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We consider a time-dependent trap externally manipulated in such a way that one of its bound states is brought
up towards the continuum threshold and then down again. We evaluate the probability P stay of a particle, initially
in a bound state of the trap, continuing in it at the end of the passage. We use the Sturmian representation, whereby
the problem is reduced to evaluating the reflecting coefficient of an absorbing potential. In the slow-passage limit,
P stay goes to 1 for a state turning before reaching the continuum threshold and vanishes if the bound state crosses
into the continuum. For a slowly moving state, just “touching” the threshold P stay tends to a universal value of
about 38%, for a broad class of potentials. In the rapid-passage limit, P stay depends on the choice of the potential.
Various types of trapping potentials are considered, with an analytical solution obtained in the special case of a
zero-range well.
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I. INTRODUCTION

Recent technological developments have renewed the inter-
est in the dynamics of a particle, or particles, trapped in bound
states of time-dependent potentials. External manipulation
of Hamiltonians with both discrete and continuum spectra
routinely occur in applications such as metrology and quantum
information processing. The presence of a continuum plays
an important role in atom lasers [1,2], in the preparation of
atomic pulses with a known velocity distribution [3], and in
the production of few-body number states [4–10]. Quite often
a continuum is responsible for undesirable loss of trapped
particles, as happens in transport of trapped ions and in
trapped ion atomic clocks. An obvious way to avoid such
loss is to manipulate the trapping potential sufficiently slowly
(adabatically) so that the trapped particle will remain trapped
throughout the evolution.

The question of adiabaticity in bound-to-continuum tran-
sitions, studied by various authors [11–14], leaves room for
further discussion, even with regard to its formulation. As a
trapping potential becomes shallower, a bound state is brought
closer to the continuum and, eventually, joins it. With this
drastic reorganization of the adiabatic spectrum, application
of methods developed for level crossing situations, such as the
original Landau-Zener model [15] and its numerous general-
izations, is problematic at best. Moreover, in an experimental
situation one is likely to control the shape of the trap, so that the
evolution of the energy of the bound state near the continuum
threshold must be deduced from that of the potential. With
this in mind, one may be interested in asking two distinct
questions. First, let the depth of the trap decrease linearly
with time. When evolution stops, what is the probability of its
remaining in the modified bound state? Second, let the depth of
the potential first decrease and then increase again, e.g., being
a quadratic function of time. What is the probability of its
remaining in a bound state at the end of the passage? The first
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case was studied in [16]. In this paper, we consider the second
generic case, where a time-dependent trap is manipulated in
such a manner that a bound state completes a passage near the
continuum threshold, first rising towards it and then moving
away again. There are three possibilities: the state may “turn”
and begin the downward part of its journey before reaching
the threshold. Alternatively, it can just “touch” the threshold
once, or cross into the continuum temporarily, to reappear at
a later time. In all cases we want to know the probability of
its remaining in the initial state or, more generally, inside the
well, once the passage is completed.

As in [16] we employ the Sturmian technique, developed
in Refs. [17–20] for applications in the theory of atomic
collisions. In this way, we reduce the problem of solving
a time-dependent Schrödinger equation (SE) to the simpler
problem of determining the reflection coefficient of a complex-
valued “potential.” This, in turn, will allow us to gain
further insight into what happens near a continuum threshold
and, occasionally, obtain an exact analytical solution to the
problem.

The rest of the paper is organized as follows: in Sec. II
we formulate the problem of a time-dependent trap, which
can lose a previously bound particle to the continuum. In
Sec. III we introduce the Sturmian basis and use it to expand
the particle’s state. In Sec. VI we consider a zero-range well
and formulate the adiabatic condition for the passage. In
Sec. V we solve the zero-range problem exactly for the case
where the bound state just touches the continuum threshold.
We show that the probability of remaining in the well is
independent of the rate of change of the potential and always
equals approximately 38%. In Sec. VI the general case of a
zero-range potential is analyzed. In Sec. VII we consider the
Sturmian representation of a rectangular potential and the cor-
responding adiabatic limit. In Sec. VIII we employ the
single-Sturmian approximation in order to describe the par-
ticle’s evolution in a rectangular well. In Sec. IX we show
that the 38% rule introduced in Sec. V applies universally
in the slow-passage limit to a wide class of potentials
whose evolution is quadratic in time. Section X reports our
conclusions.
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II. LOSS AND RECAPTURE OF PARTICLES BY A
TIME-DEPENDENT POTENTIAL WELL

We start by considering a particle of mass μ in a one-
dimensional potential,

V (x,t) = −W (x)
K∑

k=0

V (k)t k, (1)

where W (x) is normalized by the condition
∫ ∞
−∞ W (x)dx = 1.

