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Compared with the traditional protocols of quantum key distribution (QKD), the reference-frame-independent
(RFI)–QKD protocol has been generally proved to be very useful and practical, since its experimental
implementation can be simplified without the alignment of a reference frame. In most RFI-QKD systems,
the encoding states are always taken to be perfect, which, however, is not practical in realizations. In this paper,
we consider the security of RFI QKD with source flaws based on the loss-tolerant method proposed by Tamaki
et al. [Phys. Rev. A 90, 052314 (2014)]. As the six-state protocol can be realized with four states, we show that
the RFI-QKD protocol can also be performed with only four encoding states instead of six encoding states in its
standard version. Furthermore, the numerical simulation results show that the source flaws in the key-generation
basis (Z basis) will reduce the key rate but are loss tolerant, while the ones in X and Y bases almost have no
effect and the key rate remains almost the same even when they are very large. Hence, our method and results
will have important significance in practical experiments, especially in earth-to-satellite or chip-to-chip quantum
communications.
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I. INTRODUCTION

Based on the basic principles of quantum mechanics,
quantum key distribution (QKD) allows two remote parties,
Alice and Bob, to share an unconditionally secure key [1–6].
Since the first QKD protocol, BB84 [7], was proposed,
QKD has been developing quickly in both theories (including
protocols [8–12] and security proofs for ideal and imperfect
devices [1–6,13]) and experiments (with long distances and
high repetition rates) [14–18].

In most QKD systems mentioned above, a shared reference
frame is required between Alice and Bob. For example,
Alice and Bob need to align the polarization states in the
polarization encoding protocols or keep the interferometer
stable in the phase encoding and time-bin encoding protocols.
Although it is feasible for Alice and Bob to share the
reference frame, it will increase the cost and reduce the
performance of the practical systems. Especially in earth-to-
satellite QKD [19–21], tracking and aligning quantum signals
are very tough and costly, which, in a way, affects the real-
ization of global-scale quantum communication. Luckily, the
reference-frame-independent (RFI)–QKD protocol [22–24]
is proposed to overcome this problem and has a direct
application for earth-to-satellite quantum communication. In
RFI QKD, three mutually unbiased bases (Z, X, and Y bases)
are used to encode the information. Generally only the Z basis
is used to generate the final key, while the X and Y bases are
used to estimate the channel parameters. Note the fact that,
in practical situations, it is possible and easy to maintain the
stability of Z basis while allowing the states in X and Y bases
to change slowly in the quantum channel. For example, in the
time-bin encoding QKD, the temporal bit (Z basis) is stable,
but the superposition states of the two temporal bits (such as
the eigenstates of X and Y bases) will change slowly due to
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the birefringence effect of the channel. Thus in a short time
interval, we can assume that the noise of channel for X and Y

bases keeps constant, which thus makes it possible to estimate
the channel parameters without the match of frame between
Alice and Bob. That is, the time-bin encoding QKD can
be implemented with reference frame independence, which
is very important in experiments. Due to this significance,
RFI QKD has been demonstrated experimentally by a few
groups both in fiber links and the free space [25–28]. With
these experiments carried out, the two relevant scenarios of
RFI QKD, earth-to-satellite QKD [19–21] and path-encoded
chip-to-chip QKD, are much closer to practical application.

However, one of the main drawbacks of the standard RFI
QKD in the previous theoretical analyses and experimental
demonstrations is that the imperfections of the source are
not considered, which may compromise the security of
practical QKD systems. Furthermore, the source flaws caused
by the imperfect modulations are always unavoidable, and
if using the traditional Gottesman-Lo-Lütkenhaus-Preskill
(GLLP) method to deal with such source imperfections, the
achievable rate and distance are dramatically degraded such
that the RFI-QKD protocol cannot be realized in practice.
More severely, if the prepared states, especially in the X and
Y bases, have some source flaws, it is not clear whether the
RFI-QKD protocol is still reference independent. In this paper,
we propose a way to consider the source flaws of RFI QKD
with the loss-tolerant technique [29]. As Ref. [29] claims that
the six-state protocol [30] can be realized with four states, we
show that the same is also true for the protocol of RFI QKD.
That is, instead of using six encoding states (all eigenstates
of X, Y , and Z bases) in the standard RFI QKD, only four
encoding states (two eigenstates of Z basis plus one of the
eigenstates each in X and Y bases) are required for Alice and
Bob. Furthermore, we analyze the key rate with source flaws
in single-photon source and phase-randomized weak coherent
source (vacuum + weak decoy state and infinite number of
decoy states). The results show that the source flaws in Z basis
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will reduce the key rate but are loss tolerant, while the ones in
X and Y bases almost have no effect on the key rate even when
they are very large. Additionally, compared to the three-state
protocol with infinite number of decoy states, our RFI-QKD
scheme with only four encoding states can achieve a better
performance.

II. METHOD

A. RFI-QKD protocol

We first briefly review the RFI-QKD protocol [22]. Alice
randomly prepares the eigenstates of three mutually unbiased
bases {XA,YA,ZA} and sends them to Bob. When Bob
receives Alice’s sending states, he measures them in his
randomly selected bases {XB,YB,ZB}. In the standard six-state
protocol [30], Alice and Bob should ensure that ZA = ZB ,
XA = XB , and YA = YB , but in RFI QKD, only one pair of
bases ZA and ZB is required to be well defined, i.e., ZA = ZB .
The other two pairs of bases are allowed to change slowly
in the quantum channel, that is, XB = cosβXA + sinβYA

and YB = cosβYA − sinβXA. The meaning of β depends on
specific systems, for example, the phase drift between Alice
and Bob in our time-bin encoding protocol. Besides, β is
unknown and may vary in time [22]. After the measurements,
Alice and Bob announce their bases. The raw keys are distilled
from the events in which both Alice and Bob use the Z basis.
The quantum bit error rate (QBER) in these raw keys is given
by

EZZ = 1 − 〈ZAZB〉
2

. (1)

When EZZ � 15.9%, Eve’s information IE can be bounded
by [22]

IE = (1 − EZZ)h

(
1 + vmax

2

)
+ EZZh

(
1 + f (vmax)

2

)
, (2)

where h(x) is the Shannon entropy function and

vmax = min

[
1

1 − EZZ

√
C/2,1

]
, (3)

f (vmax) =
√

C/2 − (1 − EZZ)2v2
max

/
EZZ. (4)

C is an intermediate quantity used to estimate Eve’s informa-
tion and can be written as

C = 〈XAXB〉2 + 〈XAYB〉2 + 〈YAXB〉2 + 〈YAYB〉2. (5)

Here, note that C is independent of β when plugging the
relations XB and YB mentioned above into Eq. (5). However,
as Ref. [22] pointed out, in order to accurately estimate C, it is
necessary for β to vary slowly in a time short enough for key
distribution since C is a statistical quantity [31]. In RFI QKD,
the key ingredient is trying to obtain an optimal lower bound
of C.

B. Calculation of C

As shown previously, the quantity C plays an important role
in the calculation of the key rate for RFI QKD. Therefore, in
this subsection, we present a method different from what the

previous references [22–24,26] gave to calculate the parameter
C.

Similar to Eq. (1), we can rewrite the parameters in Eq. (5)
as

EXX = 1 − 〈XAXB〉
2

,

EXY = 1 − 〈XAYB〉
2

,

EYX = 1 − 〈YAXB〉
2

,

EYY = 1 − 〈YAYB〉
2

.

(6)

And then C can be written as [32]

C = (1 − 2EXX)2 + (1 − 2EXY )2

+ (1 − 2EYX)2 + (1 − 2EYY )2. (7)

In the following we first calculate EXX and the other three
parameters EXY , EYX, and EYY can be obtained analogously
by applying the same method. The phase error rate EXX is
defined as a fictitious bit error rate in the X basis [33]. It is
a virtual procedure that Alice first prepares an entanglement
state in the Z basis and then both Alice and Bob measure it in
the X basis.

In our RFI-QKD scheme, actually, Alice only needs to
randomly prepare the four states ρ̂0Z , ρ̂1Z , ρ̂0X, and ρ̂0Y with
probability of 1/4 in Z, X, and Y bases, respectively. The
coefficients of the Bloch vector of ρ̂jα , with j ∈ {0,1} and
α ∈ {X,Y,Z}, can be denoted as (P jα

X ,P
jα

Y ,P
jα

Z ) [29]. That
is, ρ̂jα = 1

2 (Î + P
jα

X σ̂X + P
jα

Y σ̂Y + P
jα

Z σ̂Z), where I is the
identity operator and σ̂X, σ̂Y , and σ̂Z are Pauli operators. Note
that, compared with the standard protocol of RFI QKD, ρ̂1X

and ρ̂1Y are not needed in our scheme. This is because, based on
the loss-tolerant technique, the six-state protocol [30] can be
reduced to the four-state protocol shown in Ref. [29]. Below,
we show that the four parameters in Eq. (7) can be exactly
calculated in our RFI-QKD protocol with the above four states.

The emission of ρ̂jZ can be equivalently expressed by
the following process: Alice prepares the state |�Z〉AAeB =

1√
2

∑
j=0,1 |jZ〉A|φjZ〉AeB and measures system A in the Z

basis. Then she sends the system B to Bob. Here, |φjZ〉AeB

denotes the purification of ρ̂jZ , with Ae representing the
extended system possessed by Alice. The emissions of ρ̂0X and
ρ̂0Y can be considered analogously. So Alice also needs to pre-
pare the states |�X〉AAeB = |0X〉A|φ0X〉AeB and |�Y 〉AAeB =
|0Y 〉A|φ0Y 〉AeB in this virtual protocol. As mentioned earlier,
the phase error rate EXX is defined as a fictitious bit error rate
by measuring |�Z〉AAeB in the X basis [33], i.e.,

EXX = Y
(Z)
0X,1X + Y

(Z)
1X,0X

Y
(Z)
0X,0X + Y

(Z)
1X,0X + Y

(Z)
0X,1X + Y

(Z)
1X,1X

, (8)

where Y
(Z)
sγ,jα , with s,j ∈ {0,1} and α,γ = X, denotes the joint

probability that Alice (Bob) measures the sate |�Z〉AAeB in
the X basis and obtains a bit value j (s). Note that if there
are no basis-dependent source flaws, then EXX equals the bit
error rate in the X basis [34], which can be directly measured
in experiments. However, if taking source flaws into account,
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such equivalence no longer holds. That is, the bit error rate in
the X basis is unequal to the phase error rate in the Z basis.
Thus a method needs to be developed to estimate the phase
error rate in the Z basis, since the estimation of EXX in Eq. (8)
is a virtual process. Note that when considering source flaws,
by taking the relationships XB = cosβXA + sinβYA and YB =
cosβYA − sinβXA into Eq. (5), it is easy to obtain that C is still
independent of β. So once EXX and the other three parameters
in Eq. (7) are computed accurately and C is obtained, then we
can use the security proof in Sec. II A (cf. Ref. [22]) to carry
out our analysis on source flaws.

