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Removing a single logical gate from a classical information processor renders this processor useless. This
is not so for a quantum information processor. A large number of quantum gates may be removed without
significantly affecting the processor’s performance. In this paper, focusing on the quantum Fourier transform
(QFT) and quantum adder, we show even more: Even if most of its gates are eliminated and the remaining
gates are selected from a randomly generated set, the QFT, one of the most useful quantum processors, and
the quantum adder, one of the most basic building blocks of a universal quantum computer, still operate with
satisfactory success probability, comparable to that of a quantum computer constructed with perfect gates. We
support these conclusions by first laying out a general analytical framework and then deriving analytical scaling
relations, which are in excellent agreement with our numerical simulations. The demonstrated robustness of
the QFT and quantum adder, to the point where randomly generated quantum gates take the place of the exact
gates, is an important boon for the construction of quantum computers, since it shows that stringent gate error
tolerances do not have to be met to obtain satisfactory performance of the corresponding quantum processors.
Our analytical techniques are powerful enough to generate asymptotic scaling laws for any gate defect model
of quantum information processors and we illustrate this point by explicitly computing asymptotic analytical
scaling formulas for several other defect models as well.
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I. INTRODUCTION

More than two decades have passed since the discovery of
Shor’s algorithm [1], capable of factoring a semiprime faster
than any known classical algorithm to date. Proving for the
first time that a quantum computer is indeed practically useful
and poses a threat to the widely employed Rivest-Shamir-
Adleman cryptosystem [2], Shor’s algorithm has attracted
many scientists and engineers to the field of quantum comput-
ing, an interdisciplinary subject encompassing mathematics,
computer science, physics, and chemistry with applications
ranging from national security to search engines. To date,
however, no universal quantum computer exists that is of
practical interest. Even with novel breakthroughs such as
fault-tolerant, error-correcting codes (see [3] and references
therein), record-breaking experimental achievements in stor-
ing quantum information [4,5], and surface codes [6], the
realization of practically useful quantum computers seems to
lie in the distant future. Thus, in order to build a practical
quantum computer, much work still needs to be done, in
particular in the realm of robustness of quantum computers
with respect to imprecise quantum hardware as will necessarily
be found in any realistic implementation of a quantum
processor.

It is no surprise, then, that there have been numerous
investigations, both theoretical and experimental, studying the
effects of imperfect hardware for a wide variety of quantum-
computer architectures. In the field of Rydberg quantum
processors, e.g., we find investigations of decoherence and
fidelity of single- and two-qubit gates [7], a proposal of a new
scheme for realizing a controlled-phase gate and quantifying
its expected gate error level [8], studies of the effect of
imperfections in the external hardware (e.g., control of field
power or duration) on quantum-gate performance [9], and
characterizations of the effect of errors accumulating over a

sequence of single- and two-qubit gates [10]. Technological
advances have resulted in reliable performance of Clifford
gates in a spin-qubit system [11] with the reported error rate
below the tolerable threshold required by surface codes [6].
Yet another advance has been reported by Zu et al. [12], where
universal geometric rotation gates in a spin-qubit system have
been experimentally realized. Experimental realization of the
gates have also been reported in a superconducting system
[13]. Recently, phase noise in a superconducting system has
been characterized and investigated in detail in Ref. [14].

In this paper, further advancing the investigations of the
effect of hardware errors on a quantum computer, we focus
on the analytical analysis of the effects of gate errors in
large-scale quantum processors. In particular, we develop
analytical scaling laws that tell us how the processor’s fidelity
scales in the limit of a very large number of qubits. This
is necessary since classical computers cannot simulate this
quantum regime even in principle [15] and analytical scaling
formulas, therefore, are the only way to assess the effects of
imperfect gates in the practically relevant regime of a large
number of qubits. In particular, analytical scaling formulas
may give us an idea of the level of gate errors that may be
tolerated for satisfactory quantum-computer performance in
the large-scale limit. In addition, on the basis of these formulas,
we may assess quantitatively whether a large-scale quantum
processor reacts sensitively to gate errors or exhibits a more
tolerant and robust response to gate errors.

We start with investigating the robustness of the quantum
Fourier transform (QFT), one of the most important quantum
information processors. Our choice is based on the universal
applicability of the QFT in many useful quantum algorithms
known to date (see [16] and references therein). For this reason,
numerous works are available in the literature, investigating the
robustness of the QFT, including approximation techniques
[15,17–19], faulty gates [16,20–22], and structural stability
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[23]. Further corroborating the robustness of the QFT is the
random hierarchy approach [23], which we investigate in detail
in this paper.

Yet another quantum processor we focus on in this paper
is the quantum adder. As one of the most basic components
of universal quantum computers, the quantum adder plays
a central role in the construction of quantum arithmetic
units [24]. Employing the QFT-based architecture [25], the
respective quantum adder, mostly made of controlled rotation
gates, will prove robust with respect to errors following a
random hierarchy.

We shall demonstrate that in spite of deleting most of the
controlled rotation gates from the QFT and quantum adder
processors and replacing the remaining rotation gates with
gates drawn from a small, randomly generated set, the quantum
processors still display acceptable performance. We also derive
explicit analytical scaling laws that support our prediction of
robustness with respect to these drastic alterations of the QFT
and quantum adder circuits.

Our paper is structured as follows. In Sec. II A, in the
context of the QFT, we introduce the random hierarchy and
present numerical results. Also introduced in this section is
the concept of banding, a type of pruning technique that is
necessary for practical quantum computing. Then, in Sec. II B
we approach the same problem analytically and show that
the resulting analytics and the numerical results found in
Sec. II A are in excellent agreement. In Sec. III A we introduce
the QFT-based quantum adder and its associated numerics in
the context of gate errors including random hierarchy and
banding. This is followed by Sec. III B, where we investigate
the same problem analytically, whose results are once again
in excellent agreement with the numerical results found in
Sec. III A. Additionally, in Sec. III B we present analytical
scaling laws of the performance of the quantum adder whose
constituent quantum gates are subjected to perturbations whose
statistical profiles follow normal or uniform distributions.
Then, in Sec. IV we discuss our results. We summarize our
paper in Sec. V.

II. ROBUSTNESS OF THE QFT

A. Numerics

An n-qubit QFT has exact rotation angles θj = π/2j , j =
1, . . . ,n − 1, where j is the distance between control and target
qubits (see Fig. 1 for a sample circuit of a five-qubit QFT). In
order to investigate the robustness of the n-qubit QFT to a class
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FIG. 1. (Color online) Logic circuit of a five-qubit QFT.
Hadamard gates are denoted by H and phase rotation gates by θj ,
whose rotation angle is π/2j [26], where j is the qubit distance
between control and target qubits.
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FIG. 2. (Color online) Exact rotation angles θj (red closed
squares) compared with their corresponding approximations θ̃j (green
closed circles) as a function of qubit distance j for j = 1, . . . ,10. The
approximations θ̃j are the best matches for their corresponding θj ,
drawn from a set of N = 20 randomly generated rotation angles.
The plateau in θ̃ is a consequence of having small N , i.e., θj for
j � 7 is approximated by the same approximate angle θ̃j . Although
θj and θ̃j appear to be close on a logarithmic scale, their percentage
differences are large, exceeding 30% from j = 7 on. Nevertheless, a
QFT equipped with these gates exhibits acceptable performance.

of drastic changes θj → θ̃j of its rotation angles, we employ
the following methodology. We produce a set SN of N � n − 1
random numbers, uniformly distributed in (0,π ). From SN

we draw those random numbers that are closest to the exact
rotation angles θj (repetitions are permitted) and denote them
by θ̃j . Since the new angles θ̃j are drawn from the same random
set SN , but still constructed in such a way that they are ordered
hierarchically in descending order, we call this implementation
of the QFT a realization with a random hierarchy. Figure 2
illustrates the result of this procedure for N = 20. The red
squares are the exact angles θj , while the green closed circles
are the best matches θ̃j for the exact angles θj , drawn from a set
of N = 20 random numbers. Although seemingly close on the
logarithmic scale of Fig. 2, the relative errors rj = |θ̃j − θj |/θj

for this particular realization of random angles θ̃j are large,
ranging from 4% for j = 1 to 48% for j = 5, exceeding 100%
from j = 9 on. These are large errors, deliberately introduced
into the QFT, since our point is to show that even in the
case of a random realization of rotation angles, the QFT still
performs satisfactorily. Of course, in the limit N → ∞, θ̃j

approaches θj . Our point, however, is that even if N is small,
and consequently rj may be large, the QFT still performs at
an astonishingly high level.

We note that scaling noise models, such as perturbing the
angles θj with noise whose level scales in the size of θj ,
for instance, have been studied in great detail for the QFT
in Ref. [16]. In Sec. II B, where we discuss our analytical
calculations, we will further establish how our work here
connects to that in Ref. [16]. Our choice of the random
hierarchy here is deliberate since the errors introduced by the
random hierarchy are not adapted to the natural exponential
behavior of the rotation angles in either the QFT or the quantum
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FIG. 3. Fidelity F of an eight-qubit QFT as a function of integer
input state |α〉. Each plot symbol is a result of averaging over 1000
realizations of the random set SN , where N = 30 was used in this
figure. As the bit spectra of α become filled with 1’s, the fidelity
F decreases. As expected, and proved in Appendix A, the case α =
28 − 1 (rightmost point in the figure), where all bits of α are 1, returns
the worst F .

adders. Thus this type of errors is a stringent test of the
robustness of both the QFT and adder quantum processors.

We start with the statement that the QFT equipped with
the random hierarchy performs at an astonishingly high level
even when N is small. We denote by Q̂ the ideal QFT

operation, equipped with θj gates, and by ˆ̃Q the modified
QFT operation, equipped with θ̃j gates. As a test state for
these two QFTs we choose |ψin〉 = |2n − 1〉 since this is the
most unfavorable case for both QFTs. This is so because
|ψin〉 ensures that all rotation gates in the QFT (see Fig. 1),

together with their respective errors (in the case of ˆ̃Q), are
always switched on. In contrast, choosing |0〉 as an input
state would always result in perfect performance, even in
the case of completely random rotation gates, since for this

input state none of the rotation gates is triggered. To illustrate
this point more clearly, we plot in Fig. 3 the fidelity of the QFT
defined according to F = 〈|〈ψideal|ψactual〉|2〉 as a function of α,
where for any integer input state |ψin〉 = |α〉 the states |ψideal〉
and |ψactual〉 are computed according to |ψideal〉 = Q̂|ψin〉 and

|ψactual〉 = ˆ̃Q|ψin〉 and the angular brackets in the definition of
F indicate averaging over multiple realizations of the random
set SN . We observe that as more controlled-rotation gates turn
on, i.e., the bit spectra of α get filled in with 1’s, the fidelity
F decreases. A detailed analytical proof demonstrating that
|2n − 1〉 is indeed the least-favorable input state is available in
Appendix A.

Having chosen an appropriate test state, we now assess the
performance of the modified QFT by computing the fidelity
F , averaged over 100 realizations of the random set SN , as
a function of the number of qubits n. The result is shown
in Fig. 4(a). As expected, the larger the number of randomly
generated gates N , the better the quantum computer performs.
In addition, as shown in Fig. 4(a), even with N as small
as N = 20, a 17-qubit QFT still performs well above 30%.
Figure 4(a) also shows that for fixed N the performance of
the QFT decreases with increasing number of qubits n. This
result is intuitively obvious since the more gates we need to
approximate with only a finite number N of random gates at
hand, the worse the performance of the quantum computer is
expected to become.

We now band the QFT with bandwidth b, i.e., we prune
those rotation gates from the QFT circuit whose ideal rotation
angles are π/2j , where j > b [15,17–19]. The results for b=8
are shown in Fig. 4(b). Comparing with the corresponding
cases of Fig. 4(a), we notice that the fidelity computed with
b = 8 is significantly better than that with full bandwidth.
This confirms the conjecture in Ref. [27] that banding, in
the presence of imperfect hardware, boosts QFT performance
by removing faulty rotation gates that do nothing useful but
instead channel noise and errors into the still useful parts of
the quantum processor. As a consequence, we expect that for
given n and b there is a transition point Nc between the regimes
of N in which banding increases (N < Nc) and decreases
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FIG. 4. (Color online) Fidelity F of the QFT equipped with the randomly hierarchical rotation gates θ̃j as a function of the number of
qubits n. Shown are the cases of N = 20 (red pluses), N = 40 (green crosses), and N = 60 (blue asterisks), each averaged over 100 ensembles
of the respective SN . (a) Full-bandwidth QFT and (b) banded QFT with bandwidth b = 8.
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(N > Nc) QFT performance. Thus, Nc is the critical N , where
banding has no effect on the performance of the QFT. The
latter regime is expected since for N → ∞ the full-bandwidth
QFT converges to F = 1, whereas the banded QFT converges
to some constant F with F < 1. According to (46), derived in
Sec. IV, Nc = 470 for the example (n = 17, b = 8) presented
in Fig. 4. This explains that in this case banding substantially
improves performance.

B. Analytics

While the numerical simulations help us see how the QFT
performs when equipped with modified rotation gates, the
practically interesting regime with thousands of qubits cannot
ever be simulated on a classical computer. This regime can
only be accessed via analytical calculations.

We start our analytical derivations by characterizing the
statistics of the modified gates θ̃j . Writing θ̃j = θj + εj ,
we note that εj follows a bivariate exponential distribution
function. This is so because the probability of finding the
closest random number θ̃j to θj within a distance d for N

given random numbers, distributed uniformly between 0 and
π , scales like [(π − 2d)/π ]N , which, for d ∼ π/N and large
N , may be written as exp(−2Nd/π ). According to this point
of view, the random hierarchy QFT studied here is no different
from the absolute typed error case studied in Ref. [16], except
for the fact that the statistical distribution of the perturbing
term εj is now bivariate exponential, rather than uniform, as
was the case in Ref. [16].

While the performance criterion used in Ref. [16] (nearest-
peak criterion) is not identical with the criterion used in
this paper (fidelity), we note that, in the limit in which the
perturbation is small, the two criteria are interchangeable.
This is so because the fidelity F = 〈|〈ψideal|ψactual〉|2〉 can be
rewritten as 〈|∑β �∗(α,β)�̃(α,β)|2〉, where

|ψideal〉 = Q̂|ψin〉 =
∑

β

�(α,β)|β〉, (1)

with |ψin〉 = |α〉 for α an integer, and a similar expres-

sion for the modified QFT with ˆ̃Q and �̃(α,β). Assuming
that the perturbation phase 	�(def), defined according to
�̃(α,β) = �(α,β)	�(def)(α,β), fluctuates rapidly, we arrive
at the analytical fidelity expression

F ≈ 〈|〈	�(def)(α,β)〉β |2〉, (2)

where 〈· · · 〉β denotes averaging over β, which is identical to
Eq. (33) of Ref. [16] up to summation. Summation, however,
is irrelevant, as we further assume for the following statistical
analysis that the bits in both the input α and the output β are
random sequences of 0’s and 1’s.

Closely following the steps of the analytical analysis
developed in Ref. [16] and taking care to replace the uni-
form distributions assumed in Ref. [16] with the bivariate
exponential probability distribution of the difference angles
εj , we obtain the analytical fidelity function of the randomly
hierarchical, full-bandwidth QFT to be

F ≈ exp

[−n(n − 1)

8(2N/π )2

]
. (3)

In order to demonstrate the quality of our analytical results, we
plot in Fig. 5(a) the complement 1 − F of the fidelity F of the
full-bandwidth QFT as a function of N for various n values,
obtained from numerical simulations (plot symbols), together
with the analytical results (3) (solid lines). The analytical
results match the numerical results to an excellent degree.
As expected, the fit is better in the large-N regime (small εj ),
demonstrating that the analytical results capture the scaling in
both n and N correctly.

At this point, we introduce banding in our analytical
analysis. Once again we start with the fidelity definition, only
this time we have Fb = 〈|〈ψideal|ψbanded〉〈ψbanded|ψactual〉|2〉
with

|ψbanded〉 = Q̂b|ψin = α〉 =
∑

β

�b(α,β)|β〉, (4)
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FIG. 5. (Color online) Complement 1 − F of the fidelity F of the QFT equipped with the randomly hierarchical rotation gates θ̃j as a
function of the number of random gates N . In order to match the random bit spectrum assumption used in the analytical calculations, all
numerical simulation data are averaged over all possible integer input states |α〉, where α = 0, . . . ,2n − 1, for an n-qubit QFT, in addition to
the averaging over 100 realizations of N random gates. (a) Full-bandwidth QFT and (b) banded QFT with bandwidth b = 4. Shown are the
cases with n = 5, 6, 7, and 8, corresponding to pluses (red), crosses (green), asterisks (blue), and squares (purple), respectively.
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where Q̂b and �b denote the banded QFT operator and the
associated phase with bandwidth b, respectively. Assuming
(i) a statistical independence between 〈ψideal|ψbanded〉 and
〈ψbanded|ψactual〉 and (ii) a rapidly fluctuating, random hierarchy
perturbation phase 	�

(def)
b , defined according to �̃b(α,β) =

�b(α,β)	�
(def)
b (α,β), where �̃b(α,β) denotes the modified

banded QFT phase, we arrive at the analytical banded QFT
fidelity expression

Fb ≈
∣∣∣∣∣∣
∑

β

�∗(α,β)�(α,β)eiφb(α,β)

∣∣∣∣∣∣
2

× 〈∣∣〈�∗
b(α,β)�b(α,β)	�

(def)
b (α,β)

〉
β

∣∣2〉
, (5)

where we used �b = �eiφb and φb denotes the phase-angle
offset of �b from �, arising from banding with bandwidth b.
Together with |∑β �∗�eiφb |2 ≈ |〈eiφb 〉β |2, assuming a rapidly
fluctuating φb, and using the results derived in Refs. [15,16],
we obtain

Fb ≈ exp

[
−π22−2b(n − b − 1) + δ

12

]

× exp

[
−nb − b(b + 1)/2

4(2N/π )2

]
, (6)

where δ = c(n − b) (c is a constant) is a small offset, which
is due to residual correlations not included in our statistical
analysis. Its linear dependence on n is expected since δ

represents the residual inaccuracy in finding the variance of
the accumulated phase angles, which scales like ∼n. The
constant c is determined by fitting to simulation data. For
b = 4, e.g., the best fit is obtained for δ = −0.012(n − b) for
n > b + 1. Figure 5(b) shows that for this choice of δ, the
analytical scaling formula Fb in Eq. (6) matches the numerical
simulation results to an excellent degree.

III. ROBUSTNESS OF THE QUANTUM ADDER

A. Numerics

So far, we investigated the robustness of the QFT in detail,
both analytically and numerically. In this section, we extend
our analysis to a quantum adder, the fundamental component
of quantum arithmetics, which is universally applicable to any
serious quantum computation. In particular, we investigate
a quantum Fourier adder [25], shown in Fig. 6, which also
serves as a test-bed application of the QFT processor that has
been analyzed in detail in Secs. II A and II B. Hereafter, we
make the following distinction: We refer to the quantum circuit
that performs a quantum addition as the quantum adder and
the associated part of the circuit that performs an addition in
Fourier space as the quantum Fourier adder (see Fig. 6).

To start with, we implement randomly hierarchical con-
trolled rotation gates to our quantum adder. Since we now have
an additional gate to approximate, i.e., a π gate denoted by
θ0, we extend the domain from which the random numbers are
drawn from (0,π ) to (0,2π ). The results are shown in Fig. 7(a),
where, consistent with the methodology presented in Sec. II A,
we used the input state |ψin〉 = |2n − 1〉 and the addend
ν = 2n − 1 for an n-qubit quantum adder. The analytical
proof showing why this is statistically the least-favorable case
scenario in terms of fidelity is provided in Appendix B. The

Quantum
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QFQQQQQQ T-1
Quantum
Fourier
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QFT
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FIG. 6. (Color online) Logic circuit of a five-qubit quantum
Fourier adder in the Fourier space (blue box). A complete quantum
adder circuit requires both a QFT and an inverse QFT operation,
performed before and after application of the quantum Fourier adder
(see the top of the figure). Phase rotation gates are represented by the
θj boxes; their respective rotation angles are π/2j [26], where j is
the qubit distance between control and target qubits. The dashed lines
represent the qubit lines of the addend ν of the adder. The solid lines
represent the qubit lines of the computational qubits.

fidelity F , plotted against the number of qubits n, as expected,
is larger when the number of randomly generated gates N

increases. Furthermore, as shown in Fig. 7(a), even with N

as small as 40, a 17-qubit quantum adder still performs at
a level of about 20%. Figure 7(a) also shows that for fixed
N the performance of the quantum adder decreases with
increasing number of qubits n. This result, in analogy to the
QFT, is intuitively obvious since the more gates we need to
approximate with a finite number of random gates, the poorer
the quality of the quantum processor becomes.

This time, we band the quantum adder with bandwidth b,
deleting all rotation gates with their rotation angle less than
π/2b. Figure 7(b) shows the results for the case b = 8. Just
as in the case of the QFT, we find that the banded quantum
adder significantly outperforms the full-bandwidth quantum
adder. For N = 40 and n = 17, for instance, i.e., the case
we considered in connection with Fig. 7(a), the performance
of the banded adder is above 30%, significantly better than
the 20% performance of the adder without banding. This is
consistent with the results reported in Sec. II A in connection
with the QFT in the sense that erroneous gates with large j do
more harm than good to the fidelity of a quantum processor
by channeling noise into the system.

B. Analytics

We now approach the quantum adder fidelity problem
analytically. We do this in two steps. First, we lay out a general
analytical framework to arrive at the fidelity expression with-
out specifying the types of errors. Only then, after obtaining
the general fidelity expression, do we specify the types of
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FIG. 7. (Color online) Fidelity F of the quantum adder equipped with the randomly hierarchical rotation gates θ̃j as a function of the
number of qubits n. Shown are the cases of N = 20 (red pluses), N = 40 (green crosses), and N = 60 (blue asterisks). Each plot symbol is
a result of averaging over 10 000 ensembles of the random set SN . (a) Full-bandwidth quantum adder and (b) banded quantum adder with
bandwidth b = 8.

errors. This keeps our analytical results on the most general
level, so that our analytical formulas are generally applicable
to a wide range of error models. To demonstrate the general
applicability of our analytical results to different kinds of error
models, in this section, in addition to the random hierarchy,
we also investigate Gaussian and uniformly distributed errors.

To start, we recall the definition of fidelity F =
〈|〈ψideal|ψactual〉|2〉. Defining �(QFA)(β; ν) as the phase asso-
ciated with the quantum Fourier adder (see Fig. 6), where β

is an integer input and ν is the addend of the adder, together
with (1) and its inverse expression, we may write the quantum
adder fidelity

F (QA) =
˝∣∣∣∣∣∣

⎛
⎝∑

β,γ

〈γ |�(β,γ )�∗(QFA)(β; ν)�∗(α,β)

⎞
⎠

⎛
⎝∑

β ′,γ ′
�̃(α,β ′)�̃(QFA)(β ′; ν)�̃∗(β ′,γ ′)|γ ′〉

⎞
⎠

∣∣∣∣∣∣
2 ˛

, (7)

where �̃ and �̃(QFA) denote the phases of the defective QFT and quantum Fourier adders, respectively, and α is the input integer.
Defining �̃ = �	�(def) and �̃(QFA) = �(QFA)	�(QFA)(def), together with 〈γ |γ ′〉 = δγ,γ ′ , where δ is the Kronecker delta, (7) may
now be written as

F (QA) =
˝∣∣∣∣∣∣

⎛
⎝∑

β

�(β,γ )�∗(QFA)(β; ν)�∗(α,β)

⎞
⎠

×
⎛
⎝∑

β ′
�(α,β ′)�(QFA)(β ′; ν)�∗(β ′,γ )	�(def)(α,β ′)	�(QFA)(def)(β ′; ν)	�∗(def)(β ′,γ )

⎞
⎠

∣∣∣∣∣∣
2˛

. (8)

Assuming that the defect phases fluctuate fast, we may approximate (8) as

F (QA) ≈ 〈|〈	�(def)(α,β ′)	�(QFA)(def)(β ′; ν)	�∗(def)[β ′,(α + ν) mod 2n]〉β ′ |2〉, (9)

where 〈· · · 〉β ′ denotes averaging over β ′ and n is the number of qubits. We note that the exact-adder parts in Eq. (8) evaluate
to δγ,(α+ν) mod 2n , explaining the origin of the second argument (α + ν) mod 2n of the last term in Eq. (9). Further assuming a
statistical independence between the three terms in Eq. (9), we obtain

F (QA) ≈ 〈|〈	�(def)(α,β ′)〉β ′ |2〉〈|〈	�(QFA)(def)(β ′; ν)〉β ′ |2〉〈|〈	�∗(def)[β ′,(α + ν) mod 2n]〉β ′ |2〉. (10)

Now we inspect each term in Eq. (10) individually. First, we
recall that the defective phases arise from the defects included
in phase-rotation gates. According to the analysis shown in
Ref. [16], then, as long as the central limit theorem [28]
on random phase-angle accumulation holds, without loss of

generality, we may write

F (QA) ≈ e−σ 2
n e−[σ (QFA)

n ]2

e−σ 2
n , (11)

where σn and σ (QFA)
n are the standard deviations of the defective

phase angles accumulated from gate errors associated with an
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FIG. 8. (Color online) Complement 1 − F of the fidelity F of the quantum adder equipped with the randomly hierarchical rotation gates
θ̃j as a function of the number of random gates N . In order to match the random bit spectrum assumption used in the analytical calculations,
all numerical simulation data are averaged over all possible integer input states |α〉, where α = 0, . . . ,2n − 1 and all possible integer addends
ν = 0, . . . ,2n − 1. Shown are the results of averaging over 10 000 realizations of the random set SN . (a) Full-bandwidth quantum adder and
(b) banded quantum adder with bandwidth b = 4. The cases with n = 5, 6, 7, and 8 correspond to pluses (red), crosses (green), asterisks (blue),
and squares (purple), respectively.

n-qubit QFT and an n-qubit quantum Fourier adder, respec-
tively. Notice that there are two differences between the QFT
and the quantum Fourier adder: (i) The quantum Fourier adder
has no Hadamard gates, i.e., it purely consists of controlled
phase-rotation gates, and (ii) compared to the QFT it has
n additional π gates. With [σ (QFA)

n ]2 = 4(σn)2 + n〈	ϕ2
0〉/4,

where 〈	ϕ2
0〉 is the variance associated with the defect of a π

phase-rotation gate, our general fidelity expression reads

F (QA) ≈ e−6σ 2
n −n〈	ϕ2

0/4〉. (12)