The potential is obtained by varying the magnitude of a finite-
range potential well −W (x) < 0 by means of a time-dependent
factor, so that whenever

∑K
k=0 V (k)t k turns negative, V (x,t)

becomes a barrier, which does not support bound states. The
question we ask is the following one: If a particle is put into
one of the bound states of the well, φn, what is the probability
of finding it there at some time in the future? The SE to be
solved has the form (we use � = 1)

i∂t�(x,t) = −∂2
x�/2μ + V (x,t)�, (2)

and we assume that the potential is a deep well in the distant
past and future, V (x,t) < 0, for t → ±∞. A particle in
a bound state φm(x,t), 〈φm|φm〉 = 1 with a large negative
energy Em(t) < 0 should remain in it for some time, before
approaching the continuum threshold [16]. For �(x,t) in
Eq. (3) we, therefore, write

lim
t→−∞ �(x,t) = exp

[
−i

∫ t

Em(t ′)dt ′
]
φn(x,t). (3)

Similarly, for t → ∞, we should have

lim
t→∞ �(x,t) =

∑
n

Amn exp

[
−i

∫ t

En(t ′)dt ′
]

×φn(x,t) + δ�(x,t), (4)

where the first term corresponds to the particles which remain
in the well, although possibly not in the same state, and δ�

describes the particles lost to the continuum during the passage.
Thus, the total probability of the particle’s remaining in the

well is given by

P stay
m ≡

∑
n

P stay
mn =

∑
n

|Amn|2. (5)

In the following we consider the simplest case of a passage,
which is quadratic in time,

V (x,t) = (E − v2t2)W (x), (6)

and of a particle trapped in an ascending bound state in
the distant past, which may remain trapped in one of the
descending states or be ejected into the continuum as t → ∞
(see Fig. 1). In particular, the ground state of the well (which
in one dimension exists as long as V (x,t) < 0 [15]) will turn
before reaching the continuum threshold if E < 0, “just touch”
it if E = 0, or disappear at t = −√

E/v, before reappearing
again at t = √

E/v, if E > 0. In all three cases, we are
interested in the probabilities P

stay
mn defined in Eq. (5).

continuum

t < 0 t > 0
FIG. 1. (Color online) Schematic diagram showing the evolution

of the potential well described by Eq. (6). At first the well becomes
shallower, thus bringing its bound state [thick (red) horizontal line
with arrow] closer to the continuum. Later the well deepens, bringing
the state down and, possibly, bringing more bound states into the
well. At t = 0, the bound state may still exist if E < 0, may touch the
continuum threshold if E = 0, or may disappear for a while if E > 0.

III. STURMIAN EXPANSION OF THE
TIME-DEPENDENT STATE

With the help of the Fourier transform,

�(x,t) =
∫

dω exp(−iωt)�(x,ω), (7)

we rewrite Eq. (2) as

ω�(x,ω) = −∂2
x�/2μ − W (x)

K∑
k=0

(−i)kV (k)∂k
ω� (8)

and look for a suitable basis in which to expand �(x,ω).
Using the set of the positive-energy scattering states describing
particles incident on V (x,t) from left and right is one option,
yet there is a more convenient one. Particles ejected from the
well should be described by outgoing waves on both sides of
the potential. Sturmian basis sets with the desired properties
are well known in the literature [19]. They are obtained by
imposing outgoing boundary conditions, fixing the value of ω

in Eq. (8), and searching for particular shapes of Vn(x,t) =
ρnW (x), n = 1,2, . . . , such that the stationary SE

− ∂2
xSn/2μ + ρnW (x)Sn = ωSn, n = 0,1,2, . . . , (9)

has a solution Sn(x,ω) which satisfies the boundary conditions

Sn(x,ω) ∼ exp(±i
√

2μωx), x → ±∞. (10)

The Sturmian eigenfunctions Sn (also known as Sturmians)
differ for positive and negative ω’s. As seen from Eq. (10),
for ω < 0, all Sn(x) exponentially decay on both sides of the
well, Sn(x) ∼ exp(−√

2μ|ω||x|) for |x| → ∞, so that ρnW (x)
has a bound state at the chosen energy ω [21]. For ω > 0,
the Sturmian contains outgoing traveling waves, Sn(x,ω) ∼
exp(±i

√
2μω|x|), as x → ±∞. This can only be the case if

ρnW (x) is a complex-valued emitting potential, which, in turn,
requires Imρn > 0 for ω > 0. In general, as ω changes from
−∞ to +∞, a chosen ρn(ω) traces a continuous trajectory in
the complex ρ plane.
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From Eq. (9) follows an orthogonality relation,

(Sm(ω)|Sn(ω)) ≡
∫

Sm(x,ω)W (x)Sm(x,ω)dx

= δmn × (Sn(ω)|Sn(ω)), (11)

where δmn is the Kroneker delta. The Sturmians are also known
to form complete sets for both ω < 0 and ω > 0 (we refer the
reader to Ref. [18] for a detailed discussion). Thus, to construct
a physical solution �(x,t) describing particles which escape
from the trap, we expand �(x,ω) in (8) in the basis of Sn,

�(x,ω) =
∑

n

Bn(ω)Sn(x,ω), (12)

where the coefficients Bn(ω) are to be determined. