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Entanglement and the sign structure of quantum states
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Many-body quantum eigenstates of generic Hamiltonians at finite-energy density typically satisfy the “volume
law” of entanglement entropy: the von Neumann entanglement entropy and the Renyi entropies for a subregion
scale in proportion to its volume. Here we provide a connection between the volume law and the sign structure
of eigenstates. In particular, we ask the following question: Can a positive wave function support a volume
law entanglement? Remarkably, we find that a typical random positive wave function exhibits a constant law
for Renyi entanglement entropies Sn for n > 1, despite arbitrary large-amplitude fluctuations. We also provide
evidence that the modulus of the finite-energy density eigenstates of generic local Hamiltonians shows similar
behavior.
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I. INTRODUCTION

The intricate sign structure of quantum states plays an
important role in fields as disparate as quantum chaos [1,2],
quantum Monte Carlo simulations [3,4], and semiclassical
quantum mechanics [5]. In this paper, we point out that the sign
structure is also important for understanding the qualitative
behavior of entanglement entropy in finite-energy density
eigenstates of a generic quantum many-body system.

In sharp contrast to the celebrated “area-law” scaling in
the quantum ground states for the von Neumann entanglement
entropy SvN [6,7], and the Renyi entanglement entropies Sn

with SvN,Sn ∼ �d−1
A in d spatial dimensions, the finite-energy

density eigenstates instead typically satisfy a “volume law”
scaling, SvN,Sn ∼ �d

A, where �A is the linear size of the
subregion for which entanglement is being calculated [8–10].
For a generic, nonlocalized [11–15], nonintegrable system,
where the equivalence between microcanonical and canonical
ensembles is expected to hold true vis-a-vis the “eigenstate
thermalization hypothesis” (ETH) [16–20], the volume law
scaling of entanglement is equivalent to the extensivity of
thermal entropy. In particular, in these systems, the von
Neumann entanglement entropy SvN of an eigenstate with
energy density e equals sthermal(e)VA, where sthermal(e) is the
thermal entropy density and VA ∼ �d

A is the volume of region
A. In this paper, we ask the following: What feature(s) in
a quantum state are responsible for the volume law scaling?
We provide evidence that the sign structure of wave functions
[21] is essential for obtaining volume law scaling for Renyi
entanglement entropies Sn for n > 1. In particular, we show
that a generic positive wave function in the Hilbert space,
despite arbitrary large-amplitude fluctuations, typically only
shows a constant law: Sn ∼ sn for n > 1, where sn are finite
positive numbers. We also provide evidence that the same
holds true for the modulus of finite-energy density eigenstates
of local Hamiltonians.

At a heuristic level, the aforementioned volume law entan-
glement for excited states results from the random structure
of eigenstates at finite-energy density, which necessitates an
O(esthermal�

d
A) number of eigenvectors to faithfully represent

the reduced density matrix for a region of size �A, where
sthermal is the corresponding entropy density. This is in contrast

to the ground-state wave functions, which typically have a
much more “rigid” structure, thus typically requiring a much
smaller number ∼O(e�d−1

A ) of eigenvectors. This motivates us
to explore the concept of ensemble of wave functions, which
will be important for our discussion throughout. Specifically,
consider the set of wave functions of the form

|ψ〉 =
∑
C

ψ(C) |C〉, (1)

where |C〉 is a basis vector in a certain local (i.e., real-space)
basis and ψ(C) are picked from a specific random distribution
subject to the normalization condition

∑
C |ψ(C)|2 = 1. Given

such an ensemble, one may ask the following: What are the
average entanglement entropies 〈Sn〉,〈SvN〉? As shown several
decades ago by Lubkin [8], if ψ(C) are random real or random
complex numbers with respect to the unitarily invariant Haar
measure [i.e., the vector �ψ(C) is distributed uniformly over a
sphere of the size of the total Hilbert space], then 〈SvN〉,〈Sn〉
are maximal: 〈SvN〉 = 〈Sn〉 = ln(|HA|) ∼ VA, where |HA|
is the size of the Hilbert space for region A while A denotes
the complement of subregion A, and we have assumed that
the ratio VA

VA
< 1 while both VA,VA → ∞. Due to ETH, an

eigenstate of a lattice model at “infinite temperature” (i.e.,
at an energy density e such that ∂sthermal

∂e
= 0) also satisfies

SvN = Sn = ln(|HA|) ∼ VA and, therefore, in this respect,
resembles a typical member of the ensemble in Eq. (1).