Here, for simplicity, we assume that the states prepared
by Alice are pure (the following method can be directly
applied to the case that Alice prepares mixed states up to
a purification of them first). Then Alice actually prepares
|�Z〉AB = (|0Z〉A|φ0Z〉B + |1Z〉A|φ1Z〉B)/

√
2. In the virtual

process, Alice measures system A in the X basis and sends
system B (a virtual state) to Bob. Thus the term Y

(Z)
sX,jX can be

written as [29]

Y
(Z)
sX,jX = pjX,vir

(
qsX|Id + P

jX,(vir)
X qsX|X

+P
jX,(vir)
Y qsX|Y + P

jX,(vir)
Z qsX|Z

)/
4, (9)

where pjX,vir is the probability that the virtual state (system
B) is emitted, and 1/4 is the probability that Bob chooses the
X basis for his measurements (note that the probabilities of
his selections of Y and Z bases are 1/4 and 1/2, respectively).
qsX|t = Tr(D̂sXσ̂t )/2, with t ∈ {Id,X,Y,Z}, is defined as the
transmission rate of σ̂t , and the operator D̂sX contains Eve’s
operation as well as Bob’s measurement [29]. The channel
parameters are totally described by σ̂t , so once qsX|t is
obtained, we can get the transmission rate Y

(Z)
sX,jX of the virtual

state.
Here, we consider the protocol of RFI QKD based on

time-bin encoding. The perfect encoding states of the Z basis
can be denoted as |0Z〉 for the short path and |1Z〉 for the
long path. However, due to the extinction ratio of the practical
optical attenuator or intensity modulator (IM) introducing
source flaws, Alice actually produces |0Z〉 and |1Z〉 with
probabilities of cos2 δ1

2 and cos2 δ2
2 , respectively. In the X and

Y bases, the unsymmetrical splitting rate of beam splitters as
well as other imperfections also introduce source flaws into
the states, which we denote by δ3 and δ4 in a general manner.
Besides, the phase modulator may also add some wrong phases
which are defined by θ1 and θ2. Based on the above description,
in general, the four states sent to Bob can be expressed as

|φ0Z〉 = cos
δ1

2
|0Z〉 + sin

δ1

2
|1Z〉,

|φ1Z〉 = sin
δ2

2
|0Z〉 + cos

δ2

2
|1Z〉,

(10)

|φ0X〉 = sin

(
π

4
+ δ3

2

)
|0Z〉 + cos

(
π

4
+ δ3

2

)
eiθ1 |1Z〉,

|φ0Y 〉 = sin

(
π

4
+ δ4

2

)
|0Z〉 + cos

(
π

4
+ δ4

2

)
ei( π

2 +θ2)|1Z〉.

Then the probabilities pjX,vir can be calculated by pjX,vir =
|〈jX|�Z〉AB |2, where |jX〉 = 1√

2
(|0Z〉 + (−1)j |1Z〉). So we

obtain that p0X,vir = (1 + sin δ1+δ2
2 )/2 and p1X,vir = (1 −

sin δ1+δ2
2 )/2. In addition, the actual states in experiments also

satisfy Eqs. (9), i.e.,
(
Y

(Z)
sX,0Z,Y

(Z)
sX,1Z,Y

(X)
sX,0X,Y

(Y )
sX,0Y

)
= (qsX|Id ,qsX|X,qsX|Y ,qsX|Z)Â/16, (11)

where 1/16 is the joint probability that Alice sends one of the
four states and Bob chooses the X basis for his measurement.
Â := ( �V T

0Z, �V T
1Z, �V T

0X, �V T
0Y ) and �V T

jα := (1,P
jα

X ,P
jα

Y ,P
jα

Z ) with
T representing the transposition. Given the prepared states in
Eqs. (10), the matrix A equals

A =

⎛
⎜⎜⎜⎝

1 1 1 1

sinδ1 sinδ2 cosδ3cosθ1 −cosδ4sinθ2

0 0 cosδ3sinθ1 cosδ4cosθ2

cosδ1 −cosδ2 sinδ3 sinδ4

⎞
⎟⎟⎟⎠. (12)

Note that when a single-photon source is used, the yield Y
(γ )
sα,jγ

can be directly obtained from experimental measurements. By
using Eq. (11) and the matrix A, qsX|t can be easily obtained.
Then, combined with Eq. (9) we can exactly estimate the value
of EXX in Eq. (8).

