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Using geometric means, we first consider a density matrix decomposition of a multipartite quantum system of
a finite dimension into two density matrices: a separable one, also known as the best separable approximation,
and an essentially entangled one, which contains no product state components. We show that this convex
decomposition can be achieved in practice with the help of a linear programming algorithm that scales in
the general case polynomially with the system dimension. We illustrate the algorithm implementation with an
example of a composite system of dimension 12 that undergoes a loss of coherence due to classical noise and
we trace the time evolution of its essentially entangled component. We suggest a “geometric” description of
entanglement dynamics and demonstrate how it explains the well-known phenomena of sudden death and revival
of multipartite entanglements. For a statistical weight loss of the essentially entangled component with time, its
average entanglement content is not affected by the coherence loss.
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I. INTRODUCTION

Although quantum entanglement is a concept that has at-
tracted considerable attention of physicists working in various
fields [1], there are, however, further research opportunities to
develop a more complete understanding [2]. One of the main
open problems is the efficient detection and characterization of
a multipartite entanglement of density matrices representing
open quantum systems undergoing nonunitary evolution [3].

All experimentally addressable information regarding a
quantum physical system is contained in its density matrix ρ̂.
We focus on a multipartite quantum system, which comprises
a finite number K < ∞ of parts Nk numerated by index
k = 1, . . . ,K , each represented in the Hilbert space of a finite
dimensionality Nk , where

∏K
k=1 Nk = N is the dimensionality

of the Hilbert space of the entire system. This system-assembly
of parts, is not entangled (or separable) if and only if its density
matrix can be cast into a statistical sum,

ρ̂ =
M∑
i=1

ai

K∏
⊗k=1

∣∣αk
i

〉〈
αk

i

∣∣, (1)

where (ai > 0,
∑M

i=1 ai = 1) of M various (i = 1, . . . ,M) di-

rect products
∏K

⊗k=1 |αk
i 〉〈αk

i | of the density matrices |αk
i 〉〈αk

i |
of pure states |αk

i 〉 of each part. A state for which the
equality condition, Eq. (1), is not possible is called entangled
(or inseparable), and such a state cannot be comprised by
statistically independent elements.

Many approaches [2] have been developed aiming to answer
the question of whether or not a density matrix is separable.
Currently, there are no exact analytical methods applicable to
the multipartite problem, and we do not believe in the existence
of an exact analytical solution. An algorithmic solution to
the “decision” problem [4] associated with separability has
been proven to be a NP-hard problem [5], but valuable

progress has been made (mainly on the biseparability problem)
in approaches [6–11], where semidefinite programming is
merged with analytic criteria [12].

In this work we provide a geometric point of view on the
problem of inseparability that suggests there is an efficient
solution based on linear programming. By using simple
geometric arguments, we conjecture an algorithm that results
in a unique decomposition of the density matrix as

ρ̂ = (1 − B)ρ̂sep + Bρ̂ent, (2)

where ρ̂sep is the separable component, ρ̂ent is the essentially
entangled part that cannot have any separable states as
components, while B is a positive number in the range [0,1].
Obviously, the decomposition, Eq. (2), implies that the state ρ̂

is separable in all K parts only for B = 0.
The decomposition in Eq. (2) was initially introduced in

[13] without using a geometric picture. The component (1 −
B)ρ̂sep is widely known as the best separable approximation of
the density matrix ρ̂. In that same seminal work, the uniqueness
of the decomposition was proven for the multipartite case and
a strict upper bound on the rank of the component ρ̂ent for the
biseparable case. In this work we generalize the latter to the
multipartite case, proving that the rank of ρ̂ent is upper bounded
by a number related to the dimensions of the total system and
those of the subelements.

On a practical level, we show that the linear programming
algorithm combined with a simple optimization technique
allows one to efficiently find the decomposition of a generic
density matrix,

ρ̂ =
M∑
i=1

ai

K∏
⊗k=1

∣∣αk
i

〉〈
αk

i

∣∣
︸ ︷︷ ︸

product states

+
m∑

i=1

bi |βi〉〈βi |︸ ︷︷ ︸
entangled states

, (3)
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with the coefficients constrained by the requirements

ai > 0, bi � 0,

M∑
i=1

ai +
m∑

i=1

bi = 1, (4)

and
m∑

i=1

bi → min . (5)

When this limit is reached, the decomposition in Eq. (3) yields
Eq. (2), with B = (

∑m
i=1 bi)min:

ρ̂sep =
M∑
i=1

ai

1 − B

K∏
⊗k=1

∣∣αk
i

〉〈
αk

i

∣∣
︸ ︷︷ ︸

product states

(6)

and

ρ̂ent =
m∑

i=1

bi

B
|βi〉〈βi |︸ ︷︷ ︸

entangled states

. (7)

It is generally known that the linear programming method
scales polynomially with the dimension of the vector space
where it is applied. Using M + m � N2 in Eq. (3), where
N is the dimension of quantum assembly, we show that the
proposed algorithm yielding the decomposition Eq. (3) scales
as (2N4)3.

