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The Wigner function is a useful tool for exploring the transition between quantum and classical dynamics, as
well as the behavior of quantum chaotic systems. Evolving the Wigner function for open systems has proved
challenging, however; a variety of methods have been devised but suffer from being cumbersome and resource
intensive. Here we present an efficient fast-Fourier method for evolving the Wigner function that has a complexity
of O(N log N ) where N is the size of the array storing the Wigner function. The efficiency, stability, and simplicity
of this method allows us to simulate open-system dynamics previously thought to be prohibitively expensive.
As a demonstration we simulate the dynamics of both one-particle and two-particle systems under various
environmental interactions. For a single particle we also compare the resulting evolution with that of the classical
Fokker–Planck and Koopman–von Neumann equations and show that the environmental interactions induce the
quantum-to-classical transition as expected. In the case of two interacting particles we show that an environment
interacting with one of the particles leads to the loss of coherence of the other.
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I. INTRODUCTION

The Wigner function is a useful tool in understanding
the relationship between quantum systems and their classical
counterparts [1–5], especially for chaotic systems in which
visualization in phase space has been crucial in enabling
breakthroughs [6]. The Wigner function is also very useful
for studying the quantum-to-classical transition, the process in
which classical dynamics emerges as an effective theory from
the underlying quantum mechanics [7–12], and for which open
systems play an important role [13–17].

The equation of motion for the Wigner function is known as
Moyal’s equation and can be written either as an infinite-order
partial differential equation or as an integral equation [18,19].
Both forms are difficult to solve and, as a result, a plethora
of numerical methods for evolving the Wigner function
propagation have been developed. These have involved (i) the
integral form of Moyal’s equation [20–25], (ii) reduction of
the Moyal equation to a Boltzmann-like equation [26,27],
(iii) propagation of Gaussian and coherent states [28–31],
(iv) Monte Carlo schemes in which the Wigner function is
contracted by averaging over stochastic trajectories of pure
states [32–35], and (v) evolving the density matrix in the
coordinate representation [36,37].

In this paper we combine a recently developed, elegant
formalism for quantum mechanics in phase space [38,39]
with the spectral split-operator method [40]. The spectral (fast
Fourier transform) method is desirable because it allows one
to take advantage of excellent existing libraries, parallelizes
well, and is efficient and highly stable. The versatility and
effectiveness of the resulting numerical method is illustrated
by simulating decoherence and energy dissipation in single-
and two-particle systems.

The rest of the paper is organized as follows: The Hilbert
phase space formalism that underlies the numerical methods
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is introduced in Sec. II. In this section we show how master
equations for open systems are written in this formalism,
as well as the evolution equations that describe classical
motion. We also discuss the relationship between the equations
describing the quantum and classical evolution. The split-
operator technique for evolving the Wigner function is then
presented in Sec. III. In Secs. IV and V we illustrate the use
of the split-operator technique by applying it to a number of
examples. Section VI concludes with a brief summary.

II. FORMALISM

A. Hilbert phase space

We first define the following notation: Given continuous
variables a and b, we write the derivatives with respect to
these variables in the following compact form:

∂a ≡ ∂

∂a
, ∂2

a ≡ ∂2

∂a2
, ∂2

ab ≡ ∂2

∂a∂b
. (1)

We will also use a to denote a continuous variable that is
distinct from a. As is common we use hats to denote quantum
operators that correspond to classical observables. Thus, the
position operator x̂ has a continuous spectrum of eigenvalues
given by the variable x, and the corresponding momentum
operator is p̂ ≡ −i�∂ x . We do not use a hat for the density
operator, which we denote by ρ, and we write the matrix
elements of ρ in the compact form ρx y = 〈x|ρ| y〉. Finally, for
a function f of two variables x and y, we use the form f (x,y)
as well as the more compact form fxy .

