molecule, linear
entropy seizes vibrational motion in the electronic potentials as entanglement dynamics. We analyze entanglement
oscillations in an isolated molecule, and show examples for the control of entanglement dynamics in a molecule
through the creation of coherent vibrational wave packets in several electronic potentials by using chirped laser
pulses.
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I. INTRODUCTION

Entanglement and coherence are both recognized as fun-
damental quantum properties rooted in the superposition
principle [1–3], and as quantum resources [2–6]. Both are
intertwined in two prominent research directions uniting
quantum information theory and molecular physics: quantum
computation using molecular internal degrees of freedom [7]
and quantum biology [8–12]. The first direction developed
theoretical proposals for using coherent molecular super-
positions to implement quantum algorithms. In the second
direction, the functional roles of entanglement and electronic
coherences in models of photosynthesis are subject to an open
debate [8,9,12–14]. Nevertheless, the considerable interest in
the role played by quantum superpositions of electronic states
in photosynthetic light-harvesting complexes has flourished in
femtosecond multidimensional spectroscopy experiments re-
vealing interesting coherence effects and motivating advances
in theory [9,11,12].

Recently, entanglement and coherence were brought closer
by treating them in the unified framework of resource
theories [2–4,6,15]. The quantum theory of coherence being
historically formulated in quantum optics [16,17], recent
approaches have attempted to develop a framework to quantify
coherence in information theoretic terms, following similar
steps as for the theory of entanglement [2,3]. In analogy with
entanglement, coherence is now seen as a quantum resource,
and a quantitative theory of coherence was formulated as a re-
source theory [2,4,6]. Connections between entanglement and
coherence are investigated, searching “how can one resource
emerge quantitatively from the other” [3]. It is interesting
to underline that, unlike entanglement and other resources
in information theory, coherence is basis dependent [3,12].
Its meaning being given in a reference basis of a particular
observable, quantum coherence appears as related to quantum
uncertainty in a measurement of that observable [15,18].
Quantum correlations and quantum uncertainty are hence
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brought together in a context enriched by the search for new
relations among these fundamental quantum concepts.

The present work searches for connections between
electronic-vibrational entanglement and quantum coherence
in a molecular system. In a previous paper [19] we have
investigated the entanglement between electronic and nuclear
degrees of freedom created by vibronic couplings, which
produce a pure entangled state in the bipartite Hilbert space
H = Hel

⊗
Hvib. We have derived the von Neumann and

linear entropies of entanglement for the 2 × Nv and 3 × Nv

dimensions of H. Here we derive the linear entropy of
electronic-vibrational entanglement for a bipartite Hilbert
space with dimension Nel × Nv , showing its dependence on
the vibronic coherences of the molecule. We show relations of
electronic-nuclear linear entropy of entanglement with several
measures of coherence characterizing the bipartite molecular
system. We employ coherence quantifiers based on l1 norm [2]
and Wigner-Yanase skew information IS(ρ,H ) for a quantum
state ρ and observable H [15,20].

In a molecule with several populated electronic states, elec-
tronic and vibrational degrees of freedom are entangled [19].
Linear entropy of entanglement keeps the information about
the vibronic coherences existent in such a system, and shows
an entanglement dynamics due to vibrational motions in
the electronic potentials. We analyze these entanglement
oscillations in a molecule, considering the temporal evolution
of linear entropy after the action of laser pulses, which
populate several electronic states. We show examples for the
control of entanglement dynamics in a molecule by using
chirped laser pulses, whose parameters can be chosen to
excite various superpositions of vibrational states in each
electronic potential, allowing specific quantum preparations
and significant changes in entanglement dynamics.

The paper is structured as follows. Section II outlines
our model for entanglement in a pure state of the bipartite
Hilbert space H = Hel

⊗
Hvib. In Sec. II A we discuss the

expressions for the von Neumann and linear entropies of
entanglement in a 2 × Nv system, emphasizing the difference
between these two entanglement measures revealed by their
temporal behaviours in the case of an isolated molecule. In
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Sec. II B we derive the linear entropy of entanglement for an
Nel × Nv system. Section II C analyzes the characteristic times
of entanglement dynamics in an isolated molecule. Section III
characterizes quantum coherence in the pure entangled state
ρ̂el,vib(t), employing the resource approach, and shows the
relation between the linear entropy of entanglement and the
l1 norm measure of coherence in the reduced electronic state
ρ̂el(t). Section III B connects quantum coherence in the pure
bipartite state ρ̂el,vib(t) relative to the vibronic basis of the
molecular Hamiltonian Ĥmol, to quantum uncertainty in a
measurement of the observable Ĥmol, and to the velocity of
ρ̂el,vib(t) evolution introduced by Anandan and Aharonov [21].
In Sec. IV are derived quantum coherence measures for
the bipartite system (el

⊗
vib) based on the Wigner-Yanase

skew information, disclosing their connections with the linear
entropy of entanglement. Section V contains examples show-
ing entanglement oscillations in a molecule due to vibronic
coherences among several electronic states populated by laser
pulses. The control of entanglement dynamics by using chirped
laser pulses is shown in the case of the Cs2 molecule, for
quantum preparations implying two (Sec. V A) and three
(Sec. V B) electronic states. Conclusions are drawn in Sec. VI.

II. ENTANGLEMENT IN A PURE STATE OF THE
HILBERT SPACE H = Hel

⊗
Hvi b

We consider the entanglement between electronic and
vibrational degrees of freedom created by vibronic couplings
in a diatomic molecule described in the Born-Oppenheimer
(BO) approximation [19]. Neglecting the rotational degree of
freedom, we focus on a pure entangled state ρ̂2

el,vib = ρ̂el,vib

of the Hilbert space H = Hel

⊗
Hvib:

ρ̂el,vib(t) = |�el,vib(t)〉〈�el,vib(t)|. (1)

|�el,vib(t)〉 is an entangled state of the bipartite system
(el

⊗
vib) created by nonadiabatic couplings between BO

molecular states (for example, laser pulses coupling the
electronic states), having the form

|�el,vib(t)〉 =
Nel∑
α=1

|α〉
⊗

|ψ
α
(t)〉, (2)

where the summation is over the populated electronic channels
α = 1,Nel . The ket |�el,vib(t)〉 denotes the molecular wave
function �el,vib(�ri,R,t), which depends on the electronic
coordinates { �ri} (expressed in the molecule-fixed coordinate
system), the internuclear distance R, and the time t . |α〉
denominates the electronic state φel

α (�ri ; R), and |ψ
α
(t)〉 the

corresponding vibrational wave packet ψ
α
(R,t). The electronic

states |α〉 = φel
α (�ri ; R), depending parametrically on R, are

orthonormal eigenstates of the electronic Hamiltonian Ĥel ,
for which the clamped nuclei electronic Schrödinger equation

Ĥel|α〉 = V
α
(R)|α〉 (3)

gives the adiabatic potential-energy surfaces V
α
(R) as eigen-

values of Ĥel [22].
The molecular Hamiltonian is the sum of the electronic

Hamiltonian Ĥel and the nuclear kinetic-energy T̂R:

Ĥmol = Ĥel + T̂R. (4)

Taking into account that in the BO approximation the
nuclear motion in an electronic state |α〉 is uniquely deter-
mined by the corresponding electronic potential V

α
(R), the

Schrödinger equation giving the vibrational eigenfunctions
χvα

(R) and vibrational energies Evα
is

[T̂R + V
α
(R)]|χvα

(R)〉 = Evα
|χvα

(R)〉. (5)

The eigenvectors {|χvα
(R)〉}vα=1,Nα

form an orthonormal vibra-
tional basis with dimension Nα corresponding to the electronic
surface α. The vibrational wave packet corresponding to
the electronic potential α can be developed in this basis
as |ψα(R,t)〉 = ∑Nα

vα=1 cvα
(t)|χvα

(R)〉, with the complex co-
efficients cvα

(t) providing the probabilities |cvα
(t)|2 for the

population of the vibrational states |χvα
(R)〉.

Let us note that the product vectors |α〉|χvα
(R)〉 are

eigenvectors of Ĥmol:

[Ĥel + T̂R]|α〉|χvα
(R)〉 = Evα

|α〉|χvα
(R)〉. (6)

The product basis {|α〉|χvα
(R)〉} constitutes an orthonormal

basis set in Hel

⊗
Hvib, and we shall refer to it as the

vibronic basis. We recall that {|α〉} constitutes a basis set
for Hel , but {|χvα

(R)〉} is not a basis set for Hvib, because
vibrational functions corresponding to different electronic
states are generally not orthogonal.

A. Von Neumann and linear entropies of entanglement
(2 × Nv system)

We begin by discussing electronic-vibrational entangle-
ment in the case of a bipartite Hilbert space H = Hel

⊗
Hvib

with dimension 2 × Nv . Denoting by |g〉,|e〉 the two populated
electronic states, the bipartite pure entangled state (2) is

|�el,vib(t)〉 = |g〉
⊗

|ψg(R,t)〉 + |e〉
⊗

|ψe(R,t)〉.
(7)

In a previous work [19] we have analyzed the entanglement
between electronic and vibrational degrees of freedom in the
bipartite pure state (7) using two measures of entanglement:
the von Neumann entropy and the linear entropy of the reduced
density operator ρ̂el = Trvib(ρ̂el,vib).

We have shown that for the state (7) the von Neumann
entropy of entanglement has a simple expression related
to the populations of the two electronic states Pg(t) =
〈ψg(R,t)|ψg(R,t)〉, Pe(t) = 〈ψe(R,t)|ψe(R,t)〉 [19]:

SvN [ρ̂el(t)] = −Pg(t) log2 Pg(t) − Pe(t) log2 Pe(t). (8)

We have also derived the expression for the linear entropy of
entanglement, which is related to the purity of the reduced
density operator of one of the two subsystems (we have
considered ρ̂el):

L(t) = 1 − Tr
[
ρ̂2

el(t)
]
. (9)

With the normalization condition Pg(t) + Pe(t) = 1, the fol-
lowing expressions can be written for the purity and the linear
entropy [19]:

Tr
[
ρ̂2

el(t)
] = P 2

g (t) + P 2
e (t) + 2|〈ψg(R,t)|ψe(R,t)〉|2,

(10)

L(t) = 2Pg(t)Pe(t) − 2|〈ψg(R,t)|ψe(R,t)〉|2. (11)
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In Eq. (11), L(t) is bounded by 0 � L(t) � 1
2 . Obvi-

ously, if only one of the electronic states is populated,
SvN [ρ̂el(t)] = 0 and L(t) = 0, and the pure bipartite state is
nonentangled.

Let us remark that, in contrast to the von Neumann entropy
expressed by Eq. (8), the linear entropy of entanglement
[Eq. (11)] depends not only on the populations of the electronic
states, but also on the overlap integral 〈ψg(R,t)|ψe(R,t)〉 of
the vibrational wave packets belonging to the two electronic
surfaces. In a molecule this overlap integral is always time
evolving due to the vibrational motion. Therefore, a remark-
able difference between these two measures of the molecular
entanglement is revealed by their temporal behaviours in the
case of an isolated molecule. For an isolated molecule, the time
evolution is generated by the molecular Hamiltonian Ĥmol,
which (without introducing supplementary nonadiabatic radial
couplings between the electronic states) preserves constant
population in each electronic channel. Consequently, the von
Neumann entropy of entanglement will remain constant, but
the linear entropy will show an entanglement dynamics due to
the vibrational motion in each electronic potential. This entan-
glement dynamics illustrates the fact that, in a molecule with at
least two electronic states populated (i.e., entanglement), the
electronic and nuclear degrees of freedom are not isolated
one from each other, and the evolution directed by Ĥmol

1

constitutes interaction between these two degrees of freedom,
i.e., a nonlocal operation leading to entanglement dynamics.
Such a temporal evolution of entanglement, due entirely to the
vibrational motion, without exchange of population between
the electronic channels, is seen by the linear entropy, but it is
not seized by the von Neumann entropy of entanglement.

The difference shown here between these two entanglement
measures could be considered as an example supporting the
view that “different entanglement measures quantify different
types of resources” [5]. Nevertheless, in this specific case of
molecular entanglement, the linear entropy of entanglement
appears as a more complex informational quantity than the
von Neumann entropy. In this context it is interesting to recall
the discussion about the conceptual inadequacy of the von
Neumann entropy in defining the information content of a
quantum system, accompanied by proposals for a new measure
of the information content carried by the system, which has
proven to be essentially the linear entropy [23–25].

B. Linear entropy of entanglement and vibronic
coherences (Nel × Nv system)

For more than two electronic states, it is an intricate work
to deduce the von Neumann entropy of the reduced density
matrix ρ̂el(t), but we can write the expression for the linear
entropy of entanglement. For Nel populated electronic states
of the molecule, assuming a pure entangled state described by
Eq. (2) in the bipartite Hilbert space of dimension Nel × Nv ,

1Implying vibrational motions of the nuclear wave packets in the
electronic states.

the density operator (1) can be written as

ρ̂el,vib(t) =
Nel∑
α,β

|α〉〈β|
⊗

|�α(t)〉〈�β(t)|, (12)

and the reduced electronic density operator ρ̂el =
Trvib(ρ̂el,vib) = ∑Nv

j=1〈j |ρ̂el,vib|j 〉 (with {|j 〉}j=1,Nv
a com-

plete orthonormal basis of Hvib) becomes

ρ̂el(t) =
Nel∑
α,β

|α〉〈β|〈�β (R,t)|�α(R,t)〉. (13)

Therefore, one obtains for the purity of the reduced electronic
density

Trel
[
ρ̂2

el(t)
] =

Nel∑
α,β

|〈ψ
α
(R,t)|ψ

β
(R,t)〉|2. (14)

Taking into account the normalization condition
∑Nel

α=1 P
α
(t) =

1 for the total population, with P
α
(t) = 〈ψα(R,t)|ψα(R,t)〉, the

linear entropy L(t) = 1 − Trel[ρ̂2
el(t)] can be written as

L(t) = 2
Nel∑

α,β,α �=β

[P
α
(t)P

β
(t) − |〈ψα(R,t)|ψβ(R,t)〉|2].

(15)

The linear entropy defined by Eq. (15) is bounded by 0 �
L(t) � 1 − 1

Nel
, which shows the increasing of L(t) maximum

by increasing the number of populated electronic states Nel .
The linear entropy (15) is related to the vibronic coherences

of the molecular system. The connection appears through the
matrix elements of the density operator ρ̂el,vib(t) in the vibronic
basis {|α〉|χvα

(R)〉}, constituted by the eigenvectors of Ĥmol =
Ĥel + T̂R .

The entangled state (2) can be written as

|�el,vib(t)〉 =
Nel∑
α=1

|α〉
⊗ Nα∑

vα=1

cvα
(t)|χvα

(R)〉, (16)

where each nuclear wave packet |ψα(R,t)〉 was developed
in the corresponding vibrational basis {|χvα

(R)〉}vα=1,Nα
. The

dimension of the vibrational Hilbert space Hvib is Nv =∑Nel

α=1 Nα . The complex coefficients cvα
(t) give the population

probabilities |cvα
(t)|2 for the vibrational levels {vα}, and the

population of an electronic state α is Pα = ∑Nα

vα=1 |cvα
(t)|2.

The populations and coherences [26] of the molecular
system are obtained as matrix elements of the density operator
ρ̂el,vib(t):

ραvα,βvβ
(t) = 〈α|〈χvα

|ρ̂el,vib(t)|χvβ
〉|β〉 = cvα

(t)c∗
vβ

(t).

(17)

The diagonal matrix elements ραvα,αvα
(t) = |cvα

(t)|2 are the
vibrational populations, and the off-diagonal matrix ele-
ments (17) give the vibronic coherences (for α �= β), as well
as the vibrational coherences ραvα,αv′

α
(t) = cvα

(t)c∗
v′

α
(t).

Using Eq. (16) to rewrite Eq. (15), it appears that, besides
the electronic populations P

α
(t), the linear entropy contains

explicitly the vibronic coherences ρβvβ,αvα
(t) = c∗

vα
(t)cvβ

(t)
modulated by the overlap integral 〈χvα

(R)|χvβ
(R)〉 of the
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vibrational wave functions:

L(t) = 2
Nel∑

α,β,α �=β

⎡
⎣P

α
(t)P

β
(t)

−
∣∣∣∣∣∣

Nα∑
vα=1

Nβ∑
vβ=1

c∗
vα

(t)cvβ
(t)〈χvα

(R)|χvβ
(R)〉

∣∣∣∣∣∣
2
⎤
⎥⎦. (18)

Linear entropy dependence on the vibronic coherences is a
key property, which connects this entanglement measure with
coherence quantifiers in a molecule, as we will show in the
next sections. It is also due to this property that vibrational
motion in at least two electronic states is seized as giving a
dynamics of entanglement between electronic and vibrational
degrees of freedom.

C. Linear entropy dynamics due to vibrational motions
in the electronic potentials: Entanglement oscillations

in an isolated molecule

In Sec. II A we have shown that, in contrast to the
von Neumann entropy of entanglement, the linear entropy
understands the vibrational motion in the electronic potentials
as entanglement dynamics. Section II B has developed further
this observation, showing that linear entropy keeps the infor-
mation carried by the vibronic coherences of the molecular
system. This section will specify the characteristic times of
entanglement dynamics due to vibrational motion.

In a previous work [19] we have analyzed the electronic-
vibrational entanglement dynamics produced by laser pulses
coupling electronic states, focusing on the dynamics during
pulses. Here we will closely look at entanglement dynamics
after a laser pulse (or a pulse sequence) populates several
electronic states. The time evolution after pulses is determined
by the molecular Hamiltonian Hmol, and in the absence of other
nonadiabatic radial couplings, which could transfer population
between the electronic channels, the electronic populations
will remain constant. In this case, as it is shown in Sec. II A, the
von Neumann entropy of entanglement remains constant too,
but the linear entropy shows an entanglement dynamics due to
the dependence on the vibronic coherences among electronic
channels. This entanglement dynamics entirely due to the
vibrational motion in the electronic channels of an isolated
molecule will be analyzed in this section. Numerical examples
will be shown in the last section of this paper.

Let us consider an isolated molecule with at least two
populated electronic states, whose time evolution generated by
Ĥmol leaves these electronic populations constant in time. The
linear entropy of entanglement is expressed by Eq. (15), and we
look at its time evolution due to vibrational motion. We begin
by noting the two extreme cases of zero and maximal overlap
between vibrational wave packets. (i) For nonoverlapping
vibrational wave packets, 〈ψα(R,t)|ψβ(R,t)〉 = 0, L(t) will
remain constant in time if the electronic populations are
constant. (ii) In principle a separability could appear even
if several electronic surfaces are populated, if the vibrational
wave packets corresponding to different electronic surfaces
are very similar both in R and in t . We can see that if
|ψα(R,t)〉 ≈ |ψβ(R,t)〉, L(t) → 0, and the entanglement is

absent. Obviously this is a very particular case, which would
be possible in a special configuration of electronic potentials
with similar shapes.

Returning to the general case, let us see the characteristic
times appearing in L(t) evolution due to vibrational motion.
Taking into account that the electronic channels α are
not coupled, the time evolution of each vibrational wave
packet |ψα(R,t)〉 = ∑Nα

vα=1 cvα
(t)|χvα

(R)〉 in the electronic
potential Vα(R) is directed by the Schrödinger equation
[T̂R + Vα(R)]|ψα(R,t)〉 = i�∂/∂t |ψα(R,t)〉. The probability
amplitudes cvα

(t) have the simple form:

cvα
(t) = cvα

(ti)e
− i

�
Evα (t−ti ), (19)

where ti is a time moment after which the electronic channels
can be considered uncoupled, and Evα

is the vibrational
energy corresponding to the vibrational function |χvα

(R)〉 [see
Eq. (5)].

We shall take the example of two electronic channels, for
which the linear entropy is given by Eq. (11). If the populations
Pg,Pe rest constant in time for t � ti , with Pg = Pg(ti) and
Pe = Pe(ti), the time evolution of the linear entropy in Eq. (11)
is given by the term

|〈ψg(R,t)|ψe(R,t)〉|2

=
Ng∑

vg=1

Ng∑
v′

g=1

Ne∑
ve=1

Ne∑
v′

e=1

c∗
vg

(ti)cve
(ti)cv′

g
(ti)c

∗
v′

e
(ti)

×〈χvg
(R)|χve

(R)〉〈χv′
e
(R)|χv′

g
(R)〉

× e
i
�

[(Evg −Ev′
g

)−(Eve −Ev′
e
)](t−ti ). (20)

Therefore, the time evolution of L(t) will show oscillations
with the characteristic times:

Tosc = 2π�

�Evgv′
gvev′

e

, (21)

with �Evgv′
gvev′

e
= |(Evg

− Ev′
g
) − (Eve

− Ev′
e
)|. Depending

on the vibrational levels populated in each electronic surface,
the oscillation periods contributing in the time evolution are
determined by energy intervals varying from �Evgv′

gvev′
e
=

||Evg
− Ev′

g
| − |Eve

− Ev′
e
|| to �Evgv′

gvev′
e
= |Evg

− Ev′
g
| +

|Eve
− Ev′

e
|. On the other hand, the oscillations will have

amplitudes depending on the populations of the vibrational
levels [through the coefficients cv(ti)] and on the vibrational
overlaps.

Let us specify two particular simple cases:
(i) In a 2 × 2 system, with one vibrational level in each

electronic state, the linear entropy does not vary in time:
Lvgve

(t) = 2|cvg
(t)|2|cve

(t)|2(1 − |〈χvg
|χve

〉|2).
(ii) In a 2 × 3 system, supposing one level vg populated in

the electronic state g, and two levels ve,v
′
e in the electronic state

e, L(t) will show oscillations given by cos[(Eve
− Ev′

e
)(t −

ti)/�], with a characteristic time Tosc = 2π�/|Eve
− Ev′

e
|. If

ve,v
′
e are neighboring levels, this time is the vibrational period

of ve, Tosc = Tvib(ve).
An interesting question is how large the time variations

of the linear entropy can be, during the time evolution
under Hmol. Obviously the dynamics of the electronic-nuclear
entanglement depends on the electronic potentials of the
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molecule and on the specific quantum preparations. Therefore,
for a particular molecule, the entanglement dynamics can be di-
rected by laser pulses able to excite vibrational superpositions
in several electronic states, creating a molecule with multiple
vibrations. In Sec. V we will expose examples showing the
control of entanglement dynamics in a molecule with laser
pulses coupling electronic states.

III. QUANTUM COHERENCE IN THE PURE
ENTANGLED STATE ρ̂el,vi b(t)

The entangled state |�el,vib(t)〉 [Eq. (2)] may be regarded as
a superposition of eigenstates of Ĥmol, and therefore can also
be characterized as a coherent state. The concept of state coher-
ence [12] refers to a superposition of eigenstates of an operator
and implies a basis-dependent coherence definition [12,26].
In the present case, one may speak of coherence relative to
the vibronic basis, but also of coherence relative to a local
vibrational basis (related to a specific electronic state). If only
one electronic state is populated, |�el,vib(t)〉 being constituted
by a superposition of vibrational states of this electronic state,
obviously ρ̂el,vib(t) is not anymore an entangled state, but it
may still be a coherent state, due to the presence of vibrational
coherences.

We will explore the connections between entanglement and
coherence in the state |�el,vib(t)〉, showing that linear entropy
of entanglement is connected to measures of coherence in the
molecular system.

A. Coherence in the framework of resource theories

A variety of measures are used to characterize coherence,
generally being functions of the density matrix’s off-diagonal
elements in a reference basis. Recently, Baumgratz et al. [2]
proposed to use the framework of resource theories [4,6]
for the quantification of coherence in information theoretic
terms, following the approach previously established for
entanglement. In the resource approach, the quantification of
coherence begins with the characterization of the incoherent
states (having a basis-dependent definition: a state is inco-
herent in a particular basis if its density matrix is diagonal
in this basis) and of the corresponding class of incoherent
operations (free operations that do not create coherence from
an incoherent state) [2]. A set of conditions a proper measure
of coherence should satisfy is proposed, in analogy with
well-known requirements from entanglement theory, such
as the basic conditions of monotonicity under incoherent
operations and of the coherence quantifier becoming zero for
all incoherent states. Several coherence quantifiers satisfying
these conditions are discussed in Ref. [2], such as the l1 norm,
the relative entropy of coherence, and coherence quantifiers
based on distance measures.