In Sec. II we introduce the idea of the decomposition of
Eq. (2) and illustrate its uniqueness with a simple geometric
picture generalizing the Bloch vector representation of a
two-level system. This geometric picture helps to analyze some
properties of ρ̂ent and we conclude this section with a theorem
setting an upper limit on its rank. In Sec. III we present a
version of an efficient linear programming algorithm allowing
one to explicitly find the decomposition of Eqs. (3)–(5) for
a generic density matrix. In Sec. IV we suggest methods
for characterizing the entanglement of the component ρ̂ent

which naturally reflects the entanglement properties of ρ̂. In
Sec. V we present a physical example which demonstrates
the implementation of the technique introduced in previous
sections and connect it with known notions in open quantum
system dynamics. We conclude with the discussion in Sec. VI.

II. THE GEOMETRIC METHOD OF DECOMPOSITION
AND PROPERTIES OF THE ESSENTIALLY

ENTANGLED PART

All possible density matrices of a quantum system with
a Hilbert space of dimension N comprise a convex set
of positive Hermitian matrices of unit trace. This set can
be viewed as a manifold in the vector space of Hermitian
matrices endowed with a metric given by the Hilbert-Schmidt
inner product tr[ρ̂i ,ρ̂j ]. The requirement of the unit trace in
this representation means that the inner product of a vector
representing a density matrix and a vector representing the
unit matrix equals unity. In this paper, this manifold is called a
“Liouville vector space.” Furthermore, the density matrix of a
pure state has rank 1, which implies that the length of the vector
corresponding to a pure state is equal to unity. The density
matrix manifold is therefore a convex hull with unit-length
vectors having a unit projection on the unity matrix.

A natural basis for such a vector space exists, spanned by
the N2 properly normalized generators ĝN

i of the unitary group
SU(N ), including the unity Î = √

NĝN
0 . This basis allows

one to cast a N × N density matrix of a quantum system as
ρ̂ = ∑N2−1

i=0 ĝN
i ri , with ri = Tr[̂gN

i ,ρ̂] as the N2 real vector
components. This geometric picture is a direct analogy to the
Bloch vector for two-level systems.

The pure quantum states, represented by positive Hermitian
density matrices of rank 1 and unit trace, lie at the surface of
the unit hypersphere, since Tr[ρ̂2] = ∑N2−1

i=0 r2
i = 1 is implicit.

For N > 2, in contrast to the Bloch vector of two-dimensional
pure quantum states, these states do not cover the complete
surface of the unit hypersphere but are confined on a manifold
of lower dimensionality. This is a consequence of the fact that
for N > 2, the condition Tr[ρ̂2] = ∑N2−1

i=0 r2
i = 1, together

with the condition of the unit trace, does not guarantee that the
density matrix is of rank 1 and an extra number of additional
conditions needs to be imposed. These additional constraints
can be understood when the characteristic polynomial Det[λ −
ρ̂] = λN + c1({ri})λN−1 + c2({ri})λN−2 + · · · + cN ({ri}) of a
pure state is considered. The unit trace condition sets c1({ri}) ≡
−1, while the rank-1 requirement implies the constraints
cm({ri}) = 0 for m = 2, . . . ,N . The set of these N conditions
on the N2 components of the vector constrains the vector
representing a pure state to lie on a restricted manifold of lower
dimension (N2 − N ) at the surface of the unit hypersphere.
As a consequence, the density matrices for quantum systems
of dimension N > 2 do not “fill” the whole inner part of
the unit hypersphere, but they are lying inside an (N2 − 2)-
dimensional body formed as a convex hull of the pure states of
the (N2 − N )-dimensional manifold. This convex hull plays
the role of the Bloch ball for higher dimensions of the Hilbert
space and has been studied in [14] for the case of three-
dimensional systems and in [15] for any N . The convex hull is
touching the unit hypersphere only for the pure states, while its
outer hyper-surface, which we denote by SCH, is naturally the
border between positive and nonpositive Hermitian matrices
of unit trace. Therefore SCH consists only of the degenerate
density matrices which have at least one zero eigenvalue. In
Fig. 1(b) we symbolically illustrate the convex hull of pure
states such that all density matrices are inside this body.

The situation is similar for the convex hull formed exclu-
sively by the pure product states. The product states, however,
form a manifold of measure zero in the set of all states, and
therefore the convex hull of pure product states is located inside
the convex hull of all pure states—except for the points at the
unit hypersphere corresponding to the pure product states.
At the same time, the outer surface of this convex hull does
not separate positive from negative matrices and consequently
must not exclusively contain degenerate matrices. Figure 1(a)
illustrates the situation symbolically by showing pure product
states as points on the spherical surface and the convex hull of
these points by a polytope inside the sphere. The states on the
surface and inside the polytope are separable.