In this paper, we develop a relation between random en-
sembles and entanglement with an eye on the sign structure of
many-body eigenstates. Does any arbitrary random ensemble
yield a volume law entanglement, or does one require a more
specific structure to the states comprising the ensemble? For
example, as discussed in Ref. [22], a “sign-random” wave
function, where ψ(C) = ±1 with equal probability, recovers
the full infinite-temperature entanglement entropy, 〈Sn〉 =
ln(|HA|), despite no fluctuations in the amplitude |ψ(C)|. This
motivates us to ask the following: Would a random ensemble
where the wave function is allowed to fluctuate in amplitude,
but not in its sign, show a volume law entanglement? A
naive guess is that this is indeed the case—one can clearly
construct wave functions which are positive in a local basis
and have volume law Sn for arbitrary n. For example, consider
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a “long-range triplet” (LRT) state for a spin-1/2 system:
|ψLRT〉 = ∏

i (|↑〉i |↓〉j (i) + |↓〉i |↑〉j (i)), where j (i) denotes the
triplet partner of the ith spin and is chosen so that the distance
|i − j (i)| is of the order of the total system size for each i. Such
a state can be easily demonstrated to have a volume law Sn for
all n. Surprisingly, our analysis of random positive ensembles
shows that this naive caricature of volume law wave functions
is misleading: on average, positive states show a constant law
Renyi entanglement entropy for Renyi index n > 1 whose
magnitude does not depend on the size of the Hilbert space in
region A. Therefore, states such as |ψLRT〉 which are positive
and have a volume law entropy are extremely rare. We also
study physical Hamiltonians and find that they also agree
with the aforementioned constant law when entanglement is
computed for the modulus of finite-energy density eigenstates.

II. AVERAGE ENTANGLEMENT ENTROPY FOR
RANDOM POSITIVE ENSEMBLES

In order to understand the role of sign structure in generating
entanglement, we ask the following: What is the average
entanglement entropy of a wave function which, in a given
local basis, has only positive coefficients that are drawn
from a specific random distribution? This may seem an
ill-motivated question since a physical finite-energy density
state (e.g., a finite-energy density eigenstate) will generically
not be expandable with positive coefficients in a local basis.
Furthermore, even if one restricts oneself to an ensemble of
wave functions that have positive coefficients in a local basis,
a change of basis will generically not maintain positiveness of
the coefficients. However, we find that the analysis of a random
ensemble where the coefficients are positive in a fixed, chosen
basis will lead to insights that are more generally applicable.
We will examine the role of the choice of basis in Sec. III
where we study eigenstates of physical Hamiltonians.

Given an ensemble of wave functions, one may define at
least three different measures of entanglement, depending on
how one performs the averaging:

Sn(〈ρA〉) = − 1

n − 1
ln(tr 〈ρA〉n), (2)

Sn

(〈
tr ρn

A

〉) = − 1

n − 1
ln

(〈
tr ρn

A

〉)
, (3)

〈Sn(ρA)〉 = − 1

n − 1

〈
ln

(
tr ρn

A

)〉
. (4)

Here, n is any positive real number. Of these three, 〈S(ρA)〉
is the easiest to interpret physically and hardest to access
analytically, while Sn(〈ρA〉) may seem the least physical, but
is the easiest one to calculate. For brevity, we will sometimes
denote 〈Sn(ρA)〉 as 〈Sn〉.

Let us therefore consider a wave function,

||ψ |〉 =
∑
C

|ψ(C)||C〉, (5)

where {C} spans the Hilbert space, and 〈ψ |ψ〉 = 1. The
random coefficients ψ(C) are distributed uniformly on the
sphere S|HA||HA|−1 or S2|HA||HA|−1, depending on whether ψ(C)
are real or complex, with the distinction between the two cases
(i.e., real versus complex) being inconsequential for any of

our results. Since the expansion coefficients |ψ(C)| in the
basis |C〉 are positive, we will refer to this ensemble as the
“random positive ensemble” (RPE). We will also study a less
general case where the coefficients ψ(C) in Eq. (5) are Slater
determinants formed out of single-particle plane-wave states,
while the corresponding wave vectors are chosen at random
from a uniform distribution over a Brillouin zone.

A simple calculation (Appendix A1) shows that in general,
Sn(〈ρA〉) for the wave function ||ψ |〉 in Eq. (5) is given by

Sn(〈ρA〉)

= 1

1 − n
ln

[
(|HA| − 1)

(
1 − g

|HA|
)n

+
(

g + 1 − g

|HA|
)n]

,

(6)

where g = 〈|ψ(C)|〉2

〈|ψ(C)|2〉 and |HA| denotes the size of the Hilbert
space for subregion A. The expression for the von Neumann
entropy is obtained by taking the limit n → 1 in the above
equation. For ease of presentation, below we will denote
ln(|HA|) by �d

A, where d is the spatial dimension and �A is
proportional to the linear extend of the region A. The actual
physical length differs from �A only by an O(1) multiplicative
factor that depends on the size of the local Hilbert space, which
we ignore.

Let us consider the two aforementioned cases separately:
(a) Random positive ensemble (RPE). As mentioned above,

this is the case for a state |ψ |, where ψ is an infinite-
temperature state which satisfies ETH. A simple calculation
(Appendix A2) shows that for this case, the parameter g =
2/π . This implies that in the asymptotic limit V,VA → ∞
with VA � VA, one obtains

Sn(〈ρA〉) =

⎧⎪⎪⎨
⎪⎪⎩

n
n−1 ln

(
π
2

)
if n > 1,(

1 − 2
π

)
�d

A if n = 1,

�d
A if n � 1,

(7)

with S1 ≡ SvN, the von Neumann entanglement entropy. Thus,
all of the Renyi entropies for n > 1 satisfy a constant law,
in sharp contrast to the ensemble of complex or real wave
functions which satisfy a volume law with maximal coefficient:
Sn = �d

A. At the same time, the asymptotic scaling of Sn for
n< 1 remains exactly the same as the one for the random
complex or random real ensemble, while SvN displays a
reduced volume law prefactor.

The contrasting behavior for n > 1 and n � 1 signals
a finite-temperature phase transition in the (averaged) en-
tanglement Hamiltonian, Hρ = − ln(〈ρA〉), for the positive
ensemble. Indeed, 〈ρA〉 has |HA| − 1 number of degenerate
eigenvectors with a rather small eigenvalue of magnitude
(1− 2

π
)

|HA| , and a single eigenvector with a large eigenvalue 2
π

+
(1− 2

π
)

|HA| which results in the phase transition at a temperature
1/n = 1 for the entanglement Hamiltonian (see Appendix A1
for details).

We also calculated the two other measures of average
entanglement for the RPE: Sn(〈tr ρn

A〉) and the most physically
relevant 〈Sn(ρA)〉. As shown analytically in Appendix B, the
result for S(〈tr ρn

A〉) matches exactly with those for Sn(〈ρA〉) in
Eq. (7). Finally, we numerically calculate 〈Sn(ρA)〉 for the RPE
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FIG. 1. (Color online) Average entanglement entropies 〈Sn(ρA)〉
corresponding to the random positive ensemble. Region A is half
the total system size. 〈Sn〉 for n > 1 (n � 1) shows a constant law
(volume law) whose values match the analytical results for Sn(〈ρA〉)
for the same ensemble (see text for details). The “error bars” shown
correspond to the variance of Sn(ρA). n increases from top to bottom
in the figure.

for a total Hilbert space size |HA||HA| up to 216 (see Fig. 1) and
find nearly perfect agreement with Eq. (7). Therefore, for the
RPE, all three measures of entanglement, Sn(〈ρA〉),Sn(〈tr ρn

A〉)
and 〈Sn(ρA)〉, agree with one another.

(b) ψ(C) = random Slater determinant. In this case,
the original wave function is ψ(C) = det(ei�ki .�rj (C)), up to
normalization, where the vector �k is chosen from a uniform
distribution over the one-dimensional (1D) Brillouin zone, and
the vector �r(C) denotes the configuration C in real space (this
is equivalent to choosing complex numbers of unit modulus
with a uniformly distributed argument). Since ψ corresponds
to an integrable system, namely free fermions on a 1D lattice,
this case is nongeneric, although still instructive. The results
of Refs. [23,24] imply that for a total system size of length L,
the equality between the von Neumann entropy and thermal
entropy for such a wave function holds only in the limit
�A/L → 0, while L → ∞ (unlike the case of RPE where
it holds as long as �A � L/2, while L → ∞).

The numerical results for 〈S2(ρA)〉 corresponding to the
wave function ||ψ |〉 in Eq. (5) are shown in Fig. 2. These
results are calculated using the quantum Monte Carlo sampling
discussed in Ref. [25]. We find that 〈S2〉 ∼ α ln(�A), with
α ∼ 3

4 , which is reminiscent of the Sn ∼ c ln(�A) for (1 + 1)D
conformal field theories at zero temperature (c is the central
charge), although, in contrast, the logarithmic scaling should
hold in all dimensions since there is no notion of locality.
Therefore, the positive random Slater determinant does not
support a volume law entanglement either, although the
entanglement is larger compared to the RPE discussed above.
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FIG. 2. (Color online) Renyi entanglement entropy 〈S2(ρA)〉 cor-
responding to a wave function ψ = | det(M)|, where M is a matrix
whose elements are plane-wave states with random wave vectors (blue
solid curve) or a matrix whose elements are ±1 with equal probability
(red dashed curve). In the former case, we find S2 ≈ 3

4 ln(�A), while in
the latter case, S2 ≈ ln(�A). The total system size is fixed at 60 sites,
while �A varies from 1 to 20 sites. The error bars reflect the Monte
Carlo sampling standard deviation, and not the actual variance of S2

over the random ensemble.

A partial understanding of the logarithmic scaling of 〈S2〉
is obtained by analytically calculating Sn(〈ρA〉). As is obvious
from Eq. (6), Sn(〈ρA〉) is independent of �A and depends only
on L, the total system size. Therefore, unlike the case of RPE
above where all three measures of entanglement [Eq. (4)] were
asymptotically independent of the ratio �A/L, here we do
not expect Sn(〈ρA〉) to capture the full �A/L dependence of
〈Sn(ρA)〉. Nonetheless, it may still capture the correct scaling
behavior of 〈Sn(ρA)〉 when �A = rL, with r nonzero and fixed,
so that there is only one scale in the problem. We have checked
that this is indeed the case for a specific ensemble where ψ(C)
is a determinant of a matrix with random ±1 entries. We chose
this particular ensemble because the probability distribution
function for the modulus of determinant for this ensemble was
recently calculated in Ref. [26] (see also Ref. [27]) which
allows us to calculate Sn(〈ρA〉) analytically via Eq. (6). We
find that the parameter g in Eq. (6) scales as g ∼ 1/

√
L, in

contrast to the RPE where it was a constant (see Appendix A2
for details). Therefore, for this particular ensemble, we find

Sn(〈ρA〉) =
{

ln (�A) if n > 1,

�d
A if n � 1,

(8)

when �A = rL with r nonzero and fixed. As already hinted
above, we find that the physically more relevant 〈S2(ρA)〉
shows exactly the same scaling behavior, including the
prefactor of unity for the logarithm: 〈S2(ρA)〉 = ln(�A) (see
Fig. 2). Even though the prefactor of the logarithm is slightly
different than the case when ψ(C) = det(ei�ki .�rj (C)) with �k
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random (1 instead of 3
4 ), the qualitative behavior evidently

remains unchanged. We expect the scaling 〈Sn〉 ∝ ln(�A),
when n > 1, and 〈Sn〉 ∝ �d

A, when n � 1, to hold in general
dimensions, akin to Eq. (8).

In passing, we mention that we also studied a case where
only a fraction f of �k points is chosen randomly while the rest
are contiguous. Not surprisingly, as f → 0, the coefficient
of the logarithm in the equation 〈S2〉 ∝ ln(�A) for the wave
function |ψ | approaches 1

4 , since when all k points are

contiguous, the |det(ei�ki .�rj )| corresponds to the conformally
invariant ground state of a 1D hard-core bosonic system [28]
whose entanglement entropy is Sn = c

6 (1 + 1
n

) ln(�A) [29,30].

III. RELATION TO PHYSICAL HAMILTONIANS

The results of the previous section indicate that the sign
structure is essential to obtain volume law entanglement
for the Renyi entropies corresponding to a generic state
in the Hilbert space. Here we provide further evidence for
this statement by studying eigenstates of a nonintegrable
Hamiltonian. Specifically, consider the following Hamiltonian
for a spin-1/2 chain:

H = �i

(−σ z
i σ z

i+1 + hxσ
x
i + hzσ

z
i

)
, (9)

where the σ ’s are spin-1/2 Pauli matrices and we impose
periodic boundary conditions. We set hx = hz = 1; we verified
that the qualitative features of our results remain true for
other parameters as well as long as the Hamiltonian stays
nonintegrable.

We diagonalized the above Hamiltonian for system sizes
up to 12 sites and investigated eigenstates close to infinite
temperature by averaging over 1/8th of the total number
of eigenstates around the part of the SvN (E) curve where
∂SvN

∂E
= 0, with E being the energy eigenvalue. Akin to the

random ensembles studied in the previous section, we focus
on the entanglement structure of the modulus of these infinite-
temperature eigenstates. We first calculate entanglement in the
σ z basis and discuss the basis dependence in detail below. As
shown in Fig. 3, we find clear evidence for a constant law for
〈Sn〉 when n > 1 and volume law for n < 1 and for 〈SvN〉,
akin to the RPE. This is in accordance with the fact that the
Hamiltonian H in Eq. (9) is nonintegrable and is expected to
satisfy ETH. The numerical values of the constant law are also
very close to those found for the RPE.

As cautioned earlier, unlike the entanglement for an actual
eigenstate ψ , the entanglement corresponding to its modulus
|ψ | in general depends on the choice of the local basis.
Therefore, we next study the basis dependence of our results,
again close to the infinite temperature. In particular, we
consider the Hamiltonian

H ′(θ ) = U †(θ )HU (θ ), (10)

where U (θ ) denotes a global rotation of spins around the ŷ axis
by an angle θ with H ′(θ = 0) ≡ H . We obtain the eigenstates
ψα of H ′(θ ) in the σ z basis and study the entanglement
entropies corresponding to |ψα|. We find that both qualitatively
and quantitatively, the results are rather insensitive to the
choice of basis. This is not completely surprising—assuming
ETH holds, the coefficients ψ(C) corresponding to the wave
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FIG. 3. (Color online) 〈Sn〉 for several n corresponding to the
modulus of the eigenstates of the Hamiltonian in Eq. (9) close to the
infinite temperature. The entanglement bipartition divides the total
system into two equal halves. The plots for different θ correspond
to the global rotation of the local basis by an angle θ along the
ŷ axis (recall that the entanglement for |ψ | is basis dependent). The
qualitative behavior is found to be exactly the same as that for the
random positive ensemble (RPE), as in Fig. 1.

functions of H are distributed uniformly over the sphere the
size of Hilbert space, and a global rotation does not alter the
random distribution.

We also studied the Renyi entropies of wave functions
away from the infinite temperature. Our numerics indicate
that the constant law for the Renyi entropies continues to hold
away from infinite temperature. This is also consistent with
our quantum Monte Carlo results (not shown) for 〈S2(|ψ |)〉,
where we chose a variational wave function ψ such that,
when expanded in a local basis, its sign structure is random
while the amplitudes are not distributed uniformly on the
sphere SNANB−1, thus mimicking a finite-temperature state. As
T → 0, we expect that one recovers the area-law entanglement
for |ψ | generically—this is obvious for bosonic Hamiltonians
whose ground state is positive in a local basis, though we
expect it to be true more generally (see also Ref. [25]).

IV. CONCLUDING REMARKS

Our main result is that the Renyi entropies 〈Sn(|ψ |)〉, n > 1,
do not scale with volume, and instead show a constant law
when ψ is either a random wave function, or an eigenstate of
a physical Hamiltonian close to infinite temperature. This is
related to the fact that the off-diagonal elements of 〈ρA(|ψ |)〉
in any local basis are of the same magnitude as the diagonal
elements. In contrast, the off-diagonal elements of 〈ρ(ψ)〉
are exponentially smaller in subsystem size compared to the
diagonal elements leading to volume law Renyi entropies.
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A slightly different perspective is obtained by noting that
the Renyi entropies Sn for integer n > 1 may be decomposed
into a “sign” and a “modulus” contribution [25]. For example,

S2(ψ) = S2(|ψ |) + S
sign
2 (ψ), (11)

where S2(|ψ |) is the Renyi entropy corresponding to |ψ |, while
S

sign
2 (ψ) is defined via

e−S
sign
2 (ψ) =

∑
C1C2

ρC1,C2 sign

× [ψ(C1)ψ(C2)ψ(SwAC1)ψ(SwAC2)], (12)

where
∑

C1C2
denotes the sum over configurations in two

copies of the system, ψ(SwAC1) and ψ(SwAC2) are wave
functions that are obtained by swapping the field config-
uration in subregion A for ψ(C1) with those for ψ(C2),
and ρC1,C2 is the probability density defined by ρC1,C2 =
|ψ(C1)||ψ(C2)||ψ(SwAC1)||ψ(SwAC2)|. Above, we have as-
sumed that the wave function is real; the corresponding expres-
sion for complex wave functions is very similar (see Ref. [25]).
At infinite temperature, all configurations are equally likely,
and therefore one may approximate S

sign
2 (ψ) as S2[sign(ψ)].

Furthermore, assuming ETH holds, sign(ψ) will be completely
random at infinite temperature and, therefore, S

sign
2 (ψ) equals

the second Renyi entropy for the “sign-random” wave function
discussed in Ref. [22]. For a given real-space basis vector in
the Hilbert space, such a wave function takes values of either
+1 or −1 with equal probability. As shown in Ref. [22], the
Renyi entropy for a sign-random wave function is maximal,
i.e., when VA � VA, S2[sign(ψ)] = ln(HA) = �d

A, consistent
with our detailed calculations which show that S2(|ψ |) does not
contribute to the volume law entanglement at all and, as far as
the contribution to the volume law entanglement is concerned,
one may equate S2(ψ) with S

sign
2 (ψ). This discussion applies

to Sn for any integer n � 2.
As a potential application of our results, one may consider

writing down variational wave functions ψ for highly excited
states [e.g., the ground state of (H − E)2 would be an excited
state of H with energy E]. How might one verify that such
wave functions have the correct entanglement structure? For
a finite-energy density eigenstate, calculating Renyi entropies
Sn(ψ) (n � 2) using Monte Carlo [25] is extremely expensive
from a computational standpoint, since one needs to calculate
tr[ρn

A(ψ)], which scales as e−VA where VA is the volume of
region A. On the other hand, our results imply that Sn(|ψ |) is
straightforward to calculate since its computational complexity
does not scale with the system size at all due to the constant
law. Indeed, this is the reason that we were able to perform
Monte Carlo calculations for some of the results presented in
this paper. Therefore, Sn(|ψ |) can provide an insight into the
entanglement structure of such highly excited states while still
being computationally accessible.

Our result is reminiscent of the relation between the number
of nodes and the kinetic energy in elementary quantum
mechanics—typically, more nodes result in higher kinetic
energy and, as we argued in the many-body context, higher
entanglement entropy as well. This is not too surprising given
that entropy and energy are directly related via dE = T dS

(recall that ETH implies that entanglement entropy equals the
thermal entropy). We also note that ground states of bosonic

systems are often nodeless in an appropriate local basis, which
correlate with the fact that ground states typically do not
exhibit volume law scaling of entanglement. Furthermore, as
corroborated numerically in Ref. [25], even for systems with a
Fermi surface which show a multiplicative logarithm violation
of area law, the modulus of the wave function only shows an
area-law entanglement. On that note, it will be interesting to
explore the differences in the nodal structure for bosons and
fermions in the excited states, and their manifestations in the
corresponding entanglement structure.

We note that the essential role played by the random sign
structure in obtaining the volume law also manifests itself
in states that do not satisfy ETH. Consider a many-body
localized phase where eigenstates obey an area law for the von
Neumann entanglement entropy (and, consequently, area-law
Renyi entropies as well). As recently argued, there exist
quasilocal unitary bases in which eigenstates can be expanded
with positive coefficients [31–35]. This is consistent with the
intuition developed in this paper that a volume law Renyi
entropy indicates that generically, there exists no local basis
in which the wave function can be expanded with positive
coefficients. Similar reasoning applies to the area law obeying
ground states of systems that satisfy Marshall sign such as the
ground states of the Heisenberg antiferromagnet on bipartite
lattices.

In this paper, we focused on wave-function ensembles and
eigenstates of local Hamiltonians to understand the connection
between quantum entanglement and the sign structure of quan-
tum states. It might also be interesting to understand the role
of sign structure in quantum dynamics. An elementary insight
along this direction follows from comparing the real-time
versus the imaginary-time evolution of a quantum state. For a
system that satisfies ETH, the real-time evolution of a direct
product state will eventually lead to a state whose entanglement
entropy equals the thermal entropy [17]. In contrast, the
imaginary-time evolution corresponds to projection onto the
ground-state wave function which would typically satisfy
area-law entanglement (up to logarithmic corrections). This
is reminiscent of the contrast between the random complex
ensemble and the positive random ensemble considered in this
paper. We leave further exploration along this direction to the
future.
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APPENDIX A: DETAILS OF CALCULATIONS FOR 〈ρA〉
1. Entanglement spectrum of 〈ρA〉

The reduced density matrix for the wave function ||ψ |〉 =∑
C |ψ(C)||C〉, where ψ(C) are chosen from a random
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ensemble, is given by

ρA(CA,C ′
A) =

∑
CA

|ψ(CA,CA)||ψ(C ′
A,CA)|∑

CA,CA
|ψ(CA,CA)|2

= δCA,C ′
A

∑
CA

|ψ(CA,CA)|2∑
CA,CA

|ψ(CA,CA)|2

+ (
1 − δCA,C ′

A

) ∑
CA

|ψ(CA,CA)||ψ(C ′
A,CA)|∑

CA,CA
|ψ(CA,CA)|2 .

One may now perform an average over the random
ensemble to obtain 〈ρA〉:

〈ρA〉 = δCA,C ′
A

1

|HA| + g

(
1 − δCA,C ′

A

)
|HA| , (A1)

where g = 〈|ψ(C)|〉2

〈|ψ(C)|2〉 and |HA| denotes the size of the Hilbert
space in subregion A. The simple structure of 〈ρA〉 readily
allows one to diagonalize it: there is a single eigenvector with
eigenvalue λ = g + 1−g

HA
, and |HA| − 1 degenerate eigenvec-

tors with eigenvalue 1−g

HA
. This leads to the result for the Renyi

entropies in Eq. (6).
The huge gap in the entanglement spectrum between the

single lowest-lying eigenvalue and the rest of the states leads
to a finite-temperature phase transition for the entanglement
Hamiltonian Hρ = − ln(〈ρA〉) at unit temperature, as reflected
in the qualitative difference between the scaling of the Renyi
entropies Sn(〈ρA〉) depending on whether n � 1 (volume law)
or n > 1 (constant law).

2. Calculation of parameter g for random
wave-function ensembles

As is evident from the discussion above, the entanglement
entropies Sn(〈ρA〉) for a particular choice of ensemble depend
crucially on the parameter g. Let us consider the two cases
discussed in the main text separately.

(a) Random positive ensemble (RPE). In this case, ψ(C)
is distributed randomly and uniformly on SN , where N =
2|HA||HA| − 1 or |HA||HA| − 1, depending on whether the
wave function is complex or real, where the latter case might
be relevant to time-reversal invariant systems (for example).

The parameter g is given by

g = 〈| �ψ |〉2

〈| �ψ |2〉 , (A2)

where �ψ is an N -component vector and the average is taken
over a uniform distribution. We employ the following polar
coordinates for our calculation:

ψ1 = cos(φ1),

ψ2 = sin(φ1) cos(φ2),

ψ3 = sin(φ1) sin(φ2) cos(φ3), (A3)

. . .

ψN = sin(φ1) sin(φ2) . . . sin(φN−2) sin(φN−1),

where the angles φ1 to φN−2 lie between 0 and π , while φN−1

lie between 0 and 2π . To calculate the expression in (A2), it

suffices to restrict φ1 to φN−2 to the interval [0,π/2] and φN−1

to [0,π ), and replace |ψ | → ψ since all the coordinates are
positive within this restricted domain.

The denominator in Eq. (A2) is calculable trivially:
〈| �ψ |2〉 = 1

N
, since

∑N
i=1 |ψi |2 = 1. On the other hand, 〈|ψ |〉 is

given by

〈|ψ |〉 =
∫

dφ1 cos(φ1) sinN−2(φ1)∫
dφ1 sinN−2(φ1)

=

⎧⎪⎪⎨
⎪⎪⎩

1
N−1

2
π

(N−2)!!
(N−3)!! if N is even,

1
N−1

(N−2)!!
(N−3)!! if N is odd.