We will make two observations in order to connect the case
treated here to the coherence approach formulated in Ref. [2],
based on the identification of incoherent states and incoherent
operations.

(i) The pure entangled state ρ̂el,vib(t) is a bipartite coherent
state in the vibronic basis. A question of interest is the
following: Is it possible to found a basis in which this
density matrix would become diagonal, defining an incoherent

state in that basis? The answer is no, there is no basis
in the bipartite Hilbert space in which the entangled state
ρ̂el,vib(t) would become incoherent. It can be shown that this
requirement would imply identical vibrational wave packets
(up to a constant complex factor) in all electronic states, which
supposes a factorization dissolving the entanglement. On the
other hand, it can be shown that bipartite incoherent states are
always separable [3], while ρ̂el,vib(t) is an entangled state.

(ii) Temporal evolution generated by Ĥmol constitutes an
incoherent operation. In Ref. [3] it is shown that entangle-
ment can be generated from coherent states via incoher-
ent operations, which introduces an interrogation about the
maximization of the output entanglement. For an isolated
molecule, it is Ĥmol that generates the evolution of the coherent
entangled state ρ̂el,vib(t) [Eq. (27)]. We have already shown
that temporal evolution under Ĥmol creates an entanglement
dynamics, and consequently a maximization or a minimization
of entanglement. In the last section we will show specific
examples of temporal evolution in a molecule illustrating
significant linear entropy variations during time evolution.

Unlike entanglement, coherence is basis dependent [3].
Here we shall refer to two reference bases for molecular
coherence. We shall discuss coherence of the bipartite state
ρ̂el,vib(t) relative to the vibronic basis {|α〉|χvα

(R)〉}, and
coherence of the electronic state ρ̂el(t) taking the basis {|α〉}
of the electronic adiabatic states as reference basis.

We begin by using the l1 norm, defined as [2]

Cl1 (ρ̂) =
∑

i,j,i �=j

|ρij | (22)

as a coherence quantifier. For simplicity, we consider the 2 ×
Nv case, the two electronic states being |g〉,|e〉. Cl1 (ρ̂el,vib) is
a measure for the coherence of the pure state ρ̂el,vib(t) in the
vibronic basis, and for the 2 × Nv case is

Cl1 (ρ̂el,vib) = 2

⎧⎨
⎩

Ng∑
vg=1

Ne∑
ve=1

|cvg
(t)c∗

ve
(t)|

+
Ng∑

vg,v′
g,vg �=v′

g

|cvg
(t)c∗

v′
g
(t)|

+
Ne∑

ve,v′
e,ve �=v′

e

|cve
(t)c∗

v′
e
(t)|

⎫⎬
⎭. (23)

The first term is a measure of the vibronic coherence, the others
being quantifiers of vibrational coherence in each electronic
state. As a measure of coherence in the global pure entangled
state, Cl1 (ρ̂el,vib) remains constant in time for an isolated
molecule.

Let us also consider the coherence of the reduced electronic
state ρ̂el(t) in the electronic adiabatic basis {|g〉,|e〉}, measured
by Cl1 (ρ̂el). Taking into account the definition (22) and
Eq. (13), we find

Cl1 (ρ̂el) = 2|〈ψg(R,t)|ψe(R,t)〉|, (24)

and then the following relation to the linear entropy of
entanglement:

L(t) = 2Pg(t)Pe(t) − 1
2 [Cl1 (ρ̂el)]

2. (25)
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Equation (25) constitutes a first relation established here
between a measure of entanglement in the bipartite molec-
ular system and a measure of coherence for the electronic
subsystem. The measure Cl1 (ρ̂el) of the electronic coherence
varies in time for an isolated molecule in the bipartite pure
state ρ̂el,vib(t), being a sensor of quantum correlations in
this entangled state. The temporal variation of L(t) due to
vibrational motions reflects the time variation of coherence
of the reduced electronic state ρ̂el(t). When the overlap
|〈ψg(R,t)|ψe(R,t)〉| is large, Cl1 (ρ̂el) is large, and L(t)
diminishes. Intuitively, a large overlap indicates the same
spatial localization of the vibrational wave packets, favoring
the separability between electronic and vibrational degrees of
freedom, and consequently diminishing the entanglement.

B. Quantum coherence, quantum uncertainty in energy,
and the velocity of ρ̂el,vi b(t) evolution

Quantum coherence has been shown to be closely related
to quantum uncertainty in a measurement [15,18]. For the
system treated in this paper, the connection between quantum
coherence and quantum uncertainty could be formulated in
the following manner: ρ̂el,vib(t) shows coherence in Ĥmol basis
because ρ̂el,vib(t) does not commute with Ĥmol,2 and therefore
a quantum measurement of the observable Ĥmol in the state
ρ̂el,vib(t) is characterized by a quantum uncertainty due to
quantum coherence. Indeed, the commutator

[Ĥmol,ρ̂el,vib(t)]

=
∑
α,β

∑
vα,vβ

cvα
(t)c∗

vβ
(t)(Evα

− Evβ
)|α〉〈β||χvα

〉〈χvβ
|

(26)

is nonzero due to nonzero coherences of ρ̂el,vib(t), and it
determines the time evolution of the density operator if Ĥmol

is the Hamiltonian generating the evolution of the system:

i�
dρ̂el,vib(t)

dt
= [Ĥmol,ρ̂el,vib(t)]. (27)

For the pure state |�el,vib(t)〉, the energy uncertainty
on an outcome associated with a measurement of Ĥmol

is exclusively due to the quantum coherence [15], being
measured by the energy variance V(Ĥmol,|�el,vib(t)〉) [i.e., the
mean-square deviation from the average value, (�Ĥmol)2 =
〈Ĥ 2

mol〉 − 〈Ĥmol〉2]:

(�Ĥmol)
2 = V[Ĥmol,|�el,vib(t)〉]

= 1

2

∑
α,β

∑
vα,vβ

(Evβ
− Evα

)2|cvα
(t)|2|cvβ

(t)|2 (28)

Anandan and Aharonov [21] have given a geometric meaning
to the uncertainty in energy for a quantum system, connecting
the energy uncertainty to the distance along the evolution of
the system in the projective Hilbert space. For a pure state, the
uncertainty in energy gives the squared velocity of the state

2Being neither an eigenstate of Ĥmol, nor a mixture of eigenstates
of Ĥmol, but a superposition of eigenstates of Ĥmol.

evolution [21,27]. Here the equation illustrating this idea is

Trel,vib

[
dρ̂el,vib(t)

dt

dρ̂el,vib(t)

dt

]
= 2

�2
(�Ĥmol)

2. (29)

Equation (29) recovers a relation for the pure states evolution
appearing in Ref. [27], being connected to a time-energy
uncertainty relation deduced in quantum state estimation
theory.

IV. WIGNER-YANASE SKEW INFORMATION AS A
MEASURE OF QUANTUM COHERENCE AND

UNCERTAINTY IN ENERGY MEASUREMENT:
CONNECTION WITH LINEAR ENTROPY

OF ENTANGLEMENT

In Ref. [15], Girolami proposed a quantum coherence mea-
sure based on the Wigner-Yanase skew information, satisfying
the criteria enounced in Ref. [2] which treats coherence in
the framework of the quantum information theory. Central to
this approach is the observation that quantum uncertainty in
measuring an observable K in a state ρ is due to coherence
shown by ρ in K eigenbasis.

The skew information was introduced by Wigner and
Yanase as a measure for the information content of a quantum
state ρ not commuting with (skew to) an observable K [20]:

IS(ρ,K) = − 1
2 Tr[

√
ρ,K]2. (30)

Wigner and Yanase have shown that IS satisfies the re-
quirements of an information measure [20], relevant to the
measurement of observables which do not commute with
a conserved additive quantity K . The skew information is
positive and vanishes only if the state ρ and observable K

commute. IS(ρ,K) is always smaller than the variance of K ,
IS(ρ,K) � V(ρ,K), and equals the variance for a pure state
ρ = |ψ〉〈ψ | = √

ρ.
The skew information is a well-known information-

theoretic quantity, associated with the quantum Fisher in-
formation [28,29], quantum correlations [18,30,31], and un-
certainty relations [25,28,32,33]. We refer to Ref. [31] for
several related interpretations of IS . The skew information
[Eq. (30)] depends on both the state ρ and the observable K ,
being a measure of the quantum uncertainty of K in the state
ρ [18,25,32,33], and a measure of the K coherence of the state
ρ [15].