With the above notation the unitary evolution for the
quantum density operator ρ is given by [41]

i�ρ̇ = [Ĥ (x̂, p̂),ρ], (2)

where [x̂, p̂] = i� and Ĥ is the Hamiltonian. In particular,
Eq. (2) in the position representation is

i�∂tρxx′ = [H (x, − i�∂ x) − H (x′,i�∂ x′ )]ρxx′ . (3)
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The linear change of variables,

x = x − �

2
θ, x′ = x + �

2
θ (4)

gives the new representation

Bxθ =
〈
x − �

2
θ

∣∣∣∣ρ
∣∣∣∣x + �

2
θ

〉
, (5)

with the new equation of motion

i�∂tBxθ =
[
H

(
x − �

2
θ,i

[
∂θ − �

2
∂x

])

−H

(
x + �

2
θ,i

[
∂θ + �

2
∂x

])]
Bxθ . (6)

Since �θ has dimensions of length, the function Bxθ was named
the “double-configuration-space representation” by Blokhint-
sev [42,43]. Following Blokhintsev it is possible to define the
quantity p, with dimensions of momentum, as the conjugate
variable to θ . In this way we obtain the celebrated Wigner
function, Wxp, related to Bxθ through the Fourier transform:

Bxθ =
∫

Wxpe−ipθdp, (7)

Wxp = 1

2π

∫
Bxθe

ipθdθ. (8)

Note that, while Bxθ is in general a complex-valued function,
Wxp is real and can be normalized according to∫

Wxpdxdp = 1. (9)

Nevertheless, considering that Wxp is not necessarily positive,
it cannot be interpreted as a true probability distribution (see
discussions below).

Using the above definitions we obtain the equation of
motion in phase space:

i�∂tWxp =
[
H

(
x + i�

2
∂p,p − i�

2
∂x

)

−H

(
x − i�

2
∂p,p + i�

2
∂x

)]
Wxp. (10)

The latter can be also expressed in terms of the Moyal star
defined as

Hxp � Wxp ≡ Hxp exp

(
i�

2
←−
∂x

−→
∂p − i�

2
←−
∂p

−→
∂x

)
Wxp, (11)

where the arrows indicate the direction of the derivatives’
action, and we have written Hxp ≡ H (x,p). By employing
the following identities:

Hxp � Wxp = H

(
x + i�

2
−→
∂p ,p − i�

2
−→
∂x

)
Wxp, (12)

Wxp � Hxp = H

(
x − i�

2
−→
∂p ,p + i�

2
−→
∂x

)
Wxp, (13)

the equation of motion (10) becomes

i�∂tWxp = Hxp � Wxp − Wxp � Hxp, (14)

which is Moyal’s equation [1,18,44].

An abstract formalism that is independent of the particular
representation can be introduced by defining an extended four-
operator algebra x̂,p̂,θ̂ ,λ̂ satisfying the following commutator
relations [38,39]:

[x̂,p̂] = 0, [x̂,λ̂] = i, [p̂,θ̂ ] = i, [λ̂,θ̂ ] = 0. (15)

We note that the commuting operators x̂ and p̂, representing
position and momentum in the phase space, form a basis
for the Koopman–von Neumann representation of classical
mechanics [45–48]. The operators λ̂ and θ̂ are known as
the Bopp operators [13,49]. The four operators (15) can be
used to realize the usual canonically conjugate position and
momentum coordinates via

x̂ = x̂ − �

2
θ̂ , p̂ = p̂ + �

2
λ̂, (16)

so that [x̂, p̂] = i�. Similarly, one can define a mirror quantum
algebra as

x̂′ = x̂ + �

2
θ̂ , p̂′ = p̂ − �

2
λ̂, (17)

obeying the commutation relation with the negative sign
[x̂′, p̂′] = −i�, while all the other commutators vanish:
[x̂,x̂′] = [x̂, p̂′] = [ p̂′, p̂] = [ p̂′,x̂] = 0.

The four operators x̂, θ̂ , λ̂, and p̂ can be used to define
a Hilbert space that we refer to as the “Hilbert phase space”
after Ref. [39]. Specifically, since the self-adjoint operators x̂

and θ̂ (respectively λ̂ and p̂) commute, they share a common
orthonormal eigenbasis |xθ〉 (respectively |λp〉). These bases
are complete so naturally

1 =
∫

dxdθ |xθ〉〈xθ | =
∫

dλdp|λp〉〈λp|, (18)

where 〈λp|xθ〉 = exp(ipθ − ixλ)/(2π ).
The position and momentum coordinates introduced above,

as well as their mirror counterparts, allow Eq. (3) to be
rewritten in the more abstract form

i�
d

dt
|ρ〉 = [H (x̂, p̂) − H (x̂′, p̂′)]|ρ〉, (19)

where |ρ〉 is a ket belonging to the Hilbert phase space.
We can realize x̂,p̂,θ̂ , and λ̂ in terms of differential

operators. For example, the phase space representation x-p
is accomplished by

x̂ = x, p̂ = p, λ̂ = −i∂x, θ̂ = −i∂p, (20)

while, the x-θ representation requires

x̂ = x, p̂ = i∂θ , λ̂ = −i∂x, θ̂ = θ. (21)