At this point we are ready to choose a specific type of
error for the quantum adder fidelity expression. To this end,
we insert the random hierarchy case into (12) and obtain, to
leading order in n,

F
(QA)
RH = exp

(
− 3n2

4(N/π )2

)
. (13)

We are not able to compute the next term in a systematic
n expansion of the argument of the exponent in Eq. (13)
analytically. However, we may take a cue from our work in
Ref. [15]. Although focused on scaling relations of Shor’s
algorithm in the absence of noise, and therefore not directly
related to our work here, [15] nevertheless suggests that the
next-order correction term, which will dominate the other
correction terms for n � z, should have the form

[s(n − u) − v]/(N/π )2, (14)

where s,u,v, and z are integer constants. Unable to determine
these constants analytically, we determined them numeri-
cally. The best fit was found for s = 3, u = 2, v = 1, and
z = 5. Therefore, adding the term [3(n − 2) − 1]/(N/π )2 for
n � 5 to the exponent of (13), we obtain our final analytical
formula, which is compared with numerical simulations in
Fig. 8(a). We see that the analytical formula matches the
numerical results to an excellent degree, i.e., the analytical
formula correctly predicts the scaling of the quantum adder
fidelity.

Closely following the steps outlined in Sec. II B, it can be
shown that, in analogy to (10), the banded adder performs with
fidelity

F
(QA)
b ≈ |〈eiφb(α,β ′)〉β ′ |2∣∣〈eiφ

(QFA)
b (β ′;ν)

〉
β ′

∣∣2

× |〈e−iφb(β ′,(α+ν) mod 2n)〉β ′ |2

× 〈∣∣〈	�
(def)
b (α,β ′)

〉
β ′

∣∣2〉〈∣∣〈	�
(QFA)(def)
b (β ′; ν)

〉
β ′

∣∣2〉
× 〈∣∣〈	�

∗(def)
b [β ′,(α + ν) mod 2n]

〉
β ′

∣∣2〉
, (15)

where φb and φ
(QFA)
b denote, respectively, the phase-angle

offsets associated with the QFT and the quantum Fourier
adder due to banding and 	�

(def)
b and 	�

(QFA)(def)
b denote

the respective defect phases. Using the results from Sec. II B,
[15,16] and denoting the variance of the phase-angle defects
of the banded QFT with bandwidth b as σ 2

n,b, we obtain

F
(QA)
b ≈ exp

[
−π22−2b(n − b − 1) + δ

2

]

× exp

[
−6σ 2

n,b − n
〈
	ϕ2

0

〉
4

]
, (16)

where we assumed b � 1, leaving the π -gate part intact.
Imposing the random hierarchy condition results in the fidelity
of the banded adder

F
(QA)
RH,b = exp

[
−π22−2b(n − b − 1) + δ

2

]

× exp

[
−6nb − 6b(b + 1)/2 + 4n

4(N/π )2

]
, (17)

where δ = c(n − b − 1) + d for n > b + 1 denotes a small
offset with fit constants c and d, which, in analogy to (6),
takes residual correlations into account. Figure 8(b) shows that
for the case of b = 4, e.g., with c = −0.03 and d = −0.004,
together with the aforementioned term [3(n − 2) − 1]/(N/π )2
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FIG. 9. (Color online) Complement 1 − F of the fidelity F of the full-bandwidth quantum adder equipped with Gaussian-defective rotation
gates θ̃j as a function of the standard deviation σ of the gate errors. In order to match the random bit spectrum assumption used in the analytical
calculations, all numerical simulation data are averaged over all possible integer input states |α〉, where α = 0, . . . ,2n − 1 and all possible
integer addends ν = 0, . . . ,2n − 1. Shown are the results of averaging over 10 000 realizations of the defects: (a) RC, (b) RU, (c) AC, and
(d) AU. The cases with n = 5, 6, 7, and 8 correspond to pluses (red), crosses (green), asterisks (blue), and squares (purple), respectively.

added to the exponent, the analytical scaling relation F
(QA)
RH,b

in Eq. (17) matches the numerical results in the practically
interesting, small 1 − F region to an excellent degree.

Following our detailed investigation of the effects and
the scaling of the random hierarchy, we now apply our
general scaling expressions to some additional, perhaps more
conventional, models of gate errors. In Ref. [16], for instance,
we investigated relative and absolute errors that may be
correlated or uncorrelated with respect to the types j of the
gates θj . For the relative correlated (RC), relative uncorrelated
(RU), absolute correlated (AC), and absolute uncorrelated
(AU) errors, respectively, following Eqs. (5)–(8) of [16], the
defective rotation gates may be modeled as

(RC) θ̃j = θj [1 + Rj (σ |ε)],

(RU) θ̃j = θj [1 + R(σ |ε)],
(18)

(AC) θ̃j = θj + Rj (σ |ε),

(AU) θ̃j = θj + R(σ |ε),

where Rj (σ |ε) or R(σ |ε) stand for Gaussian distributed
random numbers with standard deviation σ or uniformly
distributed random numbers between −ε and ε, respectively,
where the presence or absence of the subscript j denotes the

correlated or uncorrelated defects with respect to the rotation
gate of type j .

To demonstrate the power of our general analytical scaling
formulas (12) and (16) for the quantum adder fidelities, we
are now going to derive the corresponding analytical fidelity
scaling formulas for each of the eight error models specified
in Eq. (18). In fact, these eight cases are covered by just four
fidelity scaling formulas since, as proved in Ref. [16], there is
no statistical difference between the correlated error models
and the uncorrelated error models in Eq. (18).

We start with the case of Gaussian noise introduced into
the full-bandwidth quantum adder and assume that the central
limit theorem [28] holds for the phase-angle defects. Then,
to first and zeroth order in n, the analytical fidelity scaling
formulas for RC, RU, AC, and AU noise are given by

RCF (QA)
σ = RUF (QA)

σ = RF (QA)
σ

≈ exp

{
−

[
6π2(3n − 4)

144
+ λnπ2

4

]
σ 2

}
, (19)

ACF (QA)
σ = AUF (QA)

σ = AF (QA)
σ

≈ exp

{
−

[
6n(n − 1)

32
+ μn

4

]
σ 2

}
, (20)
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FIG. 10. (Color online) Complement 1 − F of the fidelity F of the banded quantum adder (bandwidth b = 4) equipped with the Gaussian-
defective rotation gates θ̃j as a function of the standard deviation σ of the gate errors. In order to match the random bit spectrum assumption
used in the analytical calculations, all numerical simulation data are averaged over all possible integer input states |α〉, where α = 0, . . . ,2n − 1
and all possible integer addends ν = 0, . . . ,2n − 1. Shown are the results of averaging over 10 000 realizations of the defects: (a) RC,
(b) RU, (c) AC, and (d) AU. The cases with n = 5, 6, 7, and 8 correspond to pluses (red), crosses (green), asterisks (blue), and squares (purple),
respectively.

where the left superscripts RC,RU and AC,AU denote relative
and absolute errors, respectively, and λ,μ are phenomenolog-
ical constants. In Figs. 9(a)–9(d), for RC, RU, AC, and AU,
respectively, plotting the complement 1 − F of the fidelity vs
the noise σ , we show the results of our numerical simulations
(plot symbols) together with the analytical results (solid lines)
according to (19) and (20) with λ = 3/5 and μ = 7/4. We see

that the numerical simulations and the analytical predictions
agree to an excellent degree. In addition, our numerical
simulations confirm that the correlated and uncorrelated cases
are statistically equivalent.

We now turn to the case of Gaussian noise introduced into
the banded quantum adder with bandwidth b. From (16) we
obtain

RCF
(QA)
σ,b = RUF

(QA)
σ,b = RF

(QA)
σ,b ≈ exp

[
−π22−2b(n − b − 1) + δ

2

]
exp

{
−

[
6π2[(3n − 4) − 2−2b(3n − 3b − 4)]

144
+ λnπ2

4

]
σ 2

}
,

(21)

ACF
(QA)
σ,b = AUF

(QA)
σ,b = AF

(QA)
σ,b ≈ exp

[
−π22−2b(n − b − 1)+δ

2

]
exp

{
−

[
6[n(n − 1) − (n − b)(n − b − 1)]

32
+ μn

4

]
σ 2

}
. (22)

In Figs. 10(a)–10(d) we show the complement 1 − F of the fidelity, comparing our numerical simulations (plot symbols) and
our analytical results (solid lines) according to (21) and (22) for b = 4, the same choices for λ and μ as in Fig. 9, and the same
choice of δ as in Fig. 8(b). We see that our analytical fidelity scaling laws match the correspondent numerics to an excellent
degree.
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FIG. 11. (Color online) Complement 1 − F of the fidelity F of the full-bandwidth quantum adder equipped with uniformly defective
rotation gates θ̃j as a function of the defect strength parameter ε. In order to match the random bit spectrum assumption used in the analytical
calculations, all numerical simulation data are averaged over all possible integer input states |α〉, where α = 0, . . . ,2n − 1 and all possible
integer addends ν = 0, . . . ,2n − 1. Shown are the results of averaging over 10 000 realizations of the defects: (a) RC, (b) RU, (c) AC, and
(d) AU. The cases with n = 5, 6, 7, and 8 correspond to pluses (red), crosses (green), asterisks (blue), and squares (purple), respectively.

Similarly, in Figs. 11(a)–11(d), corresponding to the cases RC, RU, AC, and AU, respectively, we plot the complement 1 − F

of the full-bandwidth adder fidelity

RCF (QA)
ε = RUF (QA)

ε = RF (QA)
ε ≈ exp

{
−

[
6π2(3n − 4)

432
+ λnπ2

12

]
ε2

}
, (23)

ACF (QA)
ε = AUF (QA)

ε = AF (QA)
ε ≈ exp

{
−

[
6n(n − 1)

96
+ μn

12

]
ε2

}
(24)

and in Figs. 12(a)–12(d) we plot the banded counterparts with bandwidth b,

RCF
(QA)
ε,b = RUF

(QA)
ε,b = RF

(QA)
ε,b

≈ exp

[
−π22−2b(n − b − 1) + δ

2

]
exp

{
−

[
6π2[(3n − 4) − 2−2b(3n − 3b − 4)]

432
+ λnπ2

12

]
ε2

}
, (25)

ACF
(QA)
ε,b = AUF

(QA)
ε,b = AF

(QA)
ε,b

≈ exp

[
− π22−2b(n − b − 1) + δ

2

]
exp

{
−

[
6[n(n − 1) − (n − b)(n − b − 1)]

96
+ μn

12

]
ε2

}
, (26)

where this time the adder processor was subjected to uniform noise. As in the Gaussian noise cases, we chose λ = 3/5,μ = 7/4
and the same form of δ as in Fig. 8(b). Our analytical results match the numerical results in Figs. 11 and 12 to an excellent degree.

For completeness we present here the formulas analogous to (19), (20), (23), and (24) for the full bandwidth QFT and (21),
(22), (25), and (26) for the banded QFT, which we derived in complete analogy to our derivations of the corresponding quantum
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FIG. 12. (Color online) Complement 1 − F of the fidelity F of the banded quantum adder (bandwidth b = 4) equipped with the uniform-
defective rotation gates θ̃j as a function of the defect strength parameter ε. In order to match the random bit spectrum assumption used in
the analytical calculations, all numerical simulation data are averaged over all possible integer input states |α〉, where α = 0, . . . ,2n − 1 and
all possible integer addends ν = 0, . . . ,2n − 1. Shown are the results of averaging over 10 000 realizations of the defects: (a) RC, (b) RU,
(c) AC, and (d) AU. The cases with n = 5, 6, 7, and 8 correspond to pluses (red), crosses (green), asterisks (blue), and squares (purple),
respectively.

adder formulas. The QFT formulas (full bandwidth and banded) for relative and absolute Gaussian noise, respectively, are

RCF (QFT)
σ = RUF (QFT)

σ = RF (QFT)
σ ≈ exp

[
−π2(3n − 4)

144
σ 2

]
, (27)

RCF
(QFT)
σ,b = RUF

(QFT)
σ,b = RF

(QFT)
σ,b ≈ exp

[
−π22−2b(n − b − 1) + δ

12

]
exp

{
−π2[(3n−4) − 2−2b(3n−3b−4)]

144
σ 2

}
, (28)

ACF (QFT)
σ = AUF (QFT)

σ = AF (QFT)
σ ≈ exp

[
−n(n − 1)

32
σ 2

]
, (29)

ACF
(QFT)
σ,b = AUF

(QFT)
σ,b = AF

(QFT)
σ,b ≈ exp

[
−π22−2b(n − b − 1) + δ

12

]
exp

[
−n(n − 1) − (n − b)(n − b − 1)

32
σ 2

]
(30)

and the formulas for uniformly distributed noise, relative and absolute, respectively, are

RCF (QFT)
ε = RUF (QFT)

ε = RF (QFT)
ε ≈ exp

[
−π2(3n − 4)

432
ε2

]
, (31)

RCF
(QFT)
ε,b = RUF

(QFT)
ε,b = RF

(QFT)
ε,b ≈ exp

[
−π22−2b(n − b − 1) + δ

12

]
exp

{
−π2[(3n − 4) − 2−2b(3n − 3b − 4)]

432
ε2

}
, (32)

ACF (QFT)
ε = AUF (QFT)

ε = AF (QFT)
ε ≈ exp

[
−n(n − 1)

96
ε2

]
, (33)

ACF
(QFT)
ε,b = AUF

(QFT)
ε,b = AF

(QFT)
ε,b ≈ exp

[
−π22−2b(n − b − 1) + δ

12

]
exp

[
−n(n − 1) − (n − b)(n − b − 1)

96
ε2

]
. (34)
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IV. DISCUSSION

Our motivation for developing analytical scaling formulas
is the fact that even the resources of the entire universe are
insufficient for building a classical computer that would be
capable of simulating a quantum processor in the regime of
a large number of qubits [15]. Only analytical methods are
powerful enough to explore this regime. Of course, if practical
realizations of quantum processors were ideal, there is no
need for additional simulations; the processor would perform
according to the drawing-board specifications of its quantum
circuit. However, by necessity, actual, practical realizations
of quantum processors are constructed from hardware com-
ponents that are not exact implementations of their circuit
specifications, but will contain errors and defects. Therefore,
a crucial question arises: How do these unavoidable defects
influence the performance of quantum processors in a qubit
regime that is inaccessible to classical simulation? For two
examples of quantum processors, the QFT and the quantum
adder, we answer this question by deriving analytical formulas
for their performance when implemented with faulty rotation
gates whose defects are described statistically with the help
of several different error models that are close to what will be
encountered in future large-scale quantum processors. Should
it turn out that, in practice, the gate defects of these processors
follow statistical laws different from those discussed in
this paper, our analytical methods are powerful enough to
encompass these cases as well. For given quantum hardware
and its limitations it is essential for experimentalists and
quantum engineers to be able to extrapolate the performance
of a desired large-scale quantum processor before building
it. This way it can be decided beforehand whether it makes
sense to build the quantum processor with available quantum
hardware, or whether such an endeavor is fruitful only after
a new, more accurate generation of quantum hardware is
available.

Quantum hardware defects are, of course, only one side of
the issue. Decoherence [26] is the other performance-limiting
factor. There are two reasons why we focus on quantum
hardware defects first: (i) It is much more straightforward to
provide analytically reliable and comprehensive performance
estimates for defective quantum hardware than it is to accu-
rately model and estimate decoherence effects and (ii) if it turns
out that it is already unrealistic to realize a working quantum
processor on the basis of available quantum hardware, it is not
necessary to study decoherence effects. Therefore, it seems
prudent to study the limiting effects of defective quantum
hardware first and only then worry about decoherence. This
course of action is in line with a similar recommendation by
Landauer [29].

Naively one might think that since the action of any
quantum processor is equivalent to the action of a large unitary
matrix, and because of the linearity of matrix operations,
small errors in the matrix elements should result in a small
degradation of quantum-processor performance. That this
linear thinking is not correct is clearly demonstrated by
our fidelity formulas presented in Sec. III B, which show
that quantum-processor performance decreases exponentially
according to

F ∼ exp(−αnβγ 2), (35)

where α and β are positive constants, n is the number of qubits,
and γ > 0 is a measure of the size of the defects. This form
of fidelity scaling is valid for both the QFT and the quantum
adder.

In this connection we mention that it is not just a matter
of waiting for the next generation of hardware. According
to (35) the fidelity scales badly in the number of qubits n

and thus implies a practical if not fundamental (e.g., natural
transition line widths) limit on the number of qubits, even
without considering decoherence. Since we need F � 0.1 for
acceptable quantum-processor performance, the exponent in
Eq. (35) needs to be �−1, which implies

γ � 1√
αnβ

. (36)

Obviously, for given practical or fundamentally achievable
bounds on γ , this limit depends sensitively on the constants α

and β, thus providing an additional reason for accurate scaling
formulas in the large-n regime.

Our work is not the first to address hardware defects
in quantum processors. Coppersmith [17] noticed that both
the classical and quantum Fourier transforms incur only
exponentially small errors if matrix elements (or quantum
gates) with exponentially small rotation angles are deleted.
Since this pruning operation of matrix elements (or quantum
gates) results in a banded structure of the respective clas-
sical and quantum circuit diagrams, we called this pruning
operation banding [15,19]. The banding idea, introduced by
Coppersmith, was further developed, both analytically and
numerically, by Fowler and Hollenberg [18], who showed that,
assuming ideal quantum gates without defects, a bandwidth
of b = 8 is sufficient for code-breaking applications. In
Refs. [15,19], with simulations of QFT performance up to
40 qubits, we confirmed this result and provided additional
analytical scaling relations.

While the possibility of banding is already a substantial
boon for practical quantum-processor construction, since,
instead of scaling quadratically in n for full bandwidth, the
size of a given device with fixed bandwidth scales only
linearly in the number of qubits n, the question remains
of how gate defects in the remaining, active, gates affect
quantum-processor performance. First numerical simulations
addressing this point were performed by Cirac and Zoller
[20], who considered the case of n = 8 qubits and assumed
that all gates are active (no banding). The main result of this
investigation was that an eight-qubit circuit is able to sustain an
error level of up to 5%, i.e., this eight-qubit system was found
to be robust with respect to gate errors. These calculations
were extended by Miquel et al. [30] to a system with n = 18
qubits, again confirming robustness of the quantum processor.
An analytical fidelity formula, similar in structure to (35) and
based on a phase-diffusion model, was also provided.

Thus, the general idea of robustness of quantum processors
with respect to gate defects, due to both banding and defects
in the active quantum gates, is well established and has been
around since about the mid 1990s. However, the general notion
of robustness is not enough. As discussed in connection with
(35), it has to be analyzed and carefully characterized in order
to be able to exploit it experimentally and technologically.
For instance, there is a qualitative difference between β = 1
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and β = 2 in Eq. (35). In the first case, i.e., for β = 1, gate
defects, even for quantum processors consisting of several
thousand computational qubits, are relatively benign since the
required gate accuracy, according to (36), scales like 1/

√
n. In

the second case, i.e., for β = 2, gate defects are more critical
and, depending on α, may seriously limit the possible size of
quantum processors.

While earlier published work focused on numerical inves-
tigations for a small number of qubits [20,30] or analytical
and numerical investigations of banding that do not include
gate defects [17,18], our work goes qualitatively beyond
these works by providing asymptotic, reliable, analytical
n-scaling formulas that can be used for processors consisting
of thousands of qubits that simultaneously include banding and
defects. In addition, with the help of numerical simulations,
all of our formulas are carefully checked for accuracy in the
classically accessible small-n regime.

While in our earlier work we investigated the effects
of banding [15,19,27,31] and defects [16,22,23] separately,
in this paper, we studied formulas including banding and
defects simultaneously. Deriving these formulas required
the development of a more powerful analytical technique.
Furthermore, this technique is generally applicable to the
computation of combined asymptotic scaling formulas for
a wide range of defect models, which include simultaneous
gate pruning (banding) and defects. These combined scaling
formulas are not just the product of the fidelity for banding and
the fidelity for the defects, separately. A nontrivial interference
term exists that depends on both the bandwidth b and the
defect strength (σ,ε), which dictates under which conditions,
depending on the defect strength, banding is beneficial vs
harmful. This term is qualitatively different and the crossover
it predicts between the two regimes will be discussed in
more detail at the end of this section. The existence of the
interference between banding and defects was not anticipated
and came as a surprise.

An additional surprise was provided by the results obtained
from the random hierarchy error model. According to this
model, rotation angles are generated randomly and the best
matches for rotation angles required according to the circuit
diagram are picked from a set SN that contains N random
rotation angles. Unlike in the more conventional error models,
in which one perturbs around the exact rotation angles θj =
π/2j , the randomly generated angles completely disregard the
natural exponentially decreasing structure of θj with j and a
rough hierarchy of angles, the random hierarchy, is achieved
only via the process of selection of angles from the set SN .
This can result in tremendous errors for individual rotation
gates, on the order of 50% and more, which, surprisingly, still
yields perfectly acceptable quantum-processor performance.
This takes the idea of robustness to a qualitatively different
level and is distinct from our previous work, in which we only
perturbed around the exact rotation angles. For us the viability
of completely random gates, generated without any relation to
the natural hierarchical structure of the exact gates, came as a
complete surprise.

We investigated the random hierarchy model primarily for
its academic value, providing a different gate defect model
with extremely floppy gate angles, not guided by their natural
structure. However, this model may also come in handy in cer-

tain experimental circumstances. As an example, consider the
situation in which, for a certain hardware implementation of a
certain quantum processor, it is natural and straightforward, for
instance, because of the natural availability of atomic transition
lines and laser frequencies, to produce without much effort a
set SN of rotation angles, which are not necessarily close to the
target angles θj , but naturally uniformly distributed in angles.
Then, according to the results of the random hierarchy model,
even if the number N of angles in the set is small (on the
order of 20), excellent performance of the quantum processor
operated with these angles will result. This example shows
how the set SN may come about naturally and may lead to a
valuable shortcut in the construction of the quantum hardware
for realistic quantum processors.

So far in this paper we have investigated the fidelity of a
QFT processor and a quantum adder processor in the presence
of gate errors, both analytically and numerically. In particular,
we focused on the random hierarchy, i.e., we draw approx-
imate rotation gates that best match the exact rotation gates
from a randomly generated set of numbers whose statistical
distribution is uniform. The uniform distribution represents
the larger gate angles relatively accurately, but completely
misses the exponentially small angles (see Fig. 2). This might
suggest that the uniform distribution is not appropriate and
should be replaced with a distribution better tailored to the
exponentially decreasing nature of the rotation angles in j .
Following this line of reasoning, we replaced the uniform
distribution in angle with a uniform distribution in j . We
generate N random numbers that range from 0 to n and pick
those that are closest to the integers ranging from 1 to n − 1 to
replace the integer parameter j of the exact gates, θj = π/2j ,
in an n-qubit QFT. Denoting the best approximate gates of
θj as θ̃j = π/2ξj , where the ξj are those random numbers
drawn from the randomly generated set SN of size N that best
match j , we show in Fig. 13 the rotation gate angles θj (red

10−3

10−2

10−1

100

0 2 4 6 8  10
j

θ

FIG. 13. (Color online) Exact rotation angles θj (red closed
squares) compared with their corresponding approximations θ̃j (green
closed circles) as a function of qubit distance j for j = 1, . . . ,10.
The approximations θ̃j are the best matches for their corresponding
θj , drawn from a set of N = 20 random numbers whose statistical
distribution is uniform on an exponential scale ranging from 0 to n.
Shown in the figure is the case of n = 17.
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FIG. 14. (Color online) Exact rotation angles θj (red closed
squares) compared with their approximations θ̃j for the uniform
(green closed circles) and exponential (blue closed triangles) hier-
archies, as a function of qubit distance j for j = 1, . . . ,10. Data are
imported from Figs. 2 and 13 and plotted together on a linear scale
for the convenience of the readers. The inset shows the averaged
difference 〈εj 〉 = 〈|θ̃j − θj |〉 (green closed circles and blue closed
triangles) for the uniform and exponential hierarchies, respectively,
where averages were performed over 10 000 realizations of the
random set SN with N = 20 and n = 17 for each hierarchy.

squares) and θ̃j (green circles) as a function of j , illustrating
the result of the exponential random hierarchy for N = 20.
As expected, we observe that, in comparison to the uniform
random hierarchy (see Fig. 2), the exponential hierarchy better
approximates the rotation gates with small rotation angles, i.e.,
large j , illustrated by the absence of a plateau for large j in
Fig. 13 in contrast to Fig. 2.

On the other hand, guided by the robustness of the quantum
processor with respect to banding [15,19], it is plausible to
conjecture that in order to obtain higher fidelity, rotation gates
θj with small j need to be more precisely approximated
than gates with larger j values. This is justified because,
as shown in our paper, the fidelity of the QFT processor
subjected to rotation gate errors, for instance, is primarily
determined by the overall phase angle error introduced to
the processor, characterized by its variance. Considering that
a mere 1% error of a θ1 = π/2 gate is equivalent to an
8% error of a θ4 = π/16 gate, given that there occur n − j

rotation gates θj acting on n − j qubits of an n-qubit QFT
processor, we note that, in order to achieve a large fidelity,
much effort needs to be invested to make small-j rotation
gates more precise. Figure 14 shows the same data shown in
Figs. 2 and 13 for the uniform and the exponential hierarchy,
respectively, but on a linear scale, magnifying the deviations
between the exact gates and the random gates, which reveals
the quality of each approximations as a function of j . For this
particular realization of the hierarchies, the uniform hierarchy
better approximates the gates with j = 1, 3, 4, and 6, while
the exponential hierarchy better approximates the gates with
j = 2, 5, and 7 onward.

However, in order to truly characterize the quality of ap-
proximations, one needs to perform averaging over ensembles

of random numbers. Keeping the same conditions (N = 20
and n = 17) as the ones used in Fig. 14, we plot in the inset
of Fig. 14 the difference εj = |θ̃j − θj |, where θ̃j are the best
approximates of θj produced according to the uniform or the
exponential hierarchies, averaged over 10 000 ensembles of
the random number set SN , as a function of j . As expected,
the uniform hierarchy better approximates the rotation gates
θj with small j (large rotation angles) and the exponential
hierarchy better approximates the rotation gates θj with large
j (small rotation angles). In particular, on average the uniform
ensemble represents the rotation angles of the first gate with
an accuracy that is about 6 times better than the exponential
ensemble, where the factor becomes 3 for the second gate
and about 1.5 for the third gate. We also observe that there
is a crossover between the two hierarchies at j between 3
and 4, i.e., for the current case of N = 20 and n = 17, the
uniform hierarchy is better at approximating θj with j � 3
and the exponential hierarchy is better at approximating θj

with j � 4. In addition, while the uniform hierarchy exhibits
two plateaus at 〈ε〉 ≈ 0.07 ∼ 0.08 (see the inset of Fig. 14,
small-j values) and 0.15 (see the inset of Fig. 14, large-j
values), the exponential hierarchy case exhibits an exponential
scaling of 〈ε〉 ≈ 0.8 × 2−j (fit not shown).

In order to explain the origins of these observations, we
now turn to the following analytical analysis. Given N random
numbers generated between 0 and n, the probability P (d; N )
to find a random number ξj between 1 and n − 1, inclusively,
within a distance d of j , is ∼[(n − 2d)/n]N , which, for d ∼
n/N and large N , may be written as exp(−2dN/n). This
means that the approximate gate θ̃j has the form π/2j+rj ,
where rj is a random number distributed, up to normalization,
according to the bivariate exponential function exp(−2dN/n).

Rewriting θ̃j as π/(2j × 2rj ), we see that, if rj is sufficiently
small or N is large enough, we may approximate θ̃j ≈ θj [1 −
ln(2)rj ]. Solving for εj = |θ̃j − θj |, then, since the ensemble
average of rj evaluates to n/2N , we obtain

〈
ε

exp
j

〉 ≈ π

2N

[
n ln(2)

2j

]
, (37)

where 〈· · · 〉 denotes an ensemble average.
Following the analysis shown in Sec. II B, i.e., εj = |θ̃j −

θj | follows a bivariate exponential distribution function that
scales like ∼ exp(−2Nd/π ) for the uniform hierarchy, given
θj is sufficiently larger than the error εj , we may write〈

ε
uni,bivariate
j

〉 ≈ π

2N
. (38)

If, however, θj � εj , we may no longer use a bivariate
distribution; rather, we must employ a univariate distribution
in the limit θj � εj since the best approximate angle θ̃j will
be larger than the exact angle θj . In this case, we obtain〈

ε
uni,univariate
j

〉 ≈ π

N
. (39)

Evaluations of (37)–(39) with N = 20 and n = 17 match
the previously discovered exponential and plateau behaviors of
〈εj 〉 in Fig. 14 to an excellent degree. In addition, the transition
j that marks the crossover from the left to the right plateau in
the uniform hierarchy case is correctly predicted by letting θj

be comparable to εj ∼ π/N . Furthermore, equating (37) and
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(38) yields the crossover

jcrossover = ln[n ln(2)]

ln(2)
, (40)

below which the uniform hierarchy performs better than the
exponential hierarchy in approximating θj and vice versa,
which correctly predicts the aforementioned crossover shown
in the inset of Fig. 14. We point out that (40) is independent of
N , meaning, regardless of the size of the random set SN , there
always exists a critical nc such that for n > nc a θj for a given
j is always better approximated by the uniform hierarchy than
the exponential hierarchy. In particular, the smaller the j , the
smaller nc is, implying a more favorable n-scaling relation
of fidelity for the uniform hierarchy than for the exponential
hierarchy.

To confirm that this is indeed true, once again, we start with
θ̃j ≈ θj [1 − ln(2)rj ] for the exponential hierarchy. We see that
this is identical to the RC noise investigated in Sec. III B for
the quantum adder (see [16] for the case of the QFT), which
can be shown to result in the QFT fidelity

F ≈ exp

[
−π2 ln2(2)

36(2N )2
n2(3n − 4 + 22−2n)

]
. (41)

Consistent with our earlier expectations, this result shows that
the QFT equipped with the exponential random hierarchy
yields a fidelity scaling law, which, to leading order in n,
is of the form ln(F ) ∼ −n3, one power in n worse than
the results reported in Eq. (3), i.e., ln(F ) ∼ −n2, for the
regular, uniformly distributed random hierarchy. Therefore,
surprisingly, the exponential distribution performs worse than
the uniform distribution. On the upside, this is good news
for quantum engineering, since it is far more straightforward
to realize uniformly distributed rotation angles than it is to
realize exponentially distributed rotation angles. In addition,
this result confirms our general rule that it is better to represent
large rotation angles than small rotation angles, which here is
expressed via the fact that the uniform distribution performs
better than the exponential distribution. It also provides yet
another example of the power of our analytical methods,
which are able to deal successfully [see (41)] with a rather
unconventional distribution of rotation angles (uniformly
distributed in the exponents).

The least-favorable state |2n − 1〉 plays a special role in our
analytical derivations. It is the state that, statistically speaking,
produces the worst results in terms of quantum-processor
performance and therefore serves as a test state to produce
a lower limit of processor fidelity. The following may be
perceived as a problem with this procedure. When focusing
on a particular realization of defective gates, i.e., a single
copy of a quantum processor, it is possible that a particular
state, different from |2n − 1〉 but more adapted to a certain
particular realization of gate defects, might actually yield
results worse than |2n − 1〉, while |2n − 1〉 may actually be
the most-favorable state. However, this scenario is statisti-
cally extremely unlikely. Therefore, without preknowledge of
specific realizations of gate defects in an actually existing
quantum processor, we have to assume that gate defects
follow a statistical distribution, which requires us to average
over many realizations of gate defects (typically hundreds
or thousands, as done in this paper) to arrive at statistically

meaningful conclusions. As shown in Fig. 3 and analytically
proved in Appendix A, when ensemble averages are properly
taken, |2n − 1〉 is indeed the least-favorable state. The same
considerations apply to the addend state |2n − 1〉, which, in
Appendix B, in conjunction with the state |2n − 1〉, is shown
to be the least-favorable addend state in the statistical sense.

The central theme of our paper is banding in the presence
of defects. Intuitively, it is clear that it may be better to discard
an obviously wrong gate rather than keep it. However, what is
the formal criterion? What is the noise threshold that decides
which gates to keep and which ones to discard? Based on the
interference term, derived in this paper, between bandwidth
and the size of the defects, we are able to answer these
questions quantitatively.

Let us start with the Gaussian RC and RU cases defined
in Sec. III B and address the following question: For a chosen
fixed bandwidth b, for what values of σ is RF

(QFT)
σ,b > RF (QFT)

σ ?
With (27) and (28) we obtain

σ >
12√

6

√
n − b − 1

n − b − 4/3
≈ 5. (42)

This shows that in the case of relative errors the crossover
between harmful banding and beneficial banding occurs only
if σ is very large. Clearly, such large σ are uninteresting since,
inserted in Eqs. (27) or (28), we obtain exponentially small fi-
delities. We conclude that in the case of relative errors, banding
is never useful. This, however, requires that the relative errors
in θj can be controlled at any level, which is experimentally
impossible. Due to the exponentially decreasing nature of
the rotation angles, experimentally, it becomes very quickly
and completely impossible to distinguish θj from θj+1 (say,
j > 20) and thus to keep the relative errors at their prespecified
levels. Therefore, for a sufficiently large number of qubits (e.g.,
n > 20), banding is always beneficial, experimentally. As a
result, because of the limitation of experimental equipment,
the model of absolute errors is more realistic.

In the case of absolute errors there is indeed a meaningful
crossover between harmful and beneficial banding. We see
this in the following way. Starting from (30), the maximum in
performance corresponds to the minimum of the argument of
the exponential functions in Eq. (30), viewed as a function of
b for constant σ . Under the assumptions n � 1 and n � b,
the minimum occurs at

b
(QFT)
optimal,σ = 1

2 ln(2)
ln

[
8π2 ln(2)

3σ 2

]
. (43)

This criterion is independent of n and depends only loga-
rithmically on σ . Therefore, even for the smallest reasonable
σ , the criterion b

(QFT)
optimal,σ < n − 1 is easily fulfilled. For σ =

10−3, e.g., we obtain b
(QFT)
optimal,σ = 12, compatible with banding

estimates ranging from b = 8 [18] to b = 22 [32] for the QFT
with perfect gates. The analogous formula for the quantum
adder, obtained from (22), is

b
(QA)
optimal,σ = 1

2 ln(2)
ln

[
8π2 ln(2)

3σ 2

]
, (44)

identical to (43). Derived from (34) and (26), the formula
analogous to (43) and (44) for optimal banding in the uniformly

042301-15
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distributed case is

b
(QFT)
optimal,ε = b

(QA)
optimal,ε = 1

2 ln(2)
ln

[
8π2 ln(2)

ε2

]
. (45)

In the case of the uniform and exponential hierarchies, the
parameter N , i.e., the size of the random set SN , takes the
place of the error levels σ and ε and we may expect that,
depending on N , there may also be a crossover between regions
in which banding is helpful versus harmful. In general, we
expect that banding is harmful if N is very large since in
this case the rotation angles θj can be approximated with
excellent accuracy. This is particularly clear in the limit of
N → ∞ since in this case all rotation angles are represented
perfectly and any banding obviously reduces the performance
of the corresponding quantum processor. However, for small
N , banding may be helpful since in this case, in particular in the
case of the uniform hierarchy, small rotation angles (large j )
are not well approximated. Therefore, we expect the existence
of a critical Nc below which (in N ) banding is helpful and
above which (in N ) banding is harmful.