Here we employ the skew information as a measure of
quantum coherence and quantum uncertainty in the pure
entangled state ρ̂el,vib(t) and in the reduced electronic state
ρ̂el , taking as observables the Hamiltonians Ĥmol or Ĥel .
Considering coherence in the case of the bipartite entangled
state ρ̂el,vib(t), as well as for the reduced electronic state ρ̂el ,
we will provide links between entanglement and coherence
measures.

We calculate the skew information in the bipartite state
ρ̂el,vib(t) for the observables Ĥmol and Ĥel

⊗
Îv , as well as the

skew information in the reduced electronic state ρ̂el for the
electronic Hamiltonian Ĥel .

Equation (30) is usually rewritten as [20]

IS(ρ,H ) = Tr(ρ,H 2) − Tr(
√

ρH
√

ρH ), (31)
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where we have considered as observable a Hamiltonian H . In
an orthonormal basis {|un〉} of H (with eigenvalues En and
eigenvectors |un〉, H |un〉 = En|un〉), Eq. (31) becomes [29]:

IS(ρ,H ) = 1

2

∑
m,n

(Em − En)2|〈um|√ρ|un〉|2. (32)

Equation (32) will be used to obtain skew information relative
to the molecular system. For the pure bipartite state ρ̂el,vib(t),
using the vibronic basis of Ĥmol [Eq. (6)], one obtains

IS[ρ̂el,vib(t),Ĥmol] = V[Ĥmol,|�el,vib(t)〉]

= 1

2

∑
α,β

∑
vα,vβ

(Evβ
− Evα

)2|cvα
(t)||cvβ

(t)|.

(33)

Equations (33) and (28) express the same result, taking
into account that for a pure state ρ = √

ρ. IS[ρ̂el,vib(t),Ĥmol]
represents a measure of the coherence of ρ̂el,vib(t) relative to
the vibronic basis of Ĥmol, and a measure of the quantum
uncertainty on a measurement pertaining to Ĥmol in the state
ρ̂el,vib(t). We recall also the original meaning of IS [20] as
information content of ρ̂el,vib(t) on the values of observables
not commuting with Ĥmol.

We will show that the linear entropy of entanglement
[Eqs. (11) and (15)] is related to the skew information for the
observable Ĥel , in the quantum states ρ̂el and ρ̂el,vib. For this
end, we compute IS(ρ̂el,Ĥel) and IS(ρ̂el,vib,Ĥel

⊗
Îv). Both

are connected to the measurement of the local observable Ĥel

in the correlated quantum systems (el
⊗

vib). We shall treat
separately the 2 × Nv and Nel × Nv cases.

A. Wigner-Yanase skew information for the electronic
Hamiltonian Ĥel , in the quantum states ρ̂el and ρ̂el,vi b

(2 × Nv case)

1. IS(ρ̂el,Ĥel )

The skew information

IS(ρ̂el,Ĥel) = − 1
2 Trel[

√
ρ̂el ,Ĥel]

2 (34)

for the local state ρ̂el with respect to the local observable
Ĥel has several related interpretations: as a measure of the
noncommutativity between ρ̂el and Ĥel ; as information content
of ρ̂el with respect to Ĥel , and with respect to observables not
commuting with Ĥel ; as a measure of quantum uncertainty on
Ĥel in the state ρ̂el ; and as a measure of the Ĥel coherence in the
state ρ̂el . Moreover, IS(ρ̂el,Ĥel) is a quantity with information
content on a local observable (Ĥel) of a quantum subsystem
(ρ̂el), and therefore it will also keep the trace of quantum
correlations in the bipartite system ρ̂el,vib.

We have employed Eq. (32) to obtain IS(ρ̂el,Ĥel), taking
into account that the electronic states {|g〉,|e〉} form an
orthonormal basis for Ĥel , with eigenvalues Vg(R), Ve(R) (the
adiabatic electronic potentials):

Ĥel|g〉 = Vg(R)|g〉, Ĥel|e〉 = Ve(R)|e〉. (35)

The matrix of the reduced electronic density ρ̂el =
Trvib[ρ̂el,vib] = ∑Nv

j=1〈j |ρ̂el,vib|j 〉(with {|j 〉}j=1,Nv
a complete

orthonormal basis of Hvib) in the electronic basis {|g〉,|e〉} is

(ρ̂el){g,e} =
(

Pg 〈ψe|ψg〉
〈ψg|ψe〉 Pe

)
. (36)

Let us observe that in the {|g〉,|e〉} basis the commutator
between ρ̂el and Ĥel is

([ρ̂el,Ĥel]){g,e}

=
(

0 (Ve − Vg)〈ψe|ψg〉
(Vg − Ve)〈ψg|ψe〉 0

)
, (37)

and, with Eq. (32), the skew information IS(ρ̂el,Ĥel) in this
basis becomes

IS(ρ̂el,Ĥel) = [Vg(R) − Ve(R)]2|〈ψg(R,t)|ψe(R,t)〉|.
(38)

Equation (38) shows that IS(ρ̂el,Ĥel) has a time evolution
directed by the vibronic coherences [see Eq. (20)], and it has
the following relation to the l1 norm measure of coherence
Cl1 [ρ̂el(t)] from Eq. (24):

IS(ρ̂el,Ĥel) = 1
2 [Vg(R) − Ve(R)]2Cl1 [ρ̂el(t)]. (39)

IS(ρ̂el,Ĥel) depends on the internuclear distance R and the
time t . It indicates how the uncertainty related to a mea-
surement of the electronic energy in the electronic subsystem
depends on the difference between the electronic potentials
at particular R and on the overlap between vibrational wave
packets at the specific time t . IS(ρ̂el,Ĥel) may be considered as
a quantifier of quantum uncertainty on Ĥel in the state ρ̂el(t),
due to vibronic coherence.

2. IS(ρ̂el,vi b,Ĥel
⊗

Îv)

The skew information IS(ρ̂el,vib,Ĥel

⊗
Îv) (with Îv the

identity operator in the vibrational Hilbert space Hvib) re-
flects the concept of local quantum uncertainty introduced
in Ref. [18], being associated to the measurement of local
observables in correlated quantum systems.3

Taking {|g〉,|e〉} as the electronic basis for Ĥel , with
eigenvalues Vg(R), Ve(R), the matrix of the density operator
ρ̂el,vib in this basis is

(ρ̂el,vib){g,e} =
(|ψg〉〈ψg| |ψg〉〈ψe|

|ψe〉〈ψg| |ψe〉〈ψe|
)

, (40)

and the commutator between ρ̂el,vib and Ĥel

⊗
Îv is given by

([ρ̂el,vib,Ĥel

⊗
Îv]){g,e}

=
(

0 (Ve − Vg)|ψg〉〈ψe|
(Vg − Ve)|ψe〉〈ψg| 0

)
. (41)

3Ref. [18] shows that the “local quantum uncertainty” is a measure
of bipartite quantum correlations and it is an entanglement monotone
for a pure bipartite state ρ̂.
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The skew information can be expressed as

IS(ρ̂el,vib,Ĥel

⊗
Îv)

= −1

2
Trel,vib[

√
ρ̂el,vib,Ĥel

⊗
Îv]2

=
Nv∑
j=1

〈j |1

2

∑
m,n

(Em − En)2|〈um|√ρ̂el,vib|un〉|2|j 〉,

(42)

where {|j 〉}j=1,Nv
is a complete orthonormal basis in Hvib,

and {|un〉} an orthonormal basis of Ĥel (with eigenvalues En,
Ĥel|un〉 = En|un〉). Therefore, we obtain

IS(ρ̂el,vib,Ĥel

⊗
Îv) = [Vg(R) − Ve(R)]2

√
Pg(t)Pe(t). (43)

The skew information (43) is a measure of quantum uncertainty
on a measurement of the local observable Ĥel (electronic
energy) in the bipartite state ρ̂el,vib(t). As ρ̂el,vib(t) is the state of
a bipartite entangled system, and Ĥel

⊗
Îv a local observable,

IS(ρ̂el,vib,Ĥel

⊗
Îv) may be considered as a witness of the

bipartite quantum correlations.