Other representations can be constructed in a similar fashion.
The Hilbert-phase-space formalism conveniently unites

previously known results regarding phase-space distribution
functions. Considering the Hamiltonian form Ĥ = 1

2m
p̂2 +

V (x̂), the abstract equation of motion for the density matrix is

i�
d

dt
|ρ〉 =

[
�

m
p̂λ̂ + V

(
x̂ − �

2
θ̂

)
− V

(
x̂ + �

2
θ̂

)]
|ρ〉,

(22)
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for which the x-θ representation gives a linear partial differ-
ential equation

i�∂t |ρ〉xθ =
[

�

m
∂2
xθ + V

(
x − �

2
θ

)
− V

(
x + �

2
θ

)]
|ρ〉xθ ,

(23)

where |ρ〉xθ ≡ 〈xθ |ρ〉. Since this differential equation is the
same as Eq. (6) we have [39]

B(x,θ ) = 1√
�
|ρ〉xθ . (24)

Alternatively, the same equation in the usual phase space is

i�∂t |ρ〉xp =
[
−i

�

m
p∂x + V + − V −

]
|ρ〉xp, (25)

where V ± = V (x ± i �

2 ∂p) and

W (x,p) = 1√
2π�

|ρ〉xp. (26)

Equations (23) and (25) illustrate the power of choosing
an appropriate representation: The equation of motion in
the x-θ representation is a second-order partial differential
equation with the same computational complexity as the
two-dimensional Schrödinger equation, while the equation of
motion in the x-p representation is much more difficult to
solve, as either a higher order partial differential equation or
an equally challenging integro-differential equation [1].

In addition to W (x,p)[x-p phase space] and B(x,θ )[x-θ
space], the quantum state can be represented by the functions
A(λ,θ ) and Z(λ,p) as

A(λ,θ ) =
∫

dxe−iλxB(x,θ ), (27)

Z(λ,p) = 1

2π

∫
dxdθei(pθ−λx)B(x,θ ), (28)

where A(λ,θ ) is known as the ambiguity function in signal
processing [50], and Z(λ,p) can be regarded as the double-
momentum-space representation since �λ has the dimension-
ality of momentum. The connections among all these functions
are easily visualized in the following diagram:

W (x, p) Z(λ, p)Fλ→x

B(x, θ)

Fθ→p

A(λ, θ)

Fθ→p

Fλ→x

(29)

where vertical arrows denote the θ → p partial Fourier
transforms (Fθ→p), while horizontal arrows indicate the λ →
x partial Fourier transforms (Fλ→x).

B. Open systems

Having reviewed the equations of motion for unitary
evolution in the Hilbert phase-space formalism, we now show
how to write various standard Markovian master equations
in this formalism. If a master equation that describes the
interaction with an environment is time-independent, then
to preserve the positivity of the density matrix it must have
the Lindblad form. This means that in addition to the unitary

evolution the derivative of ρ contains one or more additional
terms of the form [41]

L[ρ] = AρA† − 1
2A†Aρ − 1

2ρA†A, (30)

where A can be any operator. For a single particle, every
operator A can be written as a function of the position and
momentum operators, so we can write A(x̂, p̂). Following the
steps leading to Eq. (19), each of the terms in the Lindblad
form L[ρ] can be easily translated to the Hilbert phase-space
formalism by using the following rules:

A(x̂, p̂)ρ ⇔ A(x̂, p̂)|ρ〉, (31)

ρA(x̂, p̂) ⇔ A
(
x̂′, p̂′)|ρ〉, (32)

and the fact that A(x̂, p̂) commutes with B(x̂′, p̂′) for every A

and B. That is, when any operator A(x̂, p̂) acts to the right on
ρ it acts on |ρ〉 as itself, and when it acts to the left on ρ it acts
on |ρ〉 as A(x̂′, p̂′). Note also that, in the Hilbert phase space,

A(x̂, p̂) = A

(
x̂ − �θ̂

2
,p̂ + �λ̂

2

)
, (33)

A
(
x̂′, p̂′) = A

(
x̂ + �θ̂

2
,p̂ − �λ̂

2

)
. (34)

As an example, the Lindblad operator for the Wigner function
is

L[Wx,p]

=
[
A

(
x − �

2
θ̂ ,p + �

2
λ̂

)
A†

(
x + �

2
θ̂ ,p − �

2
λ̂

)

− 1

2
A†

(
x − �θ̂

2
,p + �λ̂

2

)
A

(
x − �θ̂

2
,p + �λ̂

2

)

−1

2
A†

(
x + �θ̂

2
,p − �λ̂

2

)
A

(
x + �θ̂

2
,p − �λ̂

2

)]
Wx,p,

(35)

where θ̂ = −i∂p and λ̂ = −i∂x .
We now give useful forms for two important master

equations. The first is decoherence in the basis of x for which
the master equation is [8,10,41]

i�L[ρ] = − D

�2
[x̂,[x̂,ρ]] = 2D

�2

(
x̂ρ x̂ − 1

2
x̂2ρ − 1

2
ρ x̂2

)
;

(36)

however, it has a particularly simple form in the Hilbert phase
space

i�L[|ρ〉] = D

�2
[2(x̂ − �θ̂/2)(x̂ + �θ̂/2)

− (x̂ − �θ̂/2)(x̂ − �θ̂/2)

− (x̂ + �θ̂/2)(x̂ + �θ̂/2)]|ρ〉
= − Dθ̂2|ρ〉. (37)
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As a result, Blokhintsev’s dynamical equation for a quantum
system undergoing decoherence in the position basis reads

∂tBxθ =
[−i

m
∂2
θx + V − − V +

i�
− Dθ2

]
Bxθ , (38)

with V − = V (x − �θ/2) and V + = V (x + �θ/2).
Another widely used master equation is the time-

independent approximation to the Caldeira–Legget model
[16,41,51,52]. This master equation is not strictly correct
because it is not in the Lindblad form, but it is good enough
for many purposes to describe damping and thermalization of
a harmonic oscillator [53]. It is given by

i�D̂[ρ] = − iγ

�
[x,[ p,ρ]+] − 2mγkT

�2
[x,[x,ρ]]. (39)

Here [ p,ρ]+ denotes the anticommutator, γ is the damping
coefficient, and T is the temperature of a bath. The Hilbert-
phase-space form of this master equation is

D̂|ρ〉 = 2γ (iθ̂ p̂ − mkT θ̂2)|ρ〉, (40)

and in the x-θ representation this becomes

∂tBxθ =
[−i

m
∂2
xθ + V − − V +

i�
− 2γ θ (∂θ + mkT θ )

]
Bxθ .

(41)

C. Hilbert phase space and classical dynamics

Classical mechanics can be embedded in the Hilbert phase
space. As discussed in Ref. [39], when we take the classical
limit � → 0 of Eq. (22) we recover the Koopman–von
Neumann equation for the classical state |ρ〉 [45–48]:

i
d

dt
|ρ〉 =

[
1

m
p̂λ̂ − V ′(x̂)θ̂

]
|ρ〉, (42)

where the position and momentum are given by the commuting
operators x̂ and p̂ [Eq. (15)]. In this limit the x-p repre-
sentation, 	(x,p) = 〈xp|ρ〉, is the classical Koopman–von
Neumann “wave function” which is essentially the square root
of the phase-space probability density. It has the differential
equation

∂

∂t
〈xp|ρ〉 =

[
− 1

m
p

∂

∂x
+ V ′(x)

∂

∂p

]
〈xp|ρ〉, (43)

Equation (43) can be also obtained by taking the limit � → 0
of the Moyal equation (25) for the Wigner function W (x,p).
The corresponding positive phase-space probability density,
ρ(x,p) = |	(x,p)|2, can be properly normalized:∫

ρ(x,p)dxdp = 1, (44)

and applying the chain rule to the definition of the density
ρ(x,p) one obtains the Liouville equation of classical me-
chanics, which strikingly is identical to that for the classical
wave-function 	(x,p) [48]. Since Eq. (43) is the equation
obeyed by the classical probability density it is equivalent to
an ensemble of Newtonian trajectories, as can be shown via
the method of characteristics.

The classical evolution leaves the following cumulative
function time invariant:

Cρ(γ,t) =
∫

ρ<γ

ρ(x,p,t)dxdp. (45)

This statement is proven by slicing the cumulative distribution
for an arbitrarily small increment δγ

Cρ(γ+δγ,t) − Cρ(γ,t) =
∫

δR

ρ(x,p,t)dxdp ≈ γ

∫
δR

dxdp,

(46)

where δR is the region γ < ρ < γ + δγ . The latter integral
measures the phase-space volume where ρ(x,p,t) ≈ γ , which
is preserved according to Liouville’s theorem, implying the
time invariance of Cρ(γ,t).

The same arguments establish the time independence of the
cumulative distribution

C	(γ,t) =
∫

	<γ

	(x,p,t)dxdp, (47)

for Koopman–von Neumann dynamics of real-valued states
	(x,p,t). Note that 	(x,p,t) is real for any time time if
and only if the initial condition is real. Contrary to classical
mechanics, quantum propagation of the Wigner function does
not necessarily preserve the cumulative function. For example,
a typical effect of quantum decoherence is the eventual
elimination of any negativity in the Wigner function,

NW (t) = CW (0,t) =
∫

W<0
W (x,p,t)dxdp. (48)

Modern developments and applications of the Koopman–von
Neumann classical mechanics can be found in, e.g., Refs.
[38,39,48,54–67].

The Fokker–Planck equation of open classical dynamics
can also be described in the present formalism:

i∂tρ(x,p) =
[

1

m
pλ̂ − V ′(x)θ̂ − iDθ̂2

]
ρ(x,p), (49)

where λ̂ and θ̂ are the differential operators defined in
Eq. (20). The classical limit of Eq. (38), governing quan-
tum decoherence, recovers Eq. (49) as further discussed in
Sec. IV.

III. SPECTRAL SPLIT-OPERATOR METHODS

The unitary time-evolution operator, underlying the equa-
tion of motion (22), for a time increment dt is

Udt = exp

(
−idt

[
p̂λ̂

m
+ V − − V +

�

])
. (50)

This operator can be approximated using the Trotter product
[68] in the limit of a small time increment either by the first-
order scheme

Udt = exp

(
−i

dt

m
p̂λ̂

)
exp

(
−i

dt

�
(V − − V +)

)
+ O(dt2),

(51)
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or by the second-order scheme [40]

Udt = exp

(
−i

dt

2m
p̂λ̂

)
exp

(
−i

dt

�
(V − − V +)

)

× exp

(
−i

dt

2m
p̂λ̂

)
+ O(dt3). (52)

Both factorizations are advantageous for numerical evaluations
since the time-evolution propagator is expressed as a sequence
of Fourier transforms F [see Eq. (29)] and element-wise
multiplications. Thus, the first-order scheme propagates the
state in the x-p representation according to

W (t + dt) = Fλ→x exp

(
−i

dt

m
pλ

)

×Fx→λ
θ→p exp

(
−i

dt

�
(V − − V +

)
Fp→θW (t),

(53)

where V ± = V (x ± �

2 θ ) have now become scalar functions,
and Fx→λ

θ→p = Fθ→pFx→λ = Fx→λFθ→p is a sequence of two
Fourier transforms defined in Eq. (29). Numerical propagators
for other representations of the Hilbert phase space can be
developed in a similar fashion.

If the Wigner function W (t) at a given point in time is
stored in an array of length N = Np × Nx , then the total
complexity of the propagator Eq. (53) is O(N log N ) since
it involves a sequence of two fast Fourier transforms [69] of
O(N log N ) complexity, and two element-wise multiplications
of O(N ) complexity. The fast Fourier transform does not
exactly coincide with the formal definition of the Fourier
transform F because of the need to have one more element
with negative frequency than with positive frequency. For
convenience we thus give the propagators explicitly in terms
of discrete position and momentum grids. We assume that both
grids have an even number of points given respectively by Np

and Nx , and denote the separation of the grid points by �x

and �p. In particular the grids are given by xn and pn with

�x = 2Lx/Nx, �p = 2Lp/Np, (54)

xn = −Lx + n�x, n = 0, . . . ,Nx − 1, (55)

pm = −Lp + m�p, m = 0, . . . ,Np − 1, (56)

where Lx and Lp define the window of interest in the phase
space. The Wigner function is actually stored with the grid
elements in a different order, in that the negative grid points
are stored in the second half of the grid. This order is given by
Wkj = W (x̃j ,p̃k) with

x̃j =
{

xj+Nx/2 for j = 0, . . . ,Nx

2 − 1

xj−Nx/2 for j = Nx

2 , . . . ,Nx − 1,
(57)

and with the corresponding relationship between p̃k and pm.
Note that the Wigner function at the origin of the coordinate
system, W (0,0), is now stored at the edge of the grid as W00.
The reason for this new grid ordering is that it is the natural
ordering upon which to apply the fast Fourier transform. It
is, of course, not the natural ordering to use in displaying the

Wigner function, so we transform from the j,k ordering to
the n,m ordering before plotting. This transformation is called
an “FFT shift” and is characterized for being a self-inverse
function. It is usually provided in libraries that implement the
fast Fourier transform. However it should be noted that some
implementations of the “FFT shift” store an extra copy of the
Wigner function, which can be prohibitively expensive, which
is why the user may need to make explicit use of Eq. (57). We
provide a Python implementation of the unitary propagation
for a single-particle in the Supplemental Material [70].

In the case of other representations, e.g., x-θ , the grid
discretization step size �θ is given by

�θ = 2π/Lp, Lθ = �θNp/2; (58)

whereas in the λ-p representation

�λ = 2π/Lx, Lλ = �λNx/2. (59)

If the system’s initial condition is given by a wave function
known analytically, then B(x,θ ) can be readily constructed by
Eq. (5), whereas the calculation of the corresponding Wigner
distribution requires an additional Fourier transform (8).

A. Solving master equations

The split-operator method presented above can be extended
to handle nonunitary open quantum system dynamics. For
example, the first-order split-operator method for evolving the
master equation given in Eq. (37) is

W (t + dt)

= Fλ→x exp

(
− idt

m
pλ

)

×Fx→λ
θ→p exp

(
− idt

�
[V −−V +]−dtDθ2

)
Fp→θW (t).

(60)

Similar techniques can be used for solving the classical
Liouville equation [71–73] and can be extended to the
Koopman–von Neumann equation (43). However, Liouville-
like equations can only be solved exactly for a finite time
on a fixed grid, due to the development of increasingly fine
structure, know as velocity filamentation [74]. This issue
can be handled by filtering the phase-space distribution so
as to remove high-frequency (spatial) structure. In the x-θ
representation this results in the following propagation scheme
for ρ(t) and 	(t) [75,76]:{

ρ(t + dt)

	(t + dt)

}

= Fλ→x exp

(
− idt

m
pλ

)

×Fx→λ
θ→p exp (−idtV ′(x) − δDθ2)Fp→θ

{
ρ(t)

	(t)

}
,

(61)

valid for both the classical probability density ρ(x,p) and
the Koopman–von Neumann wave function 	(x,p). This
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FIG. 1. (Color online) Various quantum dynamics in the Morse potential V (x) given in Eq. (66). The contour lines represent level sets of
the classical energy H (x,p) = p2/(2m) + V (x). (a) The initial Wigner function (WF) at t = 0 a.u. (b) The WF at time t = 40 400 a.u. after
unitary evolution employing Eq. (53). (c) The WF at t = 40 400 a.u. after unitary evolution with additional decoherence in the position basis.
The diffusion coefficient is D = 2.70 × 10−3 a.u. and we use the propagator in Eq. (60). (d) The WF at time t = 40 400 a.u. after unitary
evolution with energy damping given by the Caldeira–Legget model with temperature T = 300 K, diffusion D = 2.70 × 10−3 a.u., and inverse
damping coefficient γ −1 = 41 341 a.u. = 1 ps. All these simulations were performed with a grid of 512 × 1024.

propagator is equivalent to the evolution of the Fokker–
Planck equation (49); the diffusion term in the Fokker–Planck
equation washes out the fine structure. A similar numerical
trick is used to develop efficient numerical methods for the
Hamiltonian–Jacobi equation [77].

The Caldeira–Legget master equation (39) can be imple-
mented by separating the effects of decoherence and dissipa-
tion. The second term in Eq. (39), generating decoherence,
has already been treated in Eq. (60). The first term in
Eq. (39) describes energy exchange with the bath and could
be evaluated by specially designed finite-difference schemes
[37,78,79], although these require large grid sizes to achieve
numerical stability.

To overcome this limitation we now present a stable method
enabling, for the first time, higher dimensional simulations (see
Sec.V). The time evolution induced by a general dissipator
operator Ĉ is

|ρ(t + dt)〉 = edt Ĉ |ρ(t)〉
= (1 + dt Ĉ[1 + dt Ĉ/2])|ρ(t)〉 + O(dt3). (62)

For the energy exchange term in the Caldeira–Legget model,
Eq. (39), we have Ĉ = 2iγ θ̂ p̂. Using Eq. (62) we can propagate

the Wigner function in two steps as

W (t + dt) = W (t) + 2idtγ θ̂ p̂W (1)(t), (63)

W (1)(t) = W (t) + idtγ θ̂ p̂W (t), (64)

where a sequence of θ → p Fourier transforms is used to
calculate the required operator product:

θ̂ p̂W (t) = Fθ→pθFp→θpW (t). (65)

We note that the second-order scheme (63) is sufficient for
the simulations in Secs. IV and V; nevertheless, higher-order
corrections can be recursively included if needed.

IV. SINGLE-PARTICLE SYSTEMS

In this section, we apply the numerical methods developed
in Sec. III to propagate a single-particle under various
interactions with the environment. We consider the model
for vibrational diatomic molecular dynamics: a particle with
mass m = 58 752 a.u. [we use atomic units (a.u.) throughout]
moving in a Morse potential given by

V (x) = V0{exp (−2a[x − re]) − 2 exp (a[x − re])}, (66)

with V0 = 0.6 eV = 0.0220 a.u., a = 2.5 a.u., and re =
−4.7 a.u. The Wigner function for the initial state is shown

FIG. 2. (Color online) (a) Koopman–von Neumann state classically propagated at t = 40 400 a.u., with regularization diffusion coefficient
δD = 1.5 × 10−6 a.u. in a grid 768 × 6144. (b) Corresponding classical state propagated according to the Fokker–Planck equation with
decoherence (diffusion) coefficient equal to D = 2.61 × 10−3 a.u. in a grid 512 × 1024.
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FIG. 3. (Color online) Negativity as a function of time for (i) the
regularized Koopman–von Neumann propagation with decoherence
coefficient δD = 1.5 × 10−6 a.u. (dashed line), (ii) Koopman–von
Neumann propagation without regularization (solid line). The reg-
ularized Koopman–von Neumann propagator maintains an approxi-
mately constant negativity, contrary to the monotonic increase given
by the unregularized version.

in Fig. 1(a). This initial state corresponds to the first-excited
state of the Morse potential displaced by x0 = 4.3 a.u. and is
given by

ψ1(x) = NzL−n−1/2e−z/2

(
1 − L exp (−a[x − x0])

L − 1

)
, (67)

where L = √
2mV0/a and N is a normalization constant.

This state possesses significant negativity, defined in Eq. (48),
and we propagate it according to three different dynamical
equations: (i) unitary evolution, Eq. (22), resulting in the final
state shown in Fig. 1(b); (ii) decoherent dynamics given by
Eq. (38), resulting in the final state shown in Fig. 1(c); (iii)
Evolution under the Caldeira–Legget master equation (41),
resulting in the final state given in Fig. 1(d).

These simulations provide an opportunity to observe the
emergence of the classical world as a result of the interactions
with the environment [7–12]. In particular, they illustrate how

decoherence eliminates the negative regions of the Wigner
function. The final state under purely unitary evolution in
Fig. 1(b) contains significant negativity (48), while the states
in the presence of interactions with the environment evolve to
entirely positive states as seen in Figs. 1(c) and 1(d).

We also propagated the initial state shown in Fig. 1(a) by
using (i) the classical Koopman–von Neumann evolution (43)
regularized to handle velocity filamentation (see the discussion
in Sec. III), and (ii) the Fokker–Planck evolution (49) with the
same diffusion coefficient as used for the open-system evolu-
tion shown Fig. 1(c). The result of the Koopman–von Neumann
evolution is shown in Fig. 2(a) and that of the Fokker–Planck
equation is shown in Fig. 2(b). A comparison of the final states
in Fig. 1 and Fig. 2 shows that a quantum state undergoing
decoherence converges to the solution of the Fokker–Planck
equation, rather than to the corresponding Koopman–von
Neumann state. The reason for this is that the decoherence is a
measurement process and induces quantum backaction noise
that is equivalent to diffusion, and the Fokker–Planck equation
correctly includes this diffusion. The classical limit is defined
as that in which the action of a system is sufficiently large that
the decoherence needed to transform the motion into classical
dynamics induces diffusion that is negligible in comparison.
In that case the open-system dynamics converges to the
Koopman–von Neumann evolution (equivalently the classical
Liouville evolution) because the effect off the diffusion is
negligible. We note that the color scales in Figs. 1 and 2 differ
due to the different normalization conventions for the Wigner
function (9) and the Koopman–von Neumann state (44).

While the quantum evolution has a bound on the smallest
structure in the phase space [80], the Koopman–von Neu-
mann evolution develops an ever finer structure, even for
a nonchaotic classical system [see Fig. 2(b)]. As a result
the Koopman–von Neumann simulations required signifi-
cantly larger grids than either the quantum or Fokker–Planck
simulations.

