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Localized state in a two-dimensional quantum walk on a disordered lattice
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We realize a pair of simultaneous ten-step one-dimensional quantum walks with two walkers sharing coins,
which we prove is analogous to the ten-step two-dimensional quantum walk with a single walker holding a
four-dimensional coin. Our experiment demonstrates a ten-step quantum walk over an 11 × 11 two-dimensional
lattice with a line defect, thereby realizing a localized walker state.
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I. INTRODUCTION

Quantum walks (QWs) [1], which are the quantum analog
of classical random walks (RWs), are valuable in diverse areas
including quantum algorithms [2–5], quantum computing
[6–8], state transfer and quantum routing [9], quantum
simulation [10], topological phase transition [11–13], energy
transport in photosynthesis [14,15], Anderson localization
[16–25], and quantum chaos [26–30]. The one-dimensional
(1D) QW has been realized with nuclear magnetic resonance
[31], atoms [32–37], and photons [38–42]. Notably the
1D QW has a classical-wave description [43–45], whereas
the two-dimensional (2D) QW [46–48] introduces purely
quantum effects [49]. Consequently, the 2D QW over integer
time t is of paramount interest motivating recent photonic
realizations [10,22,50–52] that are actually constructed with a
pair of 1D QWs and presume a relation between two 1D QWs
and one 2D QW.

Here we demonstrate experimentally a QW localized
state by realizing a line defect in the reduced QW position
distribution P̃

xy
t over an 11 × 11 2D (x,y) lattice and compare

to the theoretical prediction P
xy
t . We use a tilde to denote

experimental quantities, superscripts x and y to denote lattice
sites x and y, and subscript t to denote the time index. The
localized state of the walker as a signature of 2D QW local-
ization presents the property as the probability distribution of
the walker state is highly localized in certain positions instead
of spreading. In additional we prove an isomorphism between
a pair of 1D QWs sharing coins [49] and a single 2D QW
on an integer-valued Cartesian (x,y) lattice (see Appendix).
Our proof of the isomorphism between two walkers in one
dimension sharing coins and one walker in two dimensions
with a higher-dimensional coin makes rigorous an oft-used
but previously unproven assumption of this isomorphism.

We evaluate the quality of experimental simulation in terms
of the time-dependent discrepancy

st = 1

2

∑
x,y

∣∣P̃ xy
t − P

xy
t

∣∣, (1)
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using the 1-norm distance [53] between theoretical and
experimental reduced walker distribution on the 2D lattice.
In particular, we show that the discrepancy st is small for our
realization, indicating a successful experimental simulation of
a localized state in a 2D QW.

II. THEORY: LOCALIZATION IN A QUANTUM WALK

Compared to ballistic QWs, a walk in a disordered lattice
leads to an absence of diffusion, and the wave function of
the walker becomes localized [54]. That is, the walker will be
observed in a certain position with high probability instead of
spreading ballistically. Thus the localized state of the walker
is good evidence for observing a localized QW.

The unitary operation for a single step of QW in a disordered
lattice shown in Fig. 1(a) is

V 2D
t (φ) =

∑
x,y∈�t

∑
c,d∈B

eiφ(x,y)|x + (−1)c,y + (−1)d〉〈x,y|

⊗ |c,d〉〈c,d|H⊗2, (2)

where H = (1 1
1 −1)/

√
2 is a Hadamard coin operator. In this

paper we consider two types of disorders that are represented
by position-dependent string phase defects eiφ(δx,0+δy,0) and
eiφδy,0 with δx(y),0 the Kronecker δ.

The first type of disorder corresponds to the case that
the first (second) walker is controlled by a Hadamard coin,
walks along x (y) direction, and obtains an additional phase
φ whenever passing through x = 0 (y = 0). In contrast, the
second case corresponds to the case that the second walker
obtains an additional phase whenever passing through y = 0.
Both cases break the translational symmetry of the standard
QW without creating defects.

Compared to the standard QW, which can be factorized into
two independent distributions of 1D Hadamard QWs as shown
in Fig. 1(b), the 2D QW with position-dependent string phase
defect shows a completely different position distribution as
shown in Figs. 1(c) and 1(d). A QW with phase defects on
y = 0 is topologically equivalent to that with a walker on a 2D
regular lattice that is trapped on line x = 0. On the other hand,
a QW with phase defects on x(y) = 0, the QW is topologically
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φ=πφ=π
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FIG. 1. (Color online) (a) The 2D lattice of vertices that represent
the state space of two walkers populating an 11 × 11 position lattice
in an interferometer network. (b) Theoretical position distribution
after ten steps of a homogeneous 2D Hadamard QW. (c) Theoretical
position distribution after ten steps of a 2D Hadamard QW with
line phase defects φ = π on both x = 0 and y = 0. (d) Theoretical
position distribution after ten steps of a 2D Hadamard QW with line
phase defects φ = π only on y = 0.

equivalent to that with a walker is localized on lines x(y) = 0.
The maximal probability of the walker appears at the junction
point (0,0).

III. EXPERIMENT

Here we simulate experimentally a 2D photonic walk with
1D QW by realizing two walkers passing through a disordered
lattice and employing the separable coin operation H⊗2. We
simulate two kinds of disordered lattices: (i) a single-point
phase defect in the original position (0,0) and (ii) a string
phase defect in the axis y = 0. In this way we can observe
localization both (i) on a single point and (ii) on a line.

A. Positions of one-dimensional walkers

QWs can be produced by photons passing through a cascade
of birefringent calcite beam displacers (BDs) arranged in a
network of Mach-Zehnder interferometers [24,28,30]. The
direction of the single-photon transmission is controlled by
the coin state, i.e., physically the photon polarization.

Each interferometric output corresponds to a given point
in the space and time location of the 1D QW. Here for 2D
QW, pairs of photons are created via spontaneous parametric
down conversion (SPDC) and then injected separately into the
interferometer network from different input ports. They do not
interfere with each other. Pairs of photons propagate along x

and y axes, respectively, which correspond to the four different
directions taken by single photon in one step on a 2D lattice.

In this scenario, disorder can be added in the evolution
by simply introducing polarization-independent phase shifters
(PSs) between the interferometer paths. Benefiting from the
novel technology of PSs applied in arbitrary positions and
the stability of the BD interferometer network, we are able

FIG. 2. (Color online) Detailed sketch of the setup for ten-step
2D QW with position-dependent phase defect φ on x(y) = 0. Photon
pairs created via type-I SPDC are injected to the optical network
from different ports. Arbitrary initial coin states are prepared via a
PBS, HWP, and QWP. PSs are placed in the corresponding spatial
modes and the optical compensators (OCs) are used to compensate
the temporal delay caused by PSs. Coincident detection of photons
at the APDs (7 ns time window) predicts a successful run of the QW.

to realize a ten-step 2D QW within an 11 × 11 lattice
influenced by various types of controllable disorders. With this
instrument, we observe that photon wave functions are trapped
not only at single points but also on lines. Furthermore, these
defects can be used to implement arbitrary phase maps in QWs.

B. One quantum-walk step

In our experiment the setup in Fig. 2 has been realized by
using the BD array as an interferometer network similar to that
used in [24,28,30]. By taking advantage of the intrinsically
stable interferometers, our approach is robust and able to
control both coins and walkers at each step. Benefiting from the
fully controllable implementation, we experimentally study
the impact of the position-dependent phase defects on the
localization effect in a QW architecture and the experimental
results agree with the theoretical predictions. Compared
to the previous experimental results which only simulated
localization effect by trapping the walker in a certain single
point [22–24], we experimentally localize the walker on the
lines instead.

The challenge of our experiment is to realize a specific
polarization-independent phase at each site via microscope
slides (PSs) with precise effective thickness and to keep high
interference visibility even with phase defect. Specifically, we
rotate the PSs for each step and then gather the photon-count
data.

These data are compared to the theoretical predictions.
If the data are not satisfactory with respect to the 1-norm
distance st of the walker distribution, we discard the data,
adjust the PSs, and repeat. This postselection-like method
provides an excellent agreement between the measured proba-
bility distribution (measured position variance) and theoretical
prediction. By introducing controllable PSs in the paths of the
interferometers, we have managed to create these versatile
interferometer networks which can be used in many other
fields.

C. Source and detection

The photon pairs generated via type-I SPDC in 0.5-mm-
thick nonlinear-β-barium-borate crystal cut at 29.41◦, pumped
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by a 400.8 nm cw diode laser with up to 100 mW of power.
For 2D QWs, photon pairs at wavelength 801.6 nm are
prepared into a symmetric initial state [(|H 〉 + i|V 〉)/√2]⊗2

via a polarizing beam splitter (PBS) followed by wave plates.
Interference filters determine the photon bandwidth 3 nm
and then pairs of down-converted photons are steered into
the different optical modes (up and down) of the linear-
optical network formed by a series of BDs, half-wave plates,
and PSs.

Output photons are detected via avalanche photodiodes
(APDs) with dark count rate of <100 s−1 whose coincident
signals—monitored using a commercially available counting
logic—are used to postselect two single-photon events. The
total coincident counts are about 300 s−1 (the coincident
counts are collected over 60 s). The probability of creating
more than one photon pair is less than 10−4 and can be
neglected.

The coin state is encoded in the polarization |H 〉 and |V 〉
of the input photon. In the basis {|H 〉,|V 〉}, the Hadamard
operator is realized with a HWP set to π/8. The walkers’
positions are represented by longitudinal spatial modes. The
unitary operator shown in Eq. (1) manipulates the wave packet
to propagate according to the polarization of the photons.
The translational symmetry of an ideal standard QW without
defects is now broken by modifying the phase of the walkers
on each site, which can be realized by simply introducing PSs
in the specific interferometer arms. By adjusting the relative
angle between the PS and the following BD, the effective
thickness of the PS changes and the specific phase φ can be
realized.

The spatial modes are separated by a BD with length
28.165 mm and clear aperture 33 mm × 15 mm. The optical
axis of each BD is cut so that vertically polarized light is
directly transmitted and horizontal light undergoes a 3 mm
lateral displacement into a neighboring mode which interferes
with the vertical light in the same mode. Each pair of BDs
forms an interferometer. Only odd (even) sites of the walker
are labeled at each odd (even) step, as the probabilities of the
walker appearing on the other sites are zero. Pairs of photons
are injected from different ports and propagate in different
layers of the BD interferometer network.

The first ten steps of the QW with position-dependent phase
defect φ applied on the two axes x = 0 and y = 0 are shown
in Fig. 2. For each walker (photon), the longitudinal spatial
modes after the first step are recombined interferometrically
at the second step. The interference visibility is reached 0.998
per step (extinction ratio 1000:1). In both layers of the BDs
the photons emerge in the N + 1 spatial modes at the output
of the N th step and are subsequently detected by an APD.
The probabilities P (x,y) are obtained by normalizing photon
counts via a coincidence measurement for two walkers at
position x and y, respectively, to total number of photon counts
for the respective step.

The measured probability distributions for one to ten steps
of a 2D Hadamard QW with position-dependent phase defect
φ = π on x(y) = 0 and the symmetric initial coin state are
shown in Fig. 3(a). The 1-norm distance is 0.095 ± 0.016
ensuring a good agreement between the measured probabilities
and theoretic predictions after ten steps. The walkers’ state
after ten steps clearly shows the characteristic shape of a

φ=π/4
φ=π/2

φ=3π/4
φ=π

FIG. 3. (Color online) Experimental data of probability distribu-
tions of the ten-step 2D Hadamard QW with position-dependent string
phase defects on both x = 0 and y = 0: (a) φ = π , (b) φ = 3π/4,
(c) φ = π/2, and (d) φ = π/4. The walkers start from the original
position (0,0) with the symmetric coin state.

localization distribution: the wave functions of photons are
trapped on two axes x = 0 and y = 0, and a pronounced peak
of the probability 0.424 ± 0.015 (with theoretical prediction
0.441) in the junction point (0,0). In contrast to the ideal
standard 2D Hadamard QW the expansion of the wave packet
is highly suppressed and the probabilities P (x,0) and P (0,y)
are enhanced. The maximal probability occurs at the junction
point (0,0), which displays the signature of the localization
effect.

D. Results

Our experimental result highlights the full control of the
implementation of the 2D QW. In Fig. 3, we show the
impact of phase defects φ ∈ [0,π ] on the localization effect.
Figures 3(b) and 3(d) show the position distribution of the
ten-step 2D Hadamard QW with φ = 3π/4,π/2,π/4. For the
symmetric initial coin state, the two walkers behave the same
and show the symmetric distributions.

The localization effect can be observed in the range φ ∈
[3π/4,π ], and the recurrence probability P10(0,0) increases
with φ, which agrees with the analytic result. Especially for
φ = π the walkers are almost completely trapped on the axes
x and y. If φ decreases, the 2D QW’s behavior tends to
be ballistic. For φ = π/2 the wave functions of photons are
distributed the same as for the standard Hadamard QW without
phase defects. For φ = π/4, the photons spread even faster and
show a superballistic behavior.

Thus, whether or not the localization effect can be observed
depends on the choices of phase defects. The dependence of
the localization effect on φ can be explained [16,17] by the
overlap between the localized eigenstates of the unitary step
operation U and the initial state of the system.

Now we add the phase defects only on the y axis. That is,
if and only if the walker who walks along the y axis arrives
at y = 0 obtains an additional phase φ. Experimentally we
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φ=π/4φ=π/2

φ=3π/4φ=π

FIG. 4. (Color online) Experimental data of probability distribu-
tions of the ten-step 2D Hadamard QW with position-dependent string
phase defects only on y = 0: (a) φ = π , (b) φ = 3π/4, (c) φ = π/2,
and (d) φ = π/4.

rearrange the PSs and photons propagating in the lower layer
pass through the PSs. In Fig. 4 we show the measured position
distribution of 2D QW with the string phase defects, which
displays that the photons appear on a line with relative large
probabilities.

Thus, the photons are localized on the x axis for φ large
enough. On the x axis, the photon distribution is similar to that
of the 1D standard Hadamard QW. In Fig. 5, measured position
variances of the walker along the y axis show the impact of
phase defects. For φ = π/2 photons show a ballistic behavior.
For φ = π/4 they move even faster and show a superballistic
behavior. For φ = 3π/4 and φ = π they stagnate and show
localization. For φ = π the variances are even smaller than
those of the classical RW, whereas the walker walking along
the x axis is not influenced.

The performance of our setup is limited only by imper-
fections of the optical components such as nonplanar optical
surfaces and the coherence length of single photons, resulting
in errors and decoherence. A limitation for the maximal step
number is given by the size of the clear aperture of the BDs.
However, this problem is not intrinsic to this implementation,

FIG. 5. (Color online) (a) Measured trend of the variance of the
walker who walks along the y axis up to ten steps with respective
theoretical predictions (lines). (b) Measured dynamics evolution of
the position variance of the walker who walks along the x axis. As the
phase defects are only applied on y = 0, the walker along the x axis
is not affected. Thus for all φ the walker shows a ballistic behavior.

as the BDs with large enough clear aperture and strictly planar
surface can realize the large-step QW.

IV. CONCLUSIONS

Our experimental architecture can be generalized to more
than two dimensions with the same BD interferometer net-
work, a deterministic multiphoton source, and joined multi-
photon measurement. Multiple photons undergoing an inter-
ferometer network represent the walker in higher-dimensional
structures and the polarization of the photons represents the
coins manipulated by the wave plates. This opens a large
unexplored field of research such as quantum simulation with
multiple walkers.

In summary, we implement a stable and efficient way to
realize 2D QW embedded in a broader framework and show
that the position-dependent phase defects can influence the
evolution of wave packets. The 2D QW with string phase
defects has the wave functions of photons localized in certain
lines. Here we observe localization on the lines instead of
single points. Our experiment benefits from the high stability
and full control of both coins and walkers at each step and
in each given position. The versatility of our setup allows for
extensions that would help us to study the topological structure
of multidimensional QWs and develop applications such as
quantum state transfer and energy transportation problems.
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APPENDIX: ISOMORPHISM BETWEEN TWO
ONE-DIMENSIONAL QUANTUM WALKS AND ONE

TWO-DIMENSIONAL QUANTUM WALK

In this Appendix we begin by describing the 1D QW, then
describe a pair of 1D QWs with a shared coin [49] and follow
with a discussion of the 2D QWs. Following these descriptions,
we prove an isomorphism between a pair of 1D QWs sharing
a quantum coin [49] and the 2D QW.

1. One-dimensional quantum walk

The 1D QW has a walker moving along an integer lattice
whose sites are indexed by x ∈ Z. Thus, the basis set for
the walker state is {|x〉; x ∈ Z}. The coin operator C1D is an
element of the Lie Group SU(2) and can be site dependent,
which is important for introducing lattice defects. Therefore,
we write the coin operator as

C1D :=
∑
x∈Z

|x〉〈x| ⊗ Cx (A1)

to present site-dependent coin operation which is used widely
in realizing generalized measurement via QWs [42], whereas
non-site-dependent coin operation can be written as 1 ⊗ Cx

with Cx ∈ SU(2) uniform for arbitrary x.
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The coin-state basis is

{|c〉 ∈ PC2; c ∈ B} (A2)

for B = {0,1} the bit space and PC2 the projective space of
pairs of complex numbers. Thus, we can write

Cx =
(

e−iϕx

cos θx eiψx

sin θx

e−iψx

sin θx eiϕx

cos θx

)
(A3)

being the 2 × 2 complex matrix representation for SU(2),
which is parametrized by three independent x-dependent
angles θx , ψx , and ϕx .

The QW step operator U is obtained by combining the
coin flip with the conditional translation of the walker. The
conditional translation operator is

T 1D =
∑
x∈Z

(|x〉〈x + 1| ⊗ |0〉〈0| + |x + 1〉〈x| ⊗ |1〉〈1|).
(A4)

The unitary QW step operator is thus

U 1D = T 1DC1D. (A5)

The walker’s evolution is obtained in discrete steps with
evolution time given by

t ∈ N = {0,1,2, . . . }, (A6)

and the evolution at time t is given by (U 1D)t .
For fixed t , and for a walker whose state has support

over a finite domain of {x ∈ Z}, the step operator U 1D has
a finite-dimensional representation. For the initial walker state
commencing as a wholly localized state at the origin x = 0,
the domain at time t can be restricted to

x ∈ �t := {−t, . . . ,t}. (A7)

(Actually, the domain can be restricted to even and odd
sublattices depending on the parity of t , but we ignore this
simplification here.)

The 1D QW unitary step operator (A5) can be expressed as

U 1D
t =

∑
x∈�t

(|x + 1〉〈x| ⊗ |0〉〈0| + |x − 1〉〈x| ⊗ |1〉〈1|)

×
∑
x ′∈�t

|x ′〉〈x ′| ⊗ Cx ′

=
∑
x∈�t

∑
c∈B

|x + (−1)c〉〈x| ⊗ (|c〉〈c|Cx), (A8)

where we have employed the periodic boundary condition

|±(t + 1)〉 ≡ |∓t〉. (A9)

For

d1D
t := 2(2t + 1), (A10)

the operator U (A8) can be expressed as a (d1D
t × d1D

t )-
dimensional special unitary matrix.

2. Two one-dimensional quantum walks

Now let us consider two 1D QWs, each holding a coin
with site-dependent SU(2) operator. If the two QWs are
completely independent of each other, the evolution is simply
a power t of the tensor product of individual evolutions:

(U 1D
t ⊗ U 1D

t )t , which can be expressed as a special unitary
matrix of dimension (

d1D
t

)2 × (
d1D

t

)2
. (A11)

The two-walker step-by-step unitary evolution operator is

U 1D1D
t = T 1D1DC1D1D

=
∑

x,y∈�t

∑
c,d,∈B

|x + (−1)c,y + (−1)d〉〈x,y|

⊗ (|c,d〉〈c,d|Cxy), (A12)

where

T 1D1D =
∑

x,y∈Z

∑
c,d,∈B

|x + (−1)c,y + (−1)d〉〈x,y|

⊗ |c,d〉〈c,d|, (A13)

C1D1D =
∑

x,y∈Z
|x,y〉〈x,y| ⊗ Cxy, (A14)

and

Cxy ∈ SU(4). (A15)

This coin operator can be parametrized by 15 independent
angles, and this operator (A12) reduces to U 1D

t ⊗ U 1D
t if

Cxy = Cx ⊗ Cy ∈ SU(2) × SU(2). (A16)

Two independent walkers thus necessarily remain independent
under this factorizable evolution.

If the coin operator (A15) is not factorizable, two walkers
can become entangled by sharing coins, which is achieved by
a fractional-swap operation

Cxy = 
τxy

= 1

2

⎛
⎜⎜⎝

2 0 0 0
0 1 + (−1)τ

xy

1 − (−1)τ
xy

0
0 1 − (−1)τ

xy

1 + (−1)τ
xy

0
0 0 0 2

⎞
⎟⎟⎠ (A17)

for 
 the swap operator and τ xy ∈ (0,1) [49]. If the walkers’
coin-sharing procedure is independent of position, then τ xy ≡
τ (a constant). Thus, U 1D1D

t (A12) can be expressed as a

special unitary matrix of dimension (d1D
t )

2 × (d1D
t )

2
the same

as (A11).

3. Two-dimensional quantum walk

For a a single quantum walker moving along a 2D Cartesian
lattice, a convenient basis choice is

{|x,y,c〉; (x,y) ∈ Z2,c ∈ B2}. (A18)

Thus, the walk is over the 2D integer lattice and the coin-state
parameter is given by a two-bit string.

Analogous to the 1D coin operator (A1), the 2D coin
operator is

C2D :=
∑

(x,y)∈Z2

|x,y〉〈x,y| ⊗ Cxy (A19)

to present a 2D site-dependent coin operator, whereas the non-
site-dependent coin operation can be written as 1 ⊗ Cxy with
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Cxy uniform for any (x,y). Following the coin flip, translation
takes place, which is given by the 2D translation operator

T 2D =
∑

(x,y)∈Z2

(|x,y〉〈x + 1,y| ⊗ |0,0〉〈0,0|

+ |x,y〉〈x,y + 1| ⊗ |0,1〉〈0,1|
+ |x,y + 1〉〈x,y| ⊗ |1,0〉〈1,0|
+ |x + 1,y〉〈x,y| ⊗ |1,1〉〈1,1|). (A20)

The unitary QW step operator is thus U 2D = T 2DC2D analo-
gous to the 1D translation operator (A4) and can be expressed
as a (d2D

t × d2D
t )-dimensional special unitary matrix for

d2D
t := [2(2t + 1)]2 = (

d1D
t

)2
. (A21)

The quantum walker accesses only the sub lattice �⊗2
t , which

is a twofold tensor product of the 1D sublattice (A7).