Figure 1(c) shows inseparable states as points inside the
convex hull body of pure states but outside the polytope of
the product states. Figures 1(e)–1(f) further illustrate the
geometric meaning of Eq. (2), i.e., each mixed state can be
represented as a sum of a separable state on the surface of
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(a) Sphere Tr[ ²]=1r

Pure product states
at the sphere surface

Mixed separable states
inside the polytope

(b) Sphere Tr[ ²]=1r Pure states on lines
sphere surfaceat the

Mixed states
the convex hull body

inside

(c)

Mixed entangled states
inside the body and
outside the polytop

Essentially entangled
mixed states are in a
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(d)

Mixed entangled states
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of a state
and a

(e)

Mixed extreme separable
state at the surface of the
polytope

(f)

Essentially entangled
extreme mixed state lying
in some subspaces at

of the bodythe surface

FIG. 1. (Color online) A symbolic illustration of the geometric structure of density matrices and of the decomposition Eq. (2).

the polytope within a scaled sphere of radius 1 − B and an
essentially entangled state on the surface of the body within a
scaled sphere of radius B. This geometric picture demonstrates
the uniqueness of the decomposition in Eq. (2), a property that
has been formally proven in Ref. [13].

It can be shown that the essentially entangled component
ρ̂ent is a density matrix of rank dE strictly less than the
dimension N of the Hilbert space of the entire system.
The essentially entangled component belongs to the outer
hypersurface SCH of the convex hull of all states. Not every
state on SCH is an essentially entangled component; only the
ones which do not contain the separable part [Fig. 1(c)].
In addition, the eigenvectors of ρ̂ent, |ψl〉 of ρ̂ent with l =
1, . . . ,dE , are necessarily K-entangled pure states in the sense
that these cannot be written as direct products of K pure states
corresponding to the K subsystems. Therefore we can label
pure states which are direct products of K pure states of K

subsystems as K-product states.
Let us consider the Hilbert space HE of dimension dE

associated with the eigenvectors |ψl〉 of ρ̂ent. Each state |ψ̄〉
belonging to the Hilbert space HE is a linear combination of
the eigenvectors |ψl〉:

∣∣ψ̄ 〉 =
dE∑
l=1

λl|ψl〉 . (8)

The vector |ψ̄〉 can be seen as a result of the action of an
element ÛE of the unitary group SU(dE) associated with the
Hilbert subspace HE on one of the eigenvectors:∣∣ψ̄ 〉 = ÛE|ψ1〉 . (9)

The convex hull of the states |ψ̄〉 of the subspace naturally
contain ρ̂ent. The condition that ρ̂ent does not have any separable

components, |ψprod〉〈ψprod|, implies that the convex hull does
not contain a product state |ψprod〉〈ψprod|; this is possible only
if the Hilbert space HE does not contain |ψprod〉. We call a
Hilbert subspace with such a property an essentially entangled
subspace of dimension dE , and in what follows, with the help
of this necessary condition, we find an upper bound on dE .

Theorem II.1. The maximum rank dE max of an essentially
entangled component ρ̂ent for a system of dimension N

comprised by K subsystems, each of them of dimension Nk ,
is N − ∑K

k=1 Nk + K − 1.
Proof. Let us assume that the essentially entangled

component ρ̂ent is a density matrix of rank dE and the
subspace HE is spanned by its K-entangled eigenvectors
{|ψ1〉,|ψ2〉, . . . |ψdE

〉}. Let us also consider the orthogonal
complement of the subspace HE , H⊥

E of dimension N − NdE

and arbitrarily select a set of mutually orthogonal vectors
{|χ1〉,|χ2〉, . . . |χN−dE

〉} spanning H⊥
E .

The subspace HE is not essentially entangled if there is
at least one product state |ψprod〉 that can be expressed as in
Eq. (8),

|ψprod〉 =
dE∑
l=1

λl|ψl〉 , (10)

where λ’s are complex numbers. Equation (10) implies that
|ψprod〉 must be orthogonal to every element {|χi〉}, with i =
1, . . . ,N − dE , of the chosen basis in H⊥

E :

〈ψprod|χi=1,...,N−dE
〉 = 0 . (11)

The maximum number of such conditions is equal to the
number of parameters defining a product state, which for
a K-product state amounts to

∑K
k=1 Nk − K . Therefore the
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maximum rank of an essentially K-entangled density matrix
cannot be equal or exceed

∑K
k=1 Nk − K .

The maximum rank is smaller when we refer to an
essentially entangled component which does not contain any
biseparable state (not only K product). In this case, one has to
identify the bipartition of the system that yields the maximum
number of parameters characterizing the product state in order
to estimate the maximum rank. In the Appendix we provide a
more detailed proof of this theorem.

In the case of a mixed state of a system of two qubits, the
essentially entangled subspace is of dimension one, implying
that the essentially entangled component can only be a pure
entangled state. This result is in agreement with the bipartite
case treated in [13], while the derived theorem general-
izes the outcomes obtained in that work to the multipartite
case. The example studied in Sec. V gives some preliminary
evidence that ρ̂ent stays very near to pure states (Tr[ρ̂2

ent] ≈ 1),
even though dEmax → N for N >> 1.

III. THE LINEAR PROGRAMMING ITERATION
ALGORITHM THAT YIELDS THE ESSENTIALLY

ENTANGLED COMPONENT OF A DENSITY MATRIX

In principle, one can numerically identify the essentially
entangled component of an arbitrary density matrix by straight-
forwardly applying the linear programming algorithm to the
convex hull of general pure states and the polytope of pure
separable quantum states. The main obstacle of this method is
the high dimensionality of the corresponding Liouville vector
space, making such a direct approach intractable within any
approximation. Taking as an example the simplest multipartite
system consisting of three qubits, where the dimensionality
(N2) of the density matrix space is 64, even for the rather
low-accuracy approximation attributing just 10 points per
dimension, one encounters a polytope of over 1064 vertices.

Therefore this paper suggests a method to critically de-
crease the number of the vertices that enter as samples in
the algorithm and, consequently, substantially decrease the
computational complexity of the procedure. We first notice
that the solution of the problem and, in general, any convex
decomposition of the form Eq. (3), allows for at most N2

nonzero coefficients ai and bi . This observation can be
formally justified by a theorem of Carathéodory as mentioned
in [8]. In the limit B = (

∑m
i=1 bi)min, the pure states are the

vertices associated with the corners of the facets corresponding
to the solution, as illustrated in Figs. 1(e)–1(f), while the other
vertices can be discarded.

Therefore, as a first step we may randomly take N4 product
states, N4 general states, and, in order to ensure the algorithmic
stability, complement this set by the N2 eigenvectors of the
given density matrix. We then find the solution of the linear
programming problem, typically having complexity ∼ (2N4)

3
,

and thereby identify at most N2 − J product states and J gen-
eral states with nonzero coefficients ai and bi , respectively. The
linear constraint imposed on the algorithm is the minimization
of

∑m
i=1 bi , and the solution provided is a “local” minimum

for the given set of vectors fed to the algorithm. Our aim is to
find the global minimum value of

∑m
i=1 bi that is equal to B

by devising an iterative optimization loop.

For the second and subsequent steps, we apply to each
of the product states (resulting from the solution of the
optimization problem of the former step) N2 randomly chosen
local transformations exp {i ∑

i∈local αi ĝ
N
i }, generating ∼N4

new product states. New entangled states can be generated by
applying random generic transformations exp {i ∑N2−1

i=1 β i ĝ
N
i }

to each of the entangled states obtained in the previous
step, where i numerates the generators of the SU(N ) group
while i ∈ local the generators of the subgroup of local
transformation. Random parameters are normally distributed
with width gradually decreasing as the number of the iteration
steps decreases. The linear programming problem is solved
again for ∼N4 vertices in these two new polytopes and
iteratively repeats until the result converges. Note that for each
subsequent step, the presence of the solution of the former step
of the loop is essential in order to guarantee an outcome from
the linear programming algorithm. The set of the eigenvectors
of the density matrix plays this role for the first step. Numerical
inspection shows that the final results of the algorithm, i.e.,
the product component ρ̂sep and the essentially entangled part
ρ̂ent, Eqs. (6) and (7), are always the same for different sets of
algorithm iterations.

The algorithm described above addresses the case of full
separability of a state or the identification of the essentially
K-entangled component. The same set of steps can be applied
if we make a repartition of the initial system and consider L

separability of the state with L < K . Furthermore, if the set
of separable states is enlarged to include other special classes
of pure states, e.g., states of the W class [16], then one can
apply the algorithm in order to reveal the classification of
mixed multipartite entangled state as the one introduced in
[17] for three qubits. We would like to mention here that for
the specific case of three qubits in mixed state, there has been
a lot of progress concerning the classification of entanglement
via analytic criteria and efficient algorithms [18–20].

IV. SUGGESTIONS FOR CHARACTERIZING
ENTANGLEMENT PROPERTIES OF THE ESSENTIALLY

ENTANGLED COMPONENT

One may claim that all information relevant to entanglement
is contained in the essentially entangled part ρ̂ent of the density
matrix. Though this is not the main object of this work, we
make some simple suggestions for analyzing entanglement
properties of ρ̂ent employing previous results [21] about
characterization of entanglement for pure states.

For pure quantum states, entanglement is directly related
to the factorability of state vectors, and therefore one can
characterize entanglement by identifying the orbit of local
transformations for a given state. This orbit can be marked
by a complete set of polynomial invariants or alterna-
tively, by the coefficients {β} of the tanglemeter N̂ l({β}) =∑

i,...,j βi,...,j σ
+
i . . . σ+

j of a given state [21]. The state defined
as |c({β})〉 = exp [N̂ l({β})]|0〉 is the so-called canonical state,
and this can be reached from the state under study by
the action of local operations under the constraint that the
population of the reference state |0〉 is maximized. In addition
to the identification of the orbit of local transformations, the
tanglemeter generalizes the concept of logarithm to vectors
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and its coefficients straightforwardly reveal the factorization
properties of the state.

Entanglement of mixed states cannot rely only on one
operation of group multiplication but also involves the pro-
cedure of casting in convex sums. Therefore the algebraic
structure does not suggest a natural framework for the
characterization of entanglement in this case. Construction of
an approach to entanglement characterization is a convenience
complementing the exhaustive information contained in the
essentially entangled part of the density matrix.

A straightforward way to characterize entanglement of
mixed states would be to find the tanglemeters of the
eigenstates of ρent. It does not mean that an entangled state
corresponding to another orbit cannot be detected. Any pure
state which belongs to the essentially entangled subspace
HE spanned by the eigenvectors of ρ̂ent is also a legitimate
representative of the ensemble of entangled states associated
with this density matrix. One therefore may want to find the
“corners” of this ensemble of states by identifying the state
|c1〉 in HE closest to the set of product states P , followed
by identification of a state |c2〉 ⊥ |c1〉 closest to P then,
|c3〉 ⊥ |c2〉,|c1〉 etc., until |cdE

〉, and calculate tanglemeters
for these “corners.” Tanglemeter coefficients of any state
in HE will therefore be within the borders given by these
“corners.” We would like to mention here that the use of
the tanglemeter as a method for characterizing multipartite
entanglement is not essential. One may apply this idea to
other measures of multipartite entanglement for pure states,
as are the entanglement monotones from antilinear operators
introduced in [22].

Another option is to find the tanglemeter coefficients
distribution function,

P ({β}) =
∫

〈c({β(x)})|ρ̂ent|c({β(x)})〉δ({β(x) − β})dμx∈HE
,

(12)

resulting from averaging over the Haar measure μx∈HE
in

the subspace HE in accordance with Eq. (9) of weight
suggested by ρ̂ent (the probability to have a canonic state with
given tanglemeter coefficients). The number P ({β}) gives the
probability density of finding an entangled state which belongs
to the orbit characterized by the set {β} of the tanglemeter
coefficients. In the case where one of the eigenvalues of ρ̂ent is
much larger than others, the probability distribution P ({β}) is
located near the tanglemeter of the corresponding eigenvector
and can be adequately characterized by a small covariance
matrix of the tanglemeter’s coefficients.

V. EXAMPLE

We now present an illustration of the introduced methods
with a physical example of an open system experiencing loss
of coherence due to the presence of classical noise. The model
is comprised of three elements: two two-level systems and one
three-level system. The local symmetry group is the SU(2)
group for each of the two-level systems, the SU(3) group
for the three-level, and the SU(12) for the total assembly the
group of transformations (local and nonlocal). We consider
the combined physical system of a p-state atom (L = 1,
ML = −1,0,1) in a static magnetic field, which parametrically

interacts with a two-mode electromagnetic field. We also
assume that each of the field modes allows for two possible
polarizations of the photons.

The Hamiltonian of the system consists of four parts:
(i) the Hamiltonian of the first field mode Ĥ1 =

kz (̂a
†
x âx + â

†
y ây), with wave vector kz and polarizations x

and y,
(ii) the Hamiltonian of the second mode Ĥ2 =

kx (̂b†y b̂y + b̂
†
zb̂z), with wave vector kx ,

(iii) the Hamiltonian of the atom Ĥ3 = (HL̂) in the static
magnetic H ={Hx,Hy,Hz} field, where L̂ is the angular
momentum vector operator, and

(iv) the Hamiltonian describing the parametric interaction

Ĥ4 = (̂a†
x ây + â

†
y âx)X̂Ŷ

kz − ω1
+ (̂b†y b̂z + b̂

†
zb̂y)Ŷ Ẑ

kx − ω2
, (13)

which results from the second-order perturbation theory ap-
plied over the dipole interaction (̂a†

x + âx)X̂ + (̂a†
y + ây)Ŷ +

(̂b†z + b̂y)Ŷ + (̂b†z + b̂z)Ẑ.
Here â

†
i and b̂

†
i are the photon creation operators of the

first and the second mode, corresponding to polarization along
the direction i, while âi and b̂i are their conjugate photon
annihilation operators. ω1 and ω2 are the frequencies of the
allowed dipole atomic transition from the state p that are
closest to the respective frequencies of the first kz and the
second kx photon modes. The atomic optical electron radius-
vector operator R̂ = {X̂,Ŷ ,Ẑ} and the angular momentum
vector operator L̂ = {L̂x,L̂y,L̂z} enter the Hamiltonian as the
respective tensor product and the scalar products with the
magnetic field, while the light velocity, the electron charge,
and the Planck’s constant are set to unity.

Since parametric interaction implies conservation of the
total number of photons of the two modes, Ĥ1 + Ĥ2 is an
integral of motion for the system and only the Hamiltonians Ĥ3

and Ĥ4 are responsible for the dynamical process of interest.
The relevant part Ĥ = Ĥ3 + Ĥ4 can be rewritten in a more
convenient way, noting that the x, y, and z components of the
vector-operator L̂ form an su(2) subalgebra of the symmetry
algebra su(3) of the atomic triplet p, while the operators X̂Ŷ

and Ŷ Ẑ entering Ĥ4 as the tensor product of the components of
R̂ do not belong to this subalgebra and yield other generators
of the SU(3) group. All these operators can be expressed
in terms of Gell-Mann matrices λ̂i with i = 1, . . . ,8. The
properly normalized bilineal photon operators â

†
x ây + â

†
y âx ,

â
†
x ây − â

†
y âx , and â

†
x âx − â

†
y ây of the first mode form an su(2)

algebra, as do the similar operators of the second mode.
Therefore these can be expressed in terms of the respective
Pauli matrices σ̂1,i and σ̂2,i , where i = x,y,z. In summary, the
Hamiltonian Ĥ = Ĥ3 + Ĥ4 can be cast in the form

Ĥ =
3∑

i=1

λ̂ifi + f4σ̂1,x λ̂4 + f6σ̂2,x λ̂6 + ε1σ̂1,z + ε2σ̂2,z,

(14)
where the parameters fi=1,2,3 depend on the static field,
parameters f4 and f6 are governed by the detuning of the
photon frequencies from the atomic transition frequencies, and
parameters εi=1,2 deviate from zero when the photon frequency
turns to be dependent on the polarization in the presence of
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an anisotropicity of the refraction index (that is, when kz is
slightly different for the x and y polarizations, and similarly
for kx).

Now let us consider a realistic situation where the static
field experiences small and rapid fluctuations, where fi(t) =
f i + δfi(t) for i = 1,2,3. In this case the Liouville equation

i
·
ρ̂ = [Ĥ (t),ρ̂] describing the time evolution of the density

matrix ρ̂(t) of the assembly can be averaged over these rapid
fluctuations δfi(t), yielding the following Lindblad master
equation [23]:

i
·
ρ̂ = [Ĥ ,ρ̂] − i

3∑
i,j=1

δfi(t)δfj (t)[̂λi,[̂λj ,ρ̂]], (15)

where the upper bar denotes the time average. Substitution of
this master equation in the Liouville representation

ρ̂(t) =
143∑
i=0

ri(t )̂g
12
i (16)

of the density matrix in terms of the generators of the
unitary group SU(12) yields a system of 143 linear, first-order
differential equations:

i
·
rk =

143∑
m=1

(
Tr

{
ĝ12

k

[
Ĥ ,̂g12

m

]} − iRk,m

)
rm,

Rk,m =
3∑

i,j=1

δfi(t)δfj (t)Tr
{
ĝ12

k

[̂
λi,

[̂
λj ,̂g

12
m

]]}
, (17)

for the real vector components ri(t). The straightforward
analytic solution of Eq. (17) gives oscillations with time for
some of the coefficients ri(t), while others die off with rates
determined by the relaxation operator Rk,m.

A considerable amount of work on the understanding of the
dynamics of entanglement has been performed in [3]. Figure 2

Trajectory of the density matrix
may cross the surface of the
polygon of the separable states

1

R

FIG. 2. (Color online) A symbolic description of the trajectory in
the Liouville space of a mixed state undergoing loss of coherence due
to interaction with the environment. Crossing of the polytope of the
separable states results in sudden death (or birth) of entanglement.
The inset lists the numerical values of the parameters of the model.

graphically represents a generic solution for this example as a
spiral in the Liouville space gradually approaching a stationary
solution. This picture also provides a complementary point
of view on the phenomenon of sudden death and revival of
entanglement [24]. During the course of time, it is expected that
the essentially entangled part will oscillate between different
subspaces and eventually vanish for periods of time when
the density matrix is passing inside the polytope of separable
states (Fig. 2). The revival of entanglement is marked by the
exit of the density matrix from the polytope. This graphical
representation can be justified by the calculations as follows.

We now solve the model Eq. (17) for a set of given values
for fi presented in Fig. 2 and reconstruct the density matrix
ρ̂(t) with the help of Eq. (16), where Fig. 3 summarizes the cal-
culation results. Figure 3(a) graphs the purity P (t) = Tr[ρ̂2(t)]
of the density matrix as a function of time. At each time step
the algorithm is applied and the density matrix is decomposed
as ρ̂(t) = [1 − B(t)]ρ̂sep(t) + B(t)ρ̂ent(t), Eq. (2). Figure 3(b)
graphs the weight B(t) = ∑m

i=1 bi , Eq. (5), of the essentially
entangled component in the density matrix. The weight B(t) is
decreasing with time faster than the purity does, and it exhibits
some oscillatory behavior that can be possibly explained by
motion of the essentially entangled component along the facets
of the polytope. Figure 3(c) plots the rank dE of ρ̂ent(t), and
this moves in a rather random fashion between the values
of 1 and 5. If full (K = 3) separability is considered, then
dE max = 7. In our program we have included in the “polytope”
of separable states the biseparable states; therefore dE max = 5.
The “jumps” of the rank demonstrate the recursive move of an
essentially entangled component between different essentially
entangled subspaces on SCH. Moreover, in the time interval
[18.8–19.7], B(t) vanishes, implying that the state enters
inside the polytope of separable states. This physical situation
describes a sudden death and sudden revival of entanglement, a
phenomenon [24–26] which has been studied extensively with
other methods. Our geometric decomposition offers additional
information on the origin of this phenomenon, as shown in
Fig. 2.