The need to regularize the Koopman–von Neumann prop-
agator (61) is illustrated in Fig. 3, where we can see that,
without regularization, the propagator fails to maintain the
negativity [Eq. (48)], while the regularized version, in which
a small amount of decoherence is added, keeps the negative
area approximately constant for long times. In addition, Fig. 3
shows that a larger decoherence rate quickly eliminates all the
negativity.

FIG. 4. (Color online) (a) Initial reduced fermionic-like state for both particles (Wx = Wy). (b) Reduced state Wx at t = 5.0 a.u. (c) Reduced
state Wy at t = 5.0 a.u.
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FIG. 5. (Color online) Evolution of the purity for the fermionic-
like reduced states Wx (dashed line) and Wy (solid line).

V. TWO-PARTICLE SYSTEMS

A two-particle quantum system in phase space involves four
degrees of freedom (i.e., x, px , y, and py), and has rarely
been simulated even for closed-system dynamics [24,34]. Here
we study open-system dynamics within the Caldeira–Legget
master equation, which has never been attempted, to the best of
our knowledge. Even so, we are able to run these simulations
on a typical desktop machine. To do this an efficient use
of memory becomes critical, and because of this we per-
form the computations employing single-precision arithmetic
(32 bit floats). We use a grid which is 128 × 192 × 128 × 192
and occupies 4.7 GB of memory. Two copies of the state are
needed according to Eq. (63). The resulting simulation of the
Caldeira–Legget evolution remains numerically stable even
for the time increment dt = 0.01 a.u., which is unattainable
by alternative methods [37,78,79].

The two-particle Wigner function, W (x,px,y,py), ex-
pressed through the density matrix

W2(x,px,y,py) = 1

(2π )2

∫ 〈
x − �

2
θx,y − �

2
θy

∣∣∣∣ρ
∣∣∣∣x + �

2
θx,y + �

2
θy

〉
eipxθx+ipyθy dθxdθy,

(68)

can be reduced to the following single particle Wigner
functions:

Wx(x,px) =
∫

W2dydpy, Wy(y,py) =
∫

W2dxdpx,

(69)
which are more easily visualized. Note that, even if the two-
particle state is pure, the reduced states may be mixed. The
purity of an arbitrary state in the phase space is given by

P = 2π

∫
W 2(x,p)dxdp, (70)

where the maximum value P = 1 is attained for pure states
only.

Here we simulate a two-particle system evolving in the
anharmonic potential

V (x,y) = 1
2 (x2 + y2) + 1

10 (x4 + y4 + xy), (71)

where the first particle interacts with an environment and as
a result is subject to the Caldeira–Leggett master equation
(41). The Caldeira–Leggett dynamics is similar to a position
measurement because it decoheres the system in the position
basis. We chose D = 0.04 a.u. and γ = 1./12.5 a.u. The
second particle does not interact with the environment, and
is only affected by the latter through its interaction with the
first particle. Such coupled systems play an important role
in describing quantum measurements [12,81–84]. The initial
state is chosen to be an antisymmetric pure entangled state
[Figs. 4(a)]:

ψF (x,y) = 1√
2

[ψ1(x)ψ2(y) − ψ1(y)ψ2(x)], (72)

where ψ1(x) is a Gaussian centered at x = 1, and ψ2(x) is
another Gaussian centered at y = −1. Both reduced single-
particle Wigner functions are identical for this state. However,

due to the environment interaction with the first particle, the
reduced Wigner functions Wx and Wy are not equal at later
times, and this is shown in Figs. 4(b) and 4(c). Moreover, Wy

has a larger negativity than Wx , indicating that it preserves
more of its initial quantum nature. Figure 5 shows how the
purity of both reduced states evolves with time.

VI. CONCLUSION

We have presented a flexible and powerful numerical
toolbox for simulating open quantum systems in terms of
the Wigner function. These methods significantly reduce the
numerical resources required for exact simulation of open
systems in phase space, and the method we have presented
for solving the Caldeira–Leggett master equation enjoys
higher stability than currently available methods. Illustrative
examples were provided for single- and two-particle systems
that can be evaluated on a typical desktop computer. In these
examples we illustrated the emergence of a positive Wigner
function as a result of decoherence and compared it with
the classical Koopman–von Neumann and Fokker–Planck
evolutions. These simulations confirm that quantum evolu-
tion with decoherence approaches classical Fokker–Planck
dynamics.
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