We use the full-bandwidth QFT fidelity scaling law (3)
together with the banded QFT fidelity scaling law (6) to
determine where the crossover between the helpful banding
regime (N < Nc) and the harmful banding regime (N > Nc)
occurs for the QFT. For given b, equating (3) and (6), and
assuming small δ, we obtain

N (QFT,URH)
c ≈ 2b

√
3

8
(n − b), (46)

where URH stands for uniform random hierarchy. Now that
we know how to compute Nc for given b, we would like to
choose b as optimally as possible. Computing the maximum
of the fidelity (6) as a function of b for fixed N , we obtain

b
(QFT,URH)
optimal = 1

2 ln(2)
ln

[
8 ln(2)N2

3

]
. (47)

As an example, for N = 20, used in Sec. II A, we obtain
b

(QFT,URH)
optimal = 5. Therefore, the bandwidths chosen in Figs. 4(b)

and 5(b) are close to optimal.
A similar analysis can be done for the quantum adder as

well. Equating (13) and (17) and assuming small δ and large
n, we obtain

N (QA,URH)
c ≈ 2b

√
3

2
(n − b) (48)

and, similar to the QFT case (47), the optimal bandwidth reads

b
(QA,URH)
optimal = 1

2 ln(2)
ln

[
2 ln(2)N2

3

]
. (49)

Although less useful in practice, for completeness, we
provide here the corresponding formulas for the exponential
random hierarchy. For the QFT we obtain

N (QFT,ERH)
c ≈ n ln(2)

2

√
1 − 1

3(n − b − 1)
, (50)

b
(QFT,ERH)
optimal = n − 1 + 1

2 ln(2)
− 1

3 − 12N2/n2 ln2(2)
(51)

and for the quantum adder, extending the domain from which
we draw random numbers from (0,n) to (−1,n), we obtain

N (QA,ERH)
c ≈ (n + 1) ln(2)

2

√
1 − 1

3(n − b − 1)
, (52)

b
(QA,ERH)
optimal = n − 1 + 1

2 ln(2)
− 1

3 − 12N2/(n + 1)2 ln2(2)
.

(53)

V. CONCLUSION

In this paper we investigated the fidelity of quantum
processors subjected to rotation gate defects. In particular,
we derived analytically the scaling of the fidelity of the QFT
and the quantum adder processors equipped with randomly
hierarchical gates. In addition, we derived analytical fidelity
scaling laws for the quantum adder, subjected to gate errors
with Gaussian or uniform distributions. Our analytical analy-
sis, which matches numerical results to an excellent degree,
shows that the QFT and the quantum adder processors are
surprisingly robust against any type of gate errors in general
and in particular against gate errors introduced according
to the uniformly distributed random hierarchy, a particularly
unfavorable type of defect, since it completely disregards the
natural exponential ordering (hierarchy) of the rotation gates.

By demonstrating the extraordinary robustness of quantum
processors with respect to hardware flaws, to the effect that
the QFT and the quantum adder, e.g., still work even if most
of their controlled-rotation gates are pruned and the surviving
ones are implemented via selection from a randomly generated
set, our work adds to the expectation that a quantum computer
is a realizable and practical instrument that will change the
paradigm of computation.

APPENDIX A: LEAST-FAVORABLE INPUT
STATE FOR THE QFT

In this Appendix we show that the input state |ψin〉 =
|2n−1〉 is the most-unfavorable integer input state for an
n-qubit QFT, whose performance is measured in terms of
the fidelity F = |〈ψideal|ψactual〉|2. We start by invoking the
approximate fidelity expression (2), which we can rewrite as

F ≈ |〈exp[i	ϕ(α,β)]〉β |2, (A1)

where |α〉 is the integer input state of the QFT; β, an integer that
ranges from 0 to 2n − 1, denotes the integer state spectrum of
the output state of the QFT; 〈· · · 〉β stands for averaging over β;
and 	ϕ(α,β) denotes the phase-angle defects associated with
the n-qubit QFT with the input state |α〉 and one of the output
integer states |β〉. Since in this paper we focus attention on
defective rotation gates with rotation angles θ̃j = θj + 	ϕj ,
where the exact rotation angles are given by θj = π/2j , we
may write

	ϕ(α,β) =
n−1∑
j=1

n−j∑
l=1

α[n−l]β[j+l−1]	ϕj , (A2)

where the subscripts [n − l] and [j + l − 1] of α and β denote
the (n − l)th and the (j + l − 1)th binary digits of the integers
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α and β, respectively. Inserting (A2) into (A1) and performing
the β averaging by replacing β[j+l−1] by 1/2, we obtain

F ≈
∣∣∣∣∣∣exp

⎛
⎝i

n−1∑
j=1

n−j∑
l=1

α[n−l]	ϕj/2

⎞
⎠

∣∣∣∣∣∣
2

. (A3)

At this point, we clearly see that, if all α[n−l] are 1, we obtain the
maximal variance of the phase-angle sum in Eq. (A3). In other
words, we obtain the minimal fidelity. Hence, we conclude
that |ψin〉 = |2n − 1〉 is indeed the input state of the n-qubit
QFT, which incurs the maximal fidelity penalty.

APPENDIX B: LEAST-FAVORABLE INPUT
STATE FOR THE QUANTUM ADDER

In the spirit of Appendix A, we show in this Appendix
that the choice of |ψin〉 = |2n − 1〉 as input state and |ν〉 =
|2n − 1〉 as addend state is the most unfavorable combination
of integer input and addend states for the n-qubit quantum
adder whose performance is measured in terms of fidelity
F = |〈ψideal|ψactual〉|2. We start with the analytical fidelity
expression (10) of the n-qubit quantum adder, which we can
rewrite as

F (QA) ≈ |〈exp[i	ϕ(α,β ′)]〉β ′ |2|〈exp[i	ϕ(QFA)(β ′; ν)]〉β ′ |2
× |〈exp{−i	ϕ[β ′,(α + ν) mod 2n]}〉β ′ |2, (B1)

where, in analogy to the description of (A1), |α〉 is the integer
input state of the quantum adder; β ′, denoting the integer state
spectrum of the intermediate state immediately following the
QFT [the first operation of the quantum adder (see Fig. 6)], is an
integer ranging from 0 to 2n − 1; 〈· · · 〉β ′ stands for averaging
over β ′; 	ϕ(α,β ′) denotes the phase angle defects associated
with an n-qubit QFT with the input integer state |α〉 and one

of the integer output states |β ′〉; and 	ϕ(QFA)(β ′; ν) denotes
the phase-angle defects associated with an n-qubit quantum
Fourier adder with addend |ν〉 acting on the integer input state
|β ′〉. According to the gate operations of the quantum Fourier
adder in Fig. 6, denoting by θ̃j = θj + 	ϕj the defective
rotation angles, we may write

	ϕ(QFA)(β ′; N ) =
n−1∑
j=0

n−j∑
l=1

β ′
[n−l]ν[n−l]	ϕj , (B2)

which, together with 	ϕ of the QFT in Eq. (A2), results in the
adder fidelity

F (QA) ≈
∣∣∣∣∣∣exp

⎛
⎝i

n−1∑
j=1

n−j∑
l=1

α[n−l]	ϕj/2

⎞
⎠

∣∣∣∣∣∣
2

×
∣∣∣∣∣∣exp

⎛
⎝i

n−1∑
j=0

n−j∑
l=1

ν[n−l]	ϕj/2

⎞
⎠

∣∣∣∣∣∣
2

×
∣∣∣∣∣∣exp

⎛
⎝i

n−1∑
j=1

n−j∑
l=1

[(α + ν) mod 2n][n−l]	ϕj/2

⎞
⎠

∣∣∣∣∣∣
2

,

(B3)

where we performed the β ′ averaging and replaced all
occurrences of binary bits of β ′ with 1/2. At this point,
we clearly see that, if the bit spectra of (i) α, (ii) ν, and
(iii) (α + ν) mod 2n are as saturated as possible with 1, we ob-
tain the minimal quantum adder fidelity. This is obtained when
α = 2n − 1, ν = 2n − 1, and (α + ν) mod 2n = 2n − 2. This
implies that the choice |ψin〉 = |2n − 1〉 and |ν〉 = |2n − 1〉 is
the combination of input and addend states for the quantum
adder, which incurs the maximal fidelity penalty.
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