3. Connection with L(t)

Now we can see that the linear entropy of entanglement
L(t) given by Eq. (11) has an interesting connection with the
two types of skew information corresponding to the electronic
Hamiltonian:

IS
2(ρ̂el,vib,Ĥel

⊗
Îv) − IS

2(ρ̂el,Ĥel)

= 1
2 [Vg(R) − Ve(R)]4L(t). (44)

The relation (44) can be seen as expressing the quantum
correlations in the bipartite system ρ̂el,vib(t) from the perspec-
tive of the local observable Ĥel (see also Ref. [31]).

B. Wigner-Yanase skew information for the electronic
Hamiltonian Ĥel in the Nel × Nv case

We shall now deduce the skew information IS(ρ̂el,Ĥel) and
IS(ρ̂el,vib,Ĥel

⊗
Îv) for the general case of Nel populated

electronic states, for which the density operators ρ̂el,vib(t)
and ρ̂el(t) are expressed in Eqs. (12) and (13). The skew
information can be obtained in the adiabatic basis {|α〉}
of the electronic Hamiltonian Hel , having the adiabatic
potential-energy surfaces V

α
(R) as eigenvalues [Eq. (3)]. In

the electronic basis {|α〉}j=1,Nel
the density operators have the

matrix elements

〈α|ρ̂el,vib|β〉 = |ψ
α
〉〈ψ

β
|, (45)

〈α|ρ̂el|β〉 = 〈ψ
β
|ψ

α
〉. (46)

Using Eqs. (32) and (42) we obtain

IS(ρ̂el,vib,Ĥel

⊗
Îv)

=
Nel∑

α,β,α �=β

[Vα(R) − Vβ(R)]2
√

Pα(t)Pβ(t), (47)

IS(ρ̂el,Ĥel)

=
Nel∑

α,β,α �=β

[Vα(R) − Vβ(R)]2|〈ψα(R,t)|ψβ(R,t)〉|. (48)

Therefore, it appears that for more than two electronic states,
the quantum correlations become more intricate, and the
relation between the skew information and the linear entropy
of entanglement is not as simple as in Eq. (44). We observe
that the difference IS(ρ̂el,vib,Ĥel

⊗
Îv) − IS(ρ̂el,Ĥel) is a sum

containing correlations terms of the type [
√

Pα(t)Pβ(t) −
|〈ψα(R,t)|ψβ(R,t)〉|] as significant quantities, whereas the
linear entropy L(t) expressed in Eq. (15) is a sum containing
terms [P

α
(t)P

β
(t) − |〈ψα(R,t)|ψβ(R,t)〉|2].

Let us also observe that the coherence measures Cl1 (ρ̂el)
and IS(ρ̂el,Ĥel), pertaining to the reduced electronic system,
contain the quantities |〈ψα(R,t)|ψβ(R,t)〉| related to the
vibronic coherences, as we have shown in Sec. II B. Therefore,
like the linear entropy of entanglement L(t), these coherence
measures reflect the bipartite correlations and are varying in
time due to the vibrational motion.

V. ENTANGLEMENT OSCILLATIONS IN A MOLECULE
WITH SEVERAL POPULATED ELECTRONIC STATES

The aim of this section is to show examples of electronic-
nuclear entanglement dynamics in a molecule, after the action
of laser pulses, which populate several electronic states.
We have shown that linear entropy of entanglement has a
time evolution due to the vibronic coherences arisen in the
molecular system, being connected to coherence measures
analyzed in the previous section. We will give examples of
entanglement and coherence dynamics, in a molecule with two
or three electronic states populated by chirped laser pulses. The
purpose is double: on the one hand, to show the entanglement
oscillations due to vibrational motions in realistic electronic
potentials of a molecule, and to have an insight about the
amplitude of L(t) variations over time; on the other hand,
to show the control of the entanglement dynamics by using
chirped laser pulses, whose parameters can be chosen to excite
various superpositions of vibrational states in each electronic
potential. Specific quantum preparations according to the
shapes of the electronic curves lead to various possibilities
of entanglement control in a given molecule.

We will take as examples transitions implying the electronic
states a3�+

u (6s,6s), 1g(6s,6p3/2), and 0−
g (6s,6p3/2) of the

Cs2 molecule. Section V A contains a paradigmatic example
of two electronic states coupled by a chirped laser pulse,
which transfers population from the ground electronic state
to several vibrational levels of the excited state. We will show
that, depending on the quantum preparation, the entanglement
dynamics is significantly different. Sec. V B shows an example
in which three electronic states are populated by a sequence of
two chirped laser pulses. The vibrational wave packets excited
in each electronic potential are much more complex, having
various localizations and intricate vibrational motions.
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FIG. 1. (Color online) a3�+
u (6s,6s) and 1g(6s,6p3/2) electronic

potentials of Cs2, coupled by a chirped laser pulse with central
energy �ωL = 10695 cm−1. The initial state of the process is the
vibrational wave function with vg = 0 of the a3�+

u (6s,6s) electronic
state. The pulse excites several vibrational levels ve in the 1g(6s,6p3/2)
electronic potential. The energy origin is taken to be the dissociation
limit E6s+6s = 0 of the a3�+

u (6s,6s) potential.

A. Controlling the electronic-nuclear entanglement dynamics
in a molecule by populating two electronic states

with a chirped laser pulse

We consider the Cs2 molecule in which the electronic
channels g = a3�+

u (6s,6s) and e = 1g(6s,6p3/2) are coupled
by a chirped laser pulse (Fig. 1), described by the electric
field

E(t) = E0f (t) cos[ωLt + ϕ(t)], (49)

with amplitude E0 and Gaussian temporal envelope f (t). A
chirped pulse [34] is characterized by several parameters
belonging to the spectral and temporal domains, which can
be used to control the system evolution [35–37]. ωL/2π

is the central frequency of the pulse, reached at t = tP ,
and ϕ(t) is a phase, which is a quadratic function of time,
such that the instantaneous frequency ω(t) = ωL + dϕ/dt

varies linearly with the chirp rate χ around the central
frequency ωL/2π : ω(t) = ωL + χ (t − tP ). The Gaussian en-
velope f (t) = √

τL/τC exp{−2 ln 2[(t − tP )/τC]2} is centered
at t = tP , having the temporal width τC . The duration τL is
the temporal width of the transform limited pulse (before
chirping), and characterizes the spectral width of the pulse
in the frequency domain: δω = 4 ln 2/τL. The chirp rate χ4

4Related to the ratio τC/τL � 1 by τC/τL =
√

1 + (χ 2τ 4
C)/(4 ln 2)2.
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FIG. 2. (Color online) Control of the electronic-nuclear entan-
glement dynamics by the sign of the chirp rate χ , for a coupling
WL = 26.34 cm−1 between the electronic states g = a3�+

u and
e = 1g of Cs2 (Fig. 1). (a) Time evolution of the populations Pg(t) and
Pe(t) for positive and negative chirp. The Gaussian pulse envelope
f (t), centered at tP = 15 ps and with temporal width τC = 2.1 ps, is
represented with dashed line. (b) Time evolution of the linear entropy
L(t) for positive and negative chirp. (c) Time evolution of the von
Neumann entropy SvN (t) for positive and negative chirp.

and its sign are essential control parameters. The sign of the
chirp determines the sense of sweeping the difference Vg(R) −
Ve(R) between the electronic potentials, by increasing or
decreasing the instantaneous frequency of the pulse ω(t) (see
Fig. 1), which leads to the excitation of different vibrational
wave packets.

Here we consider a chirped pulse with central energy
�ωL = 10695 cm−1, which couples the electronic potentials
Vg(R) = a3�u and Ve(R) = 1g of Cs2 around the internuclear
distance Rc ≈ 12 a0, transferring population from the ground
state vg = 0 of g = a3�+

u to several low vibrational levels
ve of the excited state e = 1g . The process is represented in
Fig. 1, the electronic curves being those described in Ref. [38].
We suppose a chirped pulse with the envelope f (t) centered
at tP = 15 ps, and temporal width τC = 2.1 ps [represented
in Fig. 2(a)], obtained by chirping a transform limited pulse
with duration τL = 0.3 ps (spectral width δω = 49 cm−1),
using a chirp rate |χ | = 4.35 ps−2. The energy range swept
by the chirped pulse around the central frequency ωL/2π

is 2�|χ |τC [36], with �|χ | = 23.11 cm−1/ps, allowing the
excitation of several vibrational levels in the 1g potential,
where the vibrational level spacing in the excitation range
is about 16 cm−1.