(A4)

When N � 1, one may approximate the factorials in Eq. (A4)
using Sterling’s formula n! ≈ √

2πn( n
e
)n, and one finds

〈|ψ |〉 ≈
√

2

πN
, (A5)

irrespective of whether N is even or odd (as one might expect).
Combining Eq. (A5) with 〈| �ψ |2〉 = 1

N
, one finds that g = 2/π ,

which leads to Eq. (7) in the main text.
(b) ψ(C) = det(M) where M is a matrix with random ±1

entries. Recall that to obtain Renyi entropies, one requires the
ratio 〈| det(M)|〉2

〈| det(M)|2〉 . Clearly, the denominator 〈| det(M)|2〉 = L!,
where L is the size of the matrix L (=the total number of
particles). One might have naively guessed that the numerator
=〈| det(M)|〉2 scales in the same fashion with L. However,
this turns out to be incorrect. The problem of the expectation
value of the modulus of a determinant was studied recently
in the mathematics literature by Nguyen and Vu in Ref. [26].
They found that ln | det(M)| is normal distributed with mean

ln[
√

(L − 1)!], and variance
√

ln(L)
2 . From this, one finds

that 〈| det(M)|〉2 ∼ (L − 1)!
√

L, and, therefore, the Renyi
entropies Sn(〈ρA〉) ∼ ln(L) for n > 1, while they continue to
follow a volume law for n < 1 and for the von Neumann
entropy [Eq. (8)]. As discussed in the main text, this result
yields the correct scaling of 〈Sn〉 only when �A/L is a nonzero
constant as L → ∞, so that there remains only one length
scale in the problem.

APPENDIX B: CALCULATION OF Sn(〈tr ρn
A〉)

By definition, 〈trρn
A〉 for the wave function ||ψ |〉 in Eq. (5)

is given by〈
trρn

A

〉 =
∑

{Ai,Ai }

〈∣∣ψ(
CA1 CA1

)∣∣∣∣ψ(CA2 CA1

)∣∣ ∣∣ψ(
CA2 CA2

)∣∣
. . .

∣∣ψ(
CAn

CAn

)∣∣ ∣∣ψ(
CA1 CAn

)∣∣〉. (B1)

A bit of thought will convince the reader that the leading
contribution to the above expression (in the limit where the
size of the Hilbert space is taken to infinity) comes from the
terms where all Ai’s and Ai’s are distinct. Interestingly, such
a contribution does not exist for the average over a random
real or complex wave function [8]. This is because if the wave
function was allowed to take both positive and negative values,
and if all Ai ,Ai are distinct, then the contributions would cancel
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out pairwise. This crucial difference leads to a qualitatively
different behavior of entanglement entropy Sn(〈tr ρn

A〉) for a
positive wave function.

The above average, to the leading order, is

〈
tr ρn

A

〉 ≈
n−1∏
i=0

(|HA| − i)(|HA| − i) ×
〈

2n∏
i=1

xi

〉
, (B2)

where xi are the first 2n Cartesian coordinates of the Euclidean
embedding of the unit sphere S|HA||HA|−1, and we have assumed
that the wave function ψ is real. The combinatorial prefactor
multiplying 〈∏2n

i=1 xi〉 can be obtained by imposing the con-
straint on the expression in Eq. (B1) that all the configurations
are distinct. 〈∏2n

i=1 xi〉 can be calculated conveniently via
spherical polar coordinates. One finds〈

2n∏
i=1

xi

〉
=

(
2

π

)n
[

n∏
i=1

(|HA||HA| + 2n − 2i)

]−1

. (B3)

Putting everything together, and taking the limit
|HA|,|HA| � n, one finds that at the leading order,

〈
tr ρn

A

〉 ≈
(

2

π

)n

. (B4)

Therefore, Sn(〈tr ρn
A〉) for n integer (n > 1) is given by

Sn

(〈
tr ρn

A

〉) = n

n − 1
ln

(π

2

)
, (B5)

which precisely matches the results for Sn(〈ρA〉) and 〈Sn(ρA)〉
discussed in the main text. Even though we only discussed the
case where ψ is real, the above calculation trivially generalizes
to the case when ψ is complex, and the answer [Eq. (B5)]
remains unchanged.
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