4. Isomorphism between two one-dimensional quantum walks
and one two-dimensional quantum walk

The isomorphism between two 1D quantum walkers and
one 2D quantum walker is proven if the two transformations
are identical in appropriate bases. We know from Eq. (A21)
that the two matrices have the same size so the approach in this
section is to find the appropriate basis transformation from 1D
to 2D so the matrix representations are identical. Then we need
to establish that the transformation (A23) and the two-coin
operation including fractional swap (A17) leads to the same
unitary step-operator matrix for the two cases of two 1D QWs
and one 2D QW. We show this isomorphism by proving that

U 1D1D
t = U 2D

t (A22)

after implementing the coördinate transformation (A23) and
the fractional quantum-coin swap (A17).

We choose the mapping

x �→ x + y, y �→ x − y, (A23)

to carry coördinates x and y for the two 1D walkers to
the joint coördinate of the 2D quantum walker. Under the
transformation (A23), the 2D translation operator (A20) can
be rewritten as

T 2D =
∑

x,y∈Z

∑
c,d∈B

|x + (−1)c,y + (−1)d〉〈x,y|

⊗ |c,d〉〈c,d|, (A24)

which evidently matches T 1D1D—a crucial part of U 1D1D
t

in Eq. (A12). The next step to proving the isomorphism
is to decompose the SU(4) coin operator (A19) according to
[55–57]

Cxy = (u1 ⊗ u2)[(Z ⊗ X)
γ (Z ⊗ 1)

×
β(1 ⊗ X)
α](v1 ⊗ v2) (A25)

with Pauli matrices

X =
(

0 1
1 0

)
, Z =

(
1 0
0 −1

)
, (A26)

general SU(2) elements u1,2 and v1,2, and 
i (i = α,β,γ ∈
[0,1]) the fractional-swap operation (A17). That is, an arbitrary
SU(4) operation on a four-sided coin can be decomposed into
three 
i gates and single-qubit gates. An arbitrary SU(4) coin
can be either separated or entangled. For the former case, Cxy

can be decomposed into single-qubit gates only, i.e.,

Cxy = Cx ⊗ Cy, (A27)

if and only if

Cx = u1v1, Cy = u2v2, α = β = γ = 0. (A28)

For the latter case, Cxy can be decomposed by three 
i gates,
i.e.,

Cxy = 
τxy

(A29)

if and only if
β = γ = −1, α = τ xy, u1,2 = v1,2 = 1. (A30)

Thus we show the isomorphism between two 1D QWs with
two walkers having separated coins and 2D QW with one
walker controlling a four-sided coin in Eq. (A27), and the
isomorphism between two 1D QWs with two walkers sharing
coins and 2D QW with one walker controlling a four-sided
coin in Eq. (A29) by proving U 1D1D

t = U 2D
t for the two cases,

respectively.
Therefore, a 2D QW with one walker controlled by a SU(4)

coin flipping and a 1D QW with two walkers sharing coins
[49] is proven to be isomorphic. Thus, one can use a 1D QW
with two walkers to simulate 2D QW if the two walkers share
their coins except for the local rotations.

Here we simulate a 2D walk with two 1D quantum walkers
and treat the simple coin flipping operator H⊗2 for Hadamard
operator H , which is a special case of the coin operators for
two 1D QWs (A16). In this case, the above coin operator
for two 1D QWs is equivalent to that for a 2D QW Cxy in
Eq. (A25) once

u1 = u2 = H, α = β = γ = 0, v1 = v2 = 1 (A31)

are satisfied.
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and C. Silberhorn, Phys. Rev. Lett. 106, 180403 (2011).

[24] P. Xue, H. Qin, and B. Tang, Sci. Rep. 4, 4825 (2014).
[25] R. Zhang and P. Xue, Quantum Inf. Comput. 13, 1825 (2014).
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