The time-dependent Schrödinger equation describing the
dynamics of the vibrational wave packets ψg,e(R,t) in the
electronic channels coupled by the pulse, written using the ro-
tating wave approximation with the frequency ωL/2π [35,37],
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FIG. 3. (Color online) Time evolution of the vibrational compo-
nents ψg(R,t) (thin line) and ψe(R,t) (thick line) of the pure entangled
state |�el,vib(t)〉, created by a chirped pulse. (a)–(d) (left column) Time
evolution of |ψg(R,t)|, |ψe(R,t)| for positive chirp, χ > 0. (e)–(h)
(right column) Time evolution of |ψg(R,t)|, |ψe(R,t)| for negative
chirp, χ < 0.

is

i�
∂

∂t

(
�e(R,t)
�g(R,t)

)

=
(

T̂ + V ′
e (R) WLf (t)e−iϕ(t)

WLf (t)eiϕ(t) T̂ + V ′
g(R)

)(
�e(R,t)
�g(R,t)

)
. (50)

In Eq. (50), T̂ is the kinetic energy operator, and V ′
e (R) =

Ve(R), V ′
g(R) = Vg(R) + �ωL are the diabatic potentials

dressed with the energy �ωL. WL = E0Dge/2 is the strength
of the laser coupling depending on the laser intensity I

(E0 = √
2I/cε0) and on the transition dipole moment Dge

between the electronic surfaces [39]. Here we just use a
constant strength coupling WL to explore time evolution under
various pulse parameters.

The Schrödinger equation (50) is solved numerically by

propagating in time the initial wave function ( 0
χvg=0(R)

) on a

spatial grid with length LR , χvg=0(R) being the vibrational
eigenstate with vg = 0 in the a3�+

u potential, represented in
Fig. 1 and in Figs. 3(a), 3(e). The time propagation uses the
Chebychev expansion of the evolution operator [40,41] and
the mapped sine grid (MSG) method [36,42] to represent the
radial dependence of the wave packets. The populations in
each electronic state are calculated from the vibrational wave
packets �g,e(R,t) as Pg,e(t) = ∫ LR

0 |�g,e(R′,t)|2dR′, with the
total population normalized at 1 on the spatial grid [Pg(t) +
Pe(t) = 1], and Pg(0) = 1. The von Neumann entropy SvN (t)
and the linear entropy L(t) are calculated using the formulas (8)
and (11).

Figures 2, 3 show results obtained for a positive or a negative
chirp rate χ , for the same coupling WL = 26.34 cm−1. We see
that, by changing the chirp sign, significantly different results
are obtained. The pulse with positive chirp χ > 0 begins exci-
tation from the lowest ve levels in 1g , producing an inversion of
population between the two electronic channels [Fig. 2(a)] and
a small entanglement: the von Neumann entropy after pulse
is SvN (t) = 0.4 [Fig. 2(c)] and the linear entropy oscillates
around 0.1 [Fig. 2(b)]. The time evolution of the wave packets
is shown in Figs. 3(a)–3(d). In the electronic state g = a3�+

u

the fundamental vibrational state vg = 0 (which is the initial
state of the process) is the only one populated. The pulse popu-
lates the vibrational levels with ve = 2,3 in the excited state 1g ,
separated by ≈16 cm−1, which is reflected in the oscillations of
about 2 ps in the linear entropy after pulse [Fig. 2(b)]. Indeed, in
Sec. II C we have shown that this is the characteristic time to be
expected in the linear entropy evolution in a 2 × 3 system (one
level vg populated in g electronic state, and two levels ve,v

′
e in

e electronic state), and it coincides with the vibrational period
Tvib(ve = 3) = 2 ps.

On the contrary, if the chirp is negative, χ < 0, the pulse
begins by exciting higher vibrational levels in 1g , and continues
with lower vibrational levels. A superposition of vibrational
states dominated by ve = 4,5 is excited in 1g , and also a su-
perposition of vibrational levels (mainly vg = 3,4,5) remains
populated in a3�+

u [Figs. 3(e)–3(h)]. This gives a stronger
entanglement: the von Neumann entropy after pulse is close
to 1 [Fig. 2(c)]. After pulse, the linear entropy [Fig. 2(b)] is
a highly oscillating function, whose amplitude varies between
0.33 and 0.5. Since several vibrational states are populated in
each electronic potential, there are several characteristic times
Tosc intertwined in L(t) evolution, according to the analysis
made in Sec. II C.

We shall consider now the formation of an entangled
state |�el,vib(t)〉 using the coupling strength WL as a control
parameter. Figure 4 shows results obtained with a chirped pulse
having the same parameters as before and positive chirp rate
χ = 4.35 ps−2, for the coupling strengths WL = 26.34 cm−1

and WL/2. The case WL with positive chirp was already
analyzed. If the coupling is diminished at WL/2, the pulse
achieves the equalization of electronic populations Pg(t) =
Pe(t) = 1/2 [Fig. 4(a)], creating maximum entanglement
[SvN (t) = 1] at the end. The time evolution of the wave packets
is shown in Fig. 5, illustrating several instants of the vibrational
motion in the excited electronic state. In the electronic state
g = a3�+

u only the fundamental vibrational state vg = 0 is
populated, and the vibrational superposition in the excited state
e = 1g is made mainly by the vibrational levels ve = 3,4. After
pulse, the linear entropy is an oscillating function [Fig. 4(b)]
with the main oscillation period equal to Tvib(ve = 3) = 2 ps.
The long-term evolution (until 1000 ps) shows the large
amplitude of the linear entropy variations: L(t) oscillates
from a maximum of 0.5 to a minimum of 0.15 [Fig. 4(c)].
This large difference between L(t) minima and maxima is
due to the maximization and minimization of the overlap
integral, created by the vibrational motion of the excited wave
packet. Figures 5(d), 5(e) show the vibrational wave packets
at t = 499 ps, when entanglement is maximal [L(t) ≈ 0.5]
and the overlap is minimal, and at t = 579.7 ps, when the

042323-10



MEASURES OF ELECTRONIC-VIBRATIONAL . . . PHYSICAL REVIEW A 92, 042323 (2015)

10 15 20 25
0

0.2
0.4
0.6
0.8

1

P
g(t

),
 P

e(t
),

 S
vN

(t
)

50 100 150 200 250
0

0.2

0.4

L
(t

)

200 400 600 800 1000
t (ps)

0

0.2

0.4

L
(t

)

W
L
/2

W
L

f(t)

P
g
(t)

P
e
(t)

S
vN

(t)

t (ps)

t (ps)

(a)

(b)

(c)

W
L
/2

W
L

W
L

W
L
/2
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entropy L(t) after pulse: (b) until 250 ps; (c) until 1000 ps.

entanglement becomes minimal [L(t) ≈ 0.15] because the
overlap is maximal.
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0−
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successive chirped laser pulses. The first pulse, with central energy
�ωL1 = 11680 cm−1, and tP 1 = 20 ps, transfers population from
a3�+

u to the double well potential 0−
g (6s,6p3/2). The second one,

with �ωL2 = 11513 cm−1 and centered at tP 2 = 60 ps, transfers
population from a3�+

u to 1g(6s,6p3/2). The initial state of the
process is a Gaussian wave packet in the a3�+

u (6s,6s) electronic
state, represented in the figure. After pulses, all three electronic
potentials remain populated. The energy origin is taken to be the
dissociation limit E6s+6s = 0 of the a3�+

u (6s,6s) potential.

B. Entanglement dynamics in a case of three electronic
potentials coupled by two chirped laser pulses

Let us now consider the Cs2 molecule, in which an
entangled state |ψel,vib(t)〉 is created by a sequence of two
chirped laser pulses, which couple consecutively the electronic
state a3�+

u (6s,6s) to 0−
g (6s,6p3/2) and to 1g(6s,6p3/2). The

scheme is shown in Fig. 6. The first pulse couples a3�+
u to

0−
g , leaving both states populated. After the end of the first

pulse, the second pulse couples a3�+
u to 1g . At the end of

the sequence, all three electronic states rest populated, in a
process that increases progressively the entanglement (from
two to three electronic states).