C. Estimation of the key generation rate

After obtaining the value of C, in this subsection, we
estimate the key-generation rate of RFI QKD based on two
kinds of source: single-photon source and phase-randomized
weak coherent source (WCS) with vacuum+weak decoy state.

1. Single-photon source

We consider the channel model proposed by Ref. [29],
where the conditional probability for single-photon state is
Vsα|jγ (i.e., the conditional probability that Bob obtains s when
he chooses α basis for measurement given that Alice sent him
the state |φjγ 〉). It can be written as

Vsα|jγ = ηCsα|jγ (1 − ed ) + (1 − η)ed (1 − ed )

+ 1
2

[
ηed + (1 − η)e2

d

]
, (13)

where ed is the dark count rate of the detector and η denotes the
total transmittance of the system including the channel as well
as Bob’s detection apparatus (ηd ). The term Csα|jγ denotes the
theoretical probability that Bob measures the state |φjγ 〉 and
obtains the value s when he chooses the α basis. In Eq. (13),
the first (second) term models a single click detection at Bob’s
side produced by a photon (dark count), while the last term
represents the simultaneous clicks. Note that in the case of
simultaneous clicks, Bob assigns a random bit value to the
measurement result. Based on Vsα|jγ as well as the fact that
Alice sends each of the four states with probability of 1/4,
we can readily obtain Y

(γ )
sα,jγ . Then the single-photon gain Q

(1)
Z

and the bit error rate EZZ are given by, respectively,

Q
(1)
Z = Y

(Z)
0Z,0Z + Y

(Z)
1Z,0Z + Y

(Z)
1Z,1Z + Y

(Z)
0Z,1Z,

W
(1)
Z = Y

(Z)
1Z,0Z + Y

(Z)
0Z,1Z, (14)

EZZ = W
(1)
Z

/
Q

(1)
Z .
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After obtaining C and EZZ , then we can estimate Eve’s
information IE in Eq. (2). Finally, the key generation rate in
the case of single-photon source is given by

R = 1 − h(EZZ) − IE. (15)

2. Phase-randomized WCS with vacuum and weak decoy state

In most practical QKD systems, a weak coherent source
combined with decoy-state method [35–37] is generally used
to overcome the photon-number-splitting (PNS) attack against
the multiphoton pulses. In this case, we must calculate the
conditional probability Vn,sα|jγ for n-photon state. Note that
there are two detectors in our scheme and thus the valid
click contains two situations: Only one of detectors clicks
and both of them click. For example, if Alice sends the
single-photon state |φ0Z〉 and meanwhile Bob chooses the
Z basis to measure the coming photon, then in the ideal
case, Bob gets the correct result (bit 0) with the probability
of C0Z|0Z and wrong result (bit 1) with the probability of
C1Z|0Z . However, when Alice sends the weak coherent state,
Bob will obtain the correct result with the probability of
[(1 − ηC1Z|0Z)n(1 − ed ) − (1 − η)n(1 − ed )2] and the wrong
result with the probability of [(1 − ηC0Z|0Z)n(1 − ed ) − (1 −
η)n(1 − ed )2] after considering the total transmittance η,
where n means the number of photons in the coming
pulse. The probability that two detectors click simultane-
ously is given by Dtwo = 1 − [(1 − ηC0Z|0Z)n(1 − ed ) − (1 −
η)n(1 − ed )2] − (1 − ηC1Z|0Z)n(1 − ed ). Thus, when the n-
photon state |φjγ 〉 is sent and Bob randomly chooses the α

basis to measure, the conditional probability Vn,sα|jγ is given
by

Vn,sα|jγ = 1
2 + 1

2 (1 − ed )[(1 + ηCsα|jγ − η)n

− (1 − ηCsα|jγ )n − (1 − ed )(1 − η)n]. (16)

In the following, for simplicity, we use the notations

a = ηCsα|jγ , D = 1 − ed . (17)

According to the decoy-state method [38], the overall gains
for the signal and decoy states are written as

Qμ,sα,jγ =
∞∑

n=0

Yn

μn

n!
e−μ

= 1

2
{1 + D[e(−η+a)μ − e−aμ − De−ημ]}, (18)

Qν,sα,jγ =
∞∑

n=0

Yn

νn

n!
e−ν

= 1

2
{1 + D[e(−η+a)ν − e−aν − De−ην]}, (19)

where μ and ν denote the intensities of signal and decoy states,
respectively. Since the overall gain Qμ and Qν can be directly
available in experiments, the lower bound of the yield of the
single-photon pulse is given by [38]

Y l
1,sα,jγ = μ

μν − ν2

(
Qνe

ν − Qμeμ ν2

μ2
− μ2 − ν2

μ2
Y0

)
, (20)

where Y0 = ed (1 − 1
2ed ) mainly arises from the dark count of

detectors. Then the gain of the single-photon pulse Q
(1)
Z in the

Z basis and the bit error rate EZZ can be obtained by [29]

Q
(1)
Z = e−μμ

(
Y l

1,0Z,0Z + Y l
1,0Z,1Z + Y l

1,1Z,1Z + Y l
1,1Z,0Z

)
,

W
(1)
Z = Y l

1,1Z,0Z + Y l
1,0Z,1Z, (21)

EZZ = W
(1)
Z

/
Q

(1)
Z .