In order to analyze the entanglement properties of the
essentially entangled component, we first note that for the
chosen model system, in the vast majority of the time
steps there is a dominant eigenvector êdom for ρ̂ent with a
corresponding eigenvalue λdom > 0.9 [Fig. 3(d)]. Therefore,
for this specific example and assigned parameters, it is possible
to analyze just the entanglement properties of êdom, whenever
the condition λdom > 0.9 is satisfied, and to conclude from
this analysis the entanglement properties of ρ̂ent. Naturally,
this analysis, together with the weight B(t), results in all the
information necessary to describe entanglement in ρ̂.

We analyze the entanglement properties of êdom with
the help of the method of nilpotent polynomials [21].
In the Appendix we provide an explicit method for deriving
the general expression for the tanglemeter of a wave vector
describing an assembly of a three-level system and two
two-level systems:

N̂ l({β}) = (β110 t̂
+σ̂+

1 + β101 t̂
+σ̂+

2 + β011σ̂
+
1 σ̂+

2

+β210û
+σ̂+

1 + β201û
+σ̂+

2

+β111 t̂
+σ̂+

1 σ̂+
2 ), (18)
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FIG. 3. (Color online) We solve the Lindblad equation for the example and we apply the algorithm at each time step: (a) purity of the
assembly, (b) the statistical contribution of ρ̂ent(t) to the density matrix, (c) the rank of ρ̂ent(t), (d) the eigenvalue of the dominant eigenvector
of ρ̂ent(t), and (e–h) the oscillations of the real coefficients of the tanglemeter. In the time interval [18.8–19.7], sudden death of entanglement
takes place and then its revival.

with β111,β201,β210,β110 being positive numbers and β101,β011

being complex. The matrix representation of the nilpotent
variables (operators) û+, v̂+, σ̂+ is also provided in the
Appendix. The coefficients of the tanglemeter are not entan-
glement monotones [2] in the strict sense; these are invariant
under the action of local transformations, and the presence
of any nonzero term in the tanglemeter ensures the presence
of entanglement. More precisely, the coefficient β111 ensures
the presence of genuine tripartite entanglement in the state
while the rest of the coefficients are related to the bipartite

entanglement. Figures 3(e)–3(h) plot those coefficients which
are positive, and these coefficients oscillate without dissipation
through time. The same holds for the real and imaginary parts
of the complex coefficients not shown in the figure.

With this example, in addition to the death and revival
of entanglement, we observe two interesting phenomena
which need more study in order to determine whether they
are specific to this example or more general. The first is
the presence of a dominant eigenvector in the essential
entangled component, and the second is the oscillations
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without dissipation of the entanglement characteristics of the
essential entangled component.

VI. CONCLUSIONS

In this work we have introduced the concept of the
essentially entangled component of a mixed multipartite state,
analyzed its properties, and suggested an algorithm for its
numerical identification. This concept is closely related to the
best separable approximation introduced in [13], but in this
current work we have developed and exploited the geometric
aspects of it. More specifically, we have introduced and
analyzed the properties of the essentially entangled component
employing the geometric description of mixed quantum states
that result from the decomposition of a density matrix over
the generators of the relevant group. Furthermore, we have
exploited this generalized Bloch sphere picture to construct
an efficient linear programming algorithm for finding the es-
sentially entangled component of a given state. This algorithm
not only gives a numerical answer to the separability problem,
but also identifies the vector component of the density matrix
relevant to entanglement. Finally, we introduced a specific
example to study the entanglement dynamics of an open
quantum system by reconstructing the time trajectory of the
essentially entangled component of the system. Sudden death
and sudden birth of entanglement can be clearly understood
in the introduced geometric picture, while other interesting
new aspects of entanglement in open quantum systems are
observed.

The algorithm introduced in this work scales polynomially
with the dimension of the system in the general case [5] and
it can be used to study open questions about entanglement in
mixed states. For example, this algorithm can be straightfor-
wardly applied to address the question of the relative volume of
separable states over entangled mixed states as a function of the
total purity of the system and the total dimension of the system
[27]. The answer to this example can serve as an evaluation
method for emerging quantum technologies and their quantum
limits. Finally, the essentially entangled component containing
all entanglement properties of the density matrix may also
provide new directions to entanglement detection [28] and
entanglement distillation [29] techniques.
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APPENDIX

1. A second formulation and proof of the main theorem

Here we provide a more detailed formulation and proof for
the theorem given in Sec. II, which does not rely on a particular
quantum-mechanical representation.

The maximum rank dE max of an essentially entangled
component is NCG − NCS, where NCG is the dimension of
the Cartan subgroup of the group of all transformations on
the state and NCS is the dimension of Cartan (sub)subgroup
generating only local transformations.

Remark. The numbers NCG and NCS give the respective
numbers of complex parameters characterizing generic and
product state vectors on N = NCG + 1 dimensional Hilbert
spaces.

Proof. Consider a density matrix ρ̂ and its decomposition
to the essentially entangled and separable part ρ̂ = (1 −
B)ρ̂sep + Bρ̂ent. Since B corresponds to a minimum value of
all possible weights, we conclude that no ε > 0 and product
vector |p〉 exist such that ρ̂ent − ε|p〉〈p| is a positive matrix.
Considering the essentially entangled subspace HE spanned
by the eigenvectors |ψi〉 with nonzero eigenvalues of ρ̂ent with
i = 1, . . . ,dE , this condition means that no product state |p〉
exists in HE . For the case where

|p〉 =
dE∑
i=1

|ψi〉 + ε′∣∣p′〉, (A1)

with 〈p′|ψi〉 = 0 for every i = 1, . . . ,dE , one identifies the
vector |p′〉 orthogonal to the subspace of dE eigenvectors,
which makes

〈p′|(ρ̂ent − ε|p〉〈p|)|p′〉 = −ε|〈p|p′〉|2 < 0 , (A2)

and therefore extremality implies that no product state is
orthogonal to the orthogonal compliment H⊥

E of HE spanned
by the eigenvectors |ψi〉 of ρ̂ent with zero eigenvalues and
i = dE, . . . ,NCG.

In other words, in order to find such a state we have to satisfy
NCG − dE equations 〈p|ψi〉 = 0 with i = dE + 1, . . . ,NCG for
a product state |p〉 given by specification of its NCS parameters.
This is impossible when NCG − dE � NCS, which determines
the maximum rank dE max of ρ̂ent.

2. Deriving the tanglemeter of the physical example in Sec. V

The system under consideration consists of the two modes
of the field interacting with a three-level atom. The Hilbert
space is consequently of dimension N = 12, a direct product
of the spaces of two two-level systems (qubits) and of one
three-level system (qutrit). In the standard computational basis,
a state vector of the system is expressed as

|〉 = ψ000|000〉 + ψ100|100〉 + ψ200|200〉 + ψ010|010〉
+ψ001|001〉ψ110|110〉 + ψ101|101〉 + ψ011|011〉
+ψ210|210〉 + ψ201|201〉 + ψ111|111〉 + ψ211|211〉,

or alternatively, using the nilpotent creation operators

û+ =
⎛
⎝0 0 1

0 0 0
0 0 0

⎞
⎠, (A3)

t̂+ =
⎛
⎝0 0 0

0 0 1
0 0 0

⎞
⎠, (A4)

σ̂+ =
(

0 1
0 0

)
, (A5)
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as

|〉 = (ψ000 + ψ100 t̂
+ + ψ200û

+ + ψ010σ̂
+
1 + ψ001σ̂

+
2

+ψ110 t̂
+σ̂+

1 + ψ101 t̂
+σ̂+

2 + ψ011σ̂
+
1 σ̂+

2 + ψ210û
+σ̂+

1

+ψ201û
+σ̂+

2 + ψ111 t̂
+σ̂+

1 σ̂+
2 + ψ211û

+σ̂+
1 σ̂+

2 )|000〉.
The next step is the application of all the available

local transformations [SU(3) ⊗ 1 ⊗ 1, 1 ⊗ SU(2) ⊗ 1, 1 ⊗
1 ⊗ SU(2)] on the given state |〉 in order to construct the
corresponding canonic state |c〉 which marks the orbit of
local transformations. To simplify the procedure, we apply the
local transformations on a given |〉 in the following order:

(a) We first apply local operations generated by the opera-
tors {σ̂ x

1 ,σ̂
y

1 ,σ̂ x
2 ,σ̂

y

2 ,λ̂4,λ̂5,λ̂6,λ̂7} and we require that the pop-
ulation of the reference level |000〉 is at maximum. Under this
condition the populations of the levels |100〉,|200〉,|010〉,|001〉
vanish.

(b) We then apply local operations generated by {λ̂1,λ̂2}
to also maximize the population of the level |111〉. The
contribution of the level |211〉 also vanishes.

(c) Finally, we apply local operations generated
by {σ̂ z

1 ,σ̂ z
2 ,λ̂3,λ̂8} in order to make the phase of

|111〉,|210〉,|201〉,|110〉 equal to the phase of the amplitude
of the reference level |000〉.

After this procedure one obtains the following form for the
normalized canonic state:

|c〉 = (1 + α110 t̂
+σ̂+

1 + α101 t̂
+σ̂+

2

+α011σ̂
+
1 σ̂+

2 + α210û
+σ̂+

1 + α201û
+σ̂+

2

+α111 t̂
+σ̂+

1 σ̂+
2 )|000〉, (A6)

with α111,α201,α210,α110 being positive numbers and α101,α011

being complex.
The final step for calculating the tanglemeter N̂ l({β}) of the

state is to take the logarithm of the polynomial on the nilpotent
variables t̂+, σ̂+

1,2 in Eq. (A6). In conclusion, it is easy to show
that

N̂ l({β}) = β110 t̂
+σ̂+

1 + β101 t̂
+σ̂+

2 + β011σ̂
+
1 σ̂+

2

+β210û
+σ̂+

1 + β201û
+σ̂+

2 + β111 t̂
+σ̂+

1 σ̂+
2 .

with β110 = α110, β101 = α101, etc.
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