Let us detail the scheme. The initial state of the process,
represented in Fig. 6, is a Gaussian wave packet in the
electronic a3�+

u (6s,6s) potential, localized around 25 a0 and
simulating a superposition of vibrational states of a3�+

u (6s,6s)
centered around the state with v

�
= 36, which is bounded by

Ev
�

=36 ≈ −17 cm−1. The two chirped pulses have Gaussian
temporal envelopes f1(t) and f2(t), which are centered at
tP 1 = 20 ps and tP 2 = 60 ps, respectively [represented in
Fig. 7(a)].

The first chirped pulse, with central energy �ωL1 =
11680 cm−1, couples the a3�+

u electronic state to the
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ics in the Cs2 molecule, created by the sequence of two pulses
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(a) Time evolution of the populations P�(t), P0g

(t), and P1g
(t) due

to the chirped pulses whose envelopes f1(t) and f2(t) are represented
with dashed line. (b) Time evolution of the linear entropy L(t) during
the first pulse (after which two electronic states are populated) and
the second pulse (which populates also the third one). (c) Long term
evolution of the linear entropy L(t). With dashed line is represented
the long term evolution of L(t) in the hypothetical case of the first
pulse only.

0−
g (6s,6p3/2) state. The pulse has the temporal width τC1 =

7.2 ps (with τL1 = 1 ps) and a positive chirp rate χ1 =
0.379 ps−2, such as the energy range resonantly swept around
the central frequency is 2�|χ1|τC1 ≈ 28 cm−1. The coupling
strength is WL1 = 6.6 cm−1. The first pulse populates a
superposition of vibrational levels in the external well of
the 0−

g (6s,6p3/2) potential, exciting also the vibrational level
vi = 24 of the 0−

g inner well. Figure 8 shows the vibrational
wave packets a3�+

u and 0−
g populated by the first pulse

at t = 20 ps. The wave packets evolution during the pulse
is obtained by solving numerically a temporal Schrödinger
equation similar with Eq. (50). The time evolution of the
populations is represented in Fig. 7(a).

The second pulse, with �ωL2 = 11513 cm−1 and centered at
tP 2 = 60 ps, transfers population from a3�+

u to 1g(6s,6p3/2).
The pulse has a coupling strength WL2 = 26.3 cm−1, temporal
width τC2 = 5 ps (with τL1 = 0.5 ps) and a positive chirp
rate χ2 = 1.1 ps−2. The energy range resonantly swept around
its central frequency ωL2/2π is 2�|χ2|τC2 ≈ 58.6 cm−1, and
a superposition of high excited vibrational levels (around
the level with v1g

= 108) is populated in the 1g electronic
potential.

Figure 8 shows the dynamics of the vibrational wave
packets in the three electronic potentials. The time evolution
of the electronic populations is represented in Fig. 7(a). The
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FIG. 8. Time evolution of the vibrational wave packets ψ
�

(R,t),
ψ0g
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pulses in the electronic potentials a3�+
u (6s,6s), 0−

g (6s,6p3/2), and
1g(6s,6p3/2), represented in Fig. 6.

chirped Rabi periods characteristic for the action of a chirped
pulse [35] are visible during each pulse.

The linear entropy of entanglement L(t) is calculated using
the formula (15), and its time evolution during the pulse
sequence is represented in Fig. 7(b). By populating a third
electronic state, the second pulse increases the molecular
entanglement, as we have shown in Sec. II B. The long-term
linear entropy evolution, after the end of the pulse sequence,
is shown in Fig. 7(c). In the same figure we have represented
L(t) evolution supposing that only the first pulse would act on
the molecule, and therefore only two electronic states would
be populated. In this case the entanglement dynamics is due
to vibronic coherences between only two electronic states,
showing large variations between minima and maxima. As
we have shown in Sec. III A, this large amplitude in L(t)
variations is an indicator for the strength of the electronic
coherence measured by Cl1 (ρ̂el), which is proportional to the
overlap |〈ψg(R,t)|ψe(R,t)〉|. When three electronic states are
populated, entanglement is increased and L(t) variations in
time are diminished. This shows a decreasing of the electronic
coherence measured by Cl1 (ρ̂el), due to smaller overlaps
between the three vibrational wave packets.

Therefore, we have shown examples of a molecule prepared
in an electronic-vibrational entangled state by chirped laser
pulses, which create coherent vibrational wave packets in
several electronic potentials. Dephasing and recurrence due to
periodic oscillations are specific to wave packets vibrational
motion in bound electronic potentials. Electronic-nuclear
entanglement oscillations in an isolated molecule so prepared
with laser pulses are indicative for phenomena of electronic
coherence in the molecular system and periodicity specific
to vibrational motions [43]. Entanglement may be increased
by increasing the number of populated electronic states. On
the other hand, entanglement oscillations, expressed in the
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temporal variations of the linear entropy, may be of large
amplitude, and can be controlled by quantum preparations.

VI. CONCLUSION

We have derived measures of entanglement and quantum
coherence for a molecular system described in a bipartite
Hilbert space H = Hel

⊗
Hvib of dimension Nel × Nv , es-

tablishing relations between the linear entropy of electronic-
vibrational entanglement and quantifiers of quantum coher-
ence in the bipartite molecular system.

For a Hilbert space of dimension 2 × Nv , we have discussed
the expressions for the von Neumann and linear entropy of
electronic-nuclear entanglement [19], showing that a remark-
able difference between these two measures of entanglement
appears when their temporal behaviors in the case of an isolated
molecule are considered. In contrast to the von Neumann
entropy of entanglement, the linear entropy understands
vibrational motion in the electronic potentials as entanglement
dynamics. We find linear entropy of entanglement as being
a more complex informational quantity, recalling previous
assertions about the conceptual inadequacy [24] of the von
Neumann entropy in defining the information content of a
quantum system. These discussions were accompanied by
proposals for a more appropriate measure, which, interestingly,
has proven to be essentially the linear entropy [23–25].

We have derived the linear entropy of electronic-vibrational
entanglement for a bipartite Hilbert space H = Hel

⊗
Hvib

with dimension Nel × Nv , showing its dependence on the
vibronic coherences of the molecule, a property that connects
this entanglement measure to coherence quantifiers.

Quantum coherence in the bipartite entangled state
ρ̂el,vib(t) was characterized employing the resource ap-
proach [2,15], using measures of coherence based on l1
norm and Wigner-Yanase skew information. Connections

between quantum coherence, quantum uncertainty in energy,
and the velocity of ρ̂el,vib(t) evolution [21] are outlined in
Sec. III B.

We have employed the skew information as a measure
of quantum coherence and quantum uncertainty in the pure
entangled state ρ̂el,vib(t) and in the reduced electronic state
ρ̂el , taking as observables the Hamiltonians Ĥmol and Ĥel .
We have derived the Wigner-Yanase skew information in the
reduced electronic state ρ̂el for the electronic Hamiltonian Ĥel ,
and in the pure entangled state ρ̂el,vib(t) for the observables
Ĥmol (molecular Hamiltonian) and Ĥel

⊗
Îv (local observable

Ĥel), for a bipartite Hilbert space of dimension Nel × Nv . We
have shown that linear entropy of entanglement is connected
to the skew information IS(ρ̂el,vib,Ĥel

⊗
Îv) and IS(ρ̂el,Ĥel),

related to the measurement of the local observable Ĥel in the
correlated quantum systems (el

⊗
vib).

The characteristic times of entanglement dynamics due to
vibrational motion in the electronic potentials are analyzed in
Sec. II C. In the last part of this paper, Sec. V A, we show ex-
amples of these entanglement oscillations for the Cs2 molecule
prepared in an electronic-vibrational entangled state by chirped
laser pulses, which create coherent vibrational wave packets
in several electronic potentials. We have shown the control of
entanglement dynamics by using chirped laser pulses, whose
parameters can be chosen to create specific quantum prepara-
tions and significant changes in entanglement dynamics.

We hope that the present work will contribute to the ample
research program intended to enlighten our understanding
of molecular phenomena by using quantum information
concepts.
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