Additionally, we can easily obtain the overall gain QZ and
the bit error rate eZ in the Z basis directly from the statistics
of experimental data. They are given by

QZ = 1
4 (Qμ,0Z,0Z + Qμ,1Z,0Z + Qμ,1Z,1Z + Qμ,0Z,1Z),

WZ = 1
4 (Qμ,1Z,0Z + Qμ,0Z,1Z), (22)

eZ = WZ/QZ.

Finally, the key generation rate in the case of phase-
randomized WCS with vacuum+weak decoy state is given
by [26]

R = −QZf h(eZ) + Q
(1)
Z (1 − IE). (23)

In addition, after replacing Q
(1)
Z and EZZ in the above

equation with those in Eqs. (14), we can also easily obtain
the key rate of RFI QKD based on phase-randomized WCS
with infinite number of decoy states.

III. SIMULATION RESULTS

As mentioned previously, currently, almost all the theoret-
ical analyses and experimental realizations do not include the
consideration of source flaws in RFI QKD. This is because the
performance given by the standard GLLP model with source
flaws is rather pessimistic and not loss tolerant [3,13,39].
However, combined with the loss-tolerant technique proposed
in Ref. [29], we have obtained the key-generation rate of RFI
QKD, taking into account the source flaws in a general method
shown in the previous section. Numerical simulation results
show that, when considering the source flaws, our protocol of
RFI QKD is still able to obtain a high performance, as shown
in Fig. 1.

Figure 1 shows the key-generation rates of RFI QKD with
source flaws based on the single-photon source [part (a)] and
phase-randomized WCS with vacuum + weak decoy state
[part (b)], respectively. Here, the intensity of weak coherent
state is optimized for each line to maximize the key rate (the
same optimization is also carried out in the following figures).
It can be seen clearly that both the rates and distances have
a small decrease with the source flaws but the source flaws
are loss tolerant. And, even with large errors, say δ1 = δ2 =
0.3006, the maximal distance can still be nearly 150 km for the
vacuum + weak decoy state, which indicates that our method is
able to give a high performance for RFI QKD with source flaws
instead of a pessimistic result with the GLLP method [3,13,39],
since in the GLLP model the flaws are assumed to be able to
be enhanced by Eve exploiting the losses and thus leading to
a severe degradation of performance. Here, δ1 = δ2 = 0.3006
corresponds to the 16 dB [sin2( 0.3006

2 ) = 10−16/10] extinction
ratio of the practical optical attenuator or intensity modulator
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(b) Vacuum+weak decoy state
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FIG. 1. (Color online) Secret key rates of RFI-QKD with source
flaws based on (a) single-photon source and (b) phase-randomized
WCS with vacuum + weak decoy state. The source flaws are indicated
by δ1,δ2,δ3,δ4,θ1, and θ2 (all in radian units) shown in Eqs. (10). Here,
we have assumed θ1 = θ2 = 0, for they have the same effect as the
rotation angle β of the X and Y bases in the standard RFI QKD.
The parameters used in our method are coming from Ref. [29], i.e.,
ed = 0.85 × 10−6, ηd = 0.15, f = 1.22, and the loss coefficient of
the channel is 0.21dB/km.

in a system with time-bin encoding, and 0.2004 corresponds
to 20 dB [sin2( 0.2004

2 ) = 10−20/10], which are typical values
in practical experiments. Besides, we have assumed the same
errors exist in the X, Y, and Z bases for simplicity, and also
assumed θ1 = θ2 = 0, for they have the same effect as the
rotation angle β of the X and Y bases in the standard RFI
QKD.

Moreover, we also find that, shown in Fig. 2, the source
flaws in the X and Y bases almost have no effect on the key rates
in both cases, single-photon source and phase-randomized
WCS, although flaws in the Z basis decrease key rates, as
shown by dashed lines, due to the increase of the error rates
with the increase of source flaws. This is because, using our
method, we can give a precise estimation of the quantity C in
Eq. (7) and Eve cannot amplify the source flaws by exploiting
the channel loss; i.e., the key rates are independent of the
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FIG. 2. (Color online) Secret key rates vs source flaws in RFI
QKD based on (a) single-photon source and (b) phase-randomized
WCS with vacuum + weak decoy state for a given transmission
distance. In both figures, solid lines indicate that the source flaws
only exist in the X and Y bases while the states in the Z basis
are perfect, i.e., δ1 = δ2 = 0; dashed lines are vice versa. The other
parameters are the same as those in Fig. 1.

source flaws in the X and Y bases shown by the solid lines
in Fig. 2. Here, we point out that the source flaws (δ3 and δ4)
in the X and Y bases are different from the rotation of X and
Y bases in RFI QKD. In standard RFI-QKD protocol, the X

and Y bases between Alice and Bob have an rotation angle
β on the X−Y plane of the Bloch sphere, which means that
Bob’s receiving states have errors in the X and Y bases. The
errors can be seen as a unitary operation on the states sent by
Alice, and thus do not affect the key rate since a lower bound
of C in Eq. (2) can be found independent of β in RFI QKD as
mentioned previously. However, in our method, the errors (δ3

and δ4) in the X and Y bases are arbitrary instead of arising
from unitary operations.

In the above figures, we assume that the same errors consist
in Alice’s two sending states of the Z basis, i.e., δ1 = δ2,
which is reasonable since the optical attenuators or intensity
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FIG. 3. (Color online) Secret key rates as a function of source
flaws δ1 and δ2 in the Z basis while the states in X and Y bases
are perfect, i.e., δ3 = δ4 = 0, θ1 = θ2 = 0, in RFI QKD for a given
distance of 100 km. The other parameters are the same as those in
Fig. 1.

modulators used in practical systems are generally symmetric
in the long path and short path for the time-bin encoding
protocol. However, even they are different (δ1 �= δ2), we can
still get the same results as above. For example, in Fig. 3, we
plot the key rates as a function of source flaws δ1 and δ2 in
the Z basis for a given distance, 100 km, while the states in X

and Y bases are set to be perfect since flaws in these two bases
have no effect. We can see that, with increase of the source
flaws in the Z basis, the key rates decrease due to the increase
of error rates in the Z basis, and even with very large errors,
there still exist key rates for 100-km transmission distance,
which clearly shows that Eve cannot enhance the flaws by
exploiting the channel loss. Moreover, Fig. 3 also shows that
equal errors (δ1 = δ2) in the two encoding states of the Z basis
can result in higher key rates than the biased errors (δ1 �= δ2)
in these two encoding states. Here, we have set the same form
errors [sin2 δ1

2 and sin2 δ2
2 in Eqs. (10)] in the two states of the Z

basis, so the key rates are symmetric with respect to δ1 and δ2.
Consequently, when implementing RFI QKD, it is necessary to
confirm the perfect encoding of the key generation basis (e.g.,
Z basis) as much as possible, and the encoding of other bases
can be relaxed as long as the prepared four states’ terminal
points of the Bloch vectors form a triangular pyramid in the
Bloch sphere as claimed in Ref. [29].

In addition, we also give a comparison of performance
between our RFI-QKD scheme with only four states (solid
and dashed lines) and the three-state protocol (dotted line) [29]
based on the same probability of the Z-basis-matched events
in Fig. 4. As mentioned earlier, the key rate of the three-state
protocol coincides with that of the BB84 protocol (both
protocols are based on infinite number of decoy states) [29]. In
other words, our RFI-QKD scheme with four states can achieve
a comparable performance but with a longer achievable
distance compared with the three-state protocol and BB84
protocol. Besides, the two almost overlapped lines show the
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FIG. 4. (Color online) Comparison of secret key rates in the
three-state protocol [29] (dotted line), the RFI-QKD protocol with
infinite number of decoy states (solid line), and the RFI-QKD protocol
with the vacuum + weak decoy state (dashed line). The results
of the three lines are all based on the same probability of the
Z-basis-matched events. That is, Alice prepares each of the two states
in the Z basis with probability 1/4 and Bob chooses the Z basis with
probability 1/2, so the probability of the Z-basis-matched events is
1/4.

key rates of our RFI-QKD scheme with two kinds of decoy
states: infinite number of decoy states (solid line) and vacuum
+ weak decoy state (dashed line). It means that our RFI-QKD
scheme can be easily performed with the vacuum + weak
decoy state, instead of the infinite number of decoy states, but
can obtain almost the same performance as the latter.

IV. CONCLUSION

In conclusion, we have analyzed the security of RFI QKD
with source flaws. Compared with the standard RFI-QKD
protocol, only four states are needed in our method, even if im-
perfect sources are used. Our results suggest that it is important
to have precise state preparations in the key-generation basis,
while in other bases, there is no such strict requirement. In other
words, only if the four states are appropriately prepared, we can
get a very high performance in RFI QKD with source flaws.
In addition, the RFI-QKD scheme can supply a performance
comparable to the three-state protocol [29] and BB84 protocol.
More importantly, it will be much simpler to demonstrate our
scheme experimentally, in particular, to realize the quantum
communications in earth-to-satellite links and chip-to-chip
integrated photonic wave guides, because only four states are
required for encoding and only key-generation basis needs to
be aligned. Besides, the currently mature finite-size method of
RFI QKD [23,25–28] can be directly applied to our scheme
without any difficulty, which should be included in the further
research and the practical experiments.
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H. Hübel, and T. Jennewein, Phys. Rev. A 84, 062326 (2011).

[22] A. Laing, V. Scarani, J. G. Rarity, and J.-L. OBrien, Phys. Rev.
A 82, 012304 (2010).

[23] L. Sheridan, T.-P. Le, and V. Scarani, New J. Phys. 12, 123019
(2010).

[24] T.-P. Le, L. Sheridan, and V. Scarani, Int. J. Quantum. Inform.
10, 1250035 (2012).

[25] M. S. Palsson, J. J. Wallman, A. J. Bennet, and G. J. Pryde, Phys.
Rev. A 86, 032322 (2012).

[26] W.-Y. Liang, S. Wang, H.-W. Li, Z.-Q. Yin, W. Cen, Y. Yao, J.-Z.
Huang, G.-C. Guo, and Z.-F. Han, Sci. Rep. 4, 3617 (2014).

[27] J. Wabnig, D. Bitauld, H.-W. Li, A. Laing, J. L. O’Brien, and
A. O. Niskanen, New J. Phys. 15, 073001 (2013).

[28] P. Zhang et al., Phys. Rev. Lett. 112, 130501 (2014).
[29] K. Tamaki, M. Curty, G. Kato, H.-K. Lo, and K. Azuma, Phys.

Rev. A 90, 052314 (2014).
[30] D. Bruss, Phys. Rev. Lett. 81, 3018 (1998).
[31] Note that although C is independent of β, it does not mean that

the variation of β during the run of the protocol will not affect
C. Actually, since C is a statistical quantity, the fast variation of
β can make the estimated value of C so small such that the key
rate turns to zero. See details in Refs. [22–28].

[32] Z.-Q. Yin, S. Wang, W. Chen, H.-W. Li, G.-C. Guo, and Z.-F.
Han, Quant. Info. Proc. 13, 1237 (2014).

[33] M. Koashi, arXiv:0704.3661 [quant-ph].
[34] H.-K. Lo and J. Preskill, Quantum Inf. Comput. 7, 431 (2007).
[35] W.-Y. Hwang, Phys. Rev. Lett. 91, 057901 (2003).
[36] X.-B. Wang, Phys. Rev. Lett. 94, 230503 (2005).
[37] H.-K. Lo, X.-F. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504

(2005).
[38] X.-F. Ma, B. Qi, Y. Zhao, and H.-K. Lo, Phys. Rev. A 72, 012326

(2005).
[39] E. Woodhead and S. Pironio, Phys. Rev. A 87, 032315 (2013).

042319-7

http://dx.doi.org/10.1126/science.283.5410.2050
http://dx.doi.org/10.1126/science.283.5410.2050
http://dx.doi.org/10.1126/science.283.5410.2050
http://dx.doi.org/10.1126/science.283.5410.2050
http://dx.doi.org/10.1103/PhysRevLett.85.441
http://dx.doi.org/10.1103/PhysRevLett.85.441
http://dx.doi.org/10.1103/PhysRevLett.85.441
http://dx.doi.org/10.1103/PhysRevLett.85.441
http://dx.doi.org/10.1088/1367-2630/11/4/045018
http://dx.doi.org/10.1088/1367-2630/11/4/045018
http://dx.doi.org/10.1088/1367-2630/11/4/045018
http://dx.doi.org/10.1088/1367-2630/11/4/045018
http://dx.doi.org/10.1103/PhysRevLett.106.110506
http://dx.doi.org/10.1103/PhysRevLett.106.110506
http://dx.doi.org/10.1103/PhysRevLett.106.110506
http://dx.doi.org/10.1103/PhysRevLett.106.110506
http://dx.doi.org/10.1038/ncomms1618
http://dx.doi.org/10.1038/ncomms1618
http://dx.doi.org/10.1038/ncomms1618
http://dx.doi.org/10.1038/ncomms1618
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.1103/PhysRevLett.92.057901
http://dx.doi.org/10.1103/PhysRevLett.92.057901
http://dx.doi.org/10.1103/PhysRevLett.92.057901
http://dx.doi.org/10.1103/PhysRevLett.92.057901
http://dx.doi.org/10.1103/PhysRevA.61.010303
http://dx.doi.org/10.1103/PhysRevA.61.010303
http://dx.doi.org/10.1103/PhysRevA.61.010303
http://dx.doi.org/10.1103/PhysRevA.61.010303
http://dx.doi.org/10.1103/PhysRevLett.88.057902
http://dx.doi.org/10.1103/PhysRevLett.88.057902
http://dx.doi.org/10.1103/PhysRevLett.88.057902
http://dx.doi.org/10.1103/PhysRevLett.88.057902
http://dx.doi.org/10.1103/PhysRevLett.108.130503
http://dx.doi.org/10.1103/PhysRevLett.108.130503
http://dx.doi.org/10.1103/PhysRevLett.108.130503
http://dx.doi.org/10.1103/PhysRevLett.108.130503
http://dx.doi.org/10.1103/PhysRevA.82.032337
http://dx.doi.org/10.1103/PhysRevA.82.032337
http://dx.doi.org/10.1103/PhysRevA.82.032337
http://dx.doi.org/10.1103/PhysRevA.82.032337
http://dx.doi.org/10.1088/1367-2630/11/9/095001
http://dx.doi.org/10.1088/1367-2630/11/9/095001
http://dx.doi.org/10.1088/1367-2630/11/9/095001
http://dx.doi.org/10.1088/1367-2630/11/9/095001
http://dx.doi.org/10.1103/PhysRevLett.111.130501
http://dx.doi.org/10.1103/PhysRevLett.111.130501
http://dx.doi.org/10.1103/PhysRevLett.111.130501
http://dx.doi.org/10.1103/PhysRevLett.111.130501
http://dx.doi.org/10.1103/PhysRevLett.111.130502
http://dx.doi.org/10.1103/PhysRevLett.111.130502
http://dx.doi.org/10.1103/PhysRevLett.111.130502
http://dx.doi.org/10.1103/PhysRevLett.111.130502
http://dx.doi.org/10.1103/PhysRevLett.112.190503
http://dx.doi.org/10.1103/PhysRevLett.112.190503
http://dx.doi.org/10.1103/PhysRevLett.112.190503
http://dx.doi.org/10.1103/PhysRevLett.112.190503
http://dx.doi.org/10.1103/PhysRevLett.113.190501
http://dx.doi.org/10.1103/PhysRevLett.113.190501
http://dx.doi.org/10.1103/PhysRevLett.113.190501
http://dx.doi.org/10.1103/PhysRevLett.113.190501
http://dx.doi.org/10.1103/PhysRevLett.98.010504
http://dx.doi.org/10.1103/PhysRevLett.98.010504
http://dx.doi.org/10.1103/PhysRevLett.98.010504
http://dx.doi.org/10.1103/PhysRevLett.98.010504
http://dx.doi.org/10.1088/1367-2630/11/4/045017
http://dx.doi.org/10.1088/1367-2630/11/4/045017
http://dx.doi.org/10.1088/1367-2630/11/4/045017
http://dx.doi.org/10.1088/1367-2630/11/4/045017
http://dx.doi.org/10.1103/PhysRevA.84.062326
http://dx.doi.org/10.1103/PhysRevA.84.062326
http://dx.doi.org/10.1103/PhysRevA.84.062326
http://dx.doi.org/10.1103/PhysRevA.84.062326
http://dx.doi.org/10.1103/PhysRevA.82.012304
http://dx.doi.org/10.1103/PhysRevA.82.012304
http://dx.doi.org/10.1103/PhysRevA.82.012304
http://dx.doi.org/10.1103/PhysRevA.82.012304
http://dx.doi.org/10.1088/1367-2630/12/12/123019
http://dx.doi.org/10.1088/1367-2630/12/12/123019
http://dx.doi.org/10.1088/1367-2630/12/12/123019
http://dx.doi.org/10.1088/1367-2630/12/12/123019
http://dx.doi.org/10.1142/S0219749912500359
http://dx.doi.org/10.1142/S0219749912500359
http://dx.doi.org/10.1142/S0219749912500359
http://dx.doi.org/10.1142/S0219749912500359
http://dx.doi.org/10.1103/PhysRevA.86.032322
http://dx.doi.org/10.1103/PhysRevA.86.032322
http://dx.doi.org/10.1103/PhysRevA.86.032322
http://dx.doi.org/10.1103/PhysRevA.86.032322
http://dx.doi.org/10.1038/srep03617
http://dx.doi.org/10.1038/srep03617
http://dx.doi.org/10.1038/srep03617
http://dx.doi.org/10.1038/srep03617
http://dx.doi.org/10.1088/1367-2630/15/7/073001
http://dx.doi.org/10.1088/1367-2630/15/7/073001
http://dx.doi.org/10.1088/1367-2630/15/7/073001
http://dx.doi.org/10.1088/1367-2630/15/7/073001
http://dx.doi.org/10.1103/PhysRevLett.112.130501
http://dx.doi.org/10.1103/PhysRevLett.112.130501
http://dx.doi.org/10.1103/PhysRevLett.112.130501
http://dx.doi.org/10.1103/PhysRevLett.112.130501
http://dx.doi.org/10.1103/PhysRevA.90.052314
http://dx.doi.org/10.1103/PhysRevA.90.052314
http://dx.doi.org/10.1103/PhysRevA.90.052314
http://dx.doi.org/10.1103/PhysRevA.90.052314
http://dx.doi.org/10.1103/PhysRevLett.81.3018
http://dx.doi.org/10.1103/PhysRevLett.81.3018
http://dx.doi.org/10.1103/PhysRevLett.81.3018
http://dx.doi.org/10.1103/PhysRevLett.81.3018
http://dx.doi.org/10.1007/s11128-013-0726-2
http://dx.doi.org/10.1007/s11128-013-0726-2
http://dx.doi.org/10.1007/s11128-013-0726-2
http://dx.doi.org/10.1007/s11128-013-0726-2
http://arxiv.org/abs/arXiv:0704.3661
http://dx.doi.org/10.1103/PhysRevLett.91.057901
http://dx.doi.org/10.1103/PhysRevLett.91.057901
http://dx.doi.org/10.1103/PhysRevLett.91.057901
http://dx.doi.org/10.1103/PhysRevLett.91.057901
http://dx.doi.org/10.1103/PhysRevLett.94.230503
http://dx.doi.org/10.1103/PhysRevLett.94.230503
http://dx.doi.org/10.1103/PhysRevLett.94.230503
http://dx.doi.org/10.1103/PhysRevLett.94.230503
http://dx.doi.org/10.1103/PhysRevLett.94.230504
http://dx.doi.org/10.1103/PhysRevLett.94.230504
http://dx.doi.org/10.1103/PhysRevLett.94.230504
http://dx.doi.org/10.1103/PhysRevLett.94.230504
http://dx.doi.org/10.1103/PhysRevA.72.012326
http://dx.doi.org/10.1103/PhysRevA.72.012326
http://dx.doi.org/10.1103/PhysRevA.72.012326
http://dx.doi.org/10.1103/PhysRevA.72.012326
http://dx.doi.org/10.1103/PhysRevA.87.032315
http://dx.doi.org/10.1103/PhysRevA.87.032315
http://dx.doi.org/10.1103/PhysRevA.87.032315
http://dx.doi.org/10.1103/PhysRevA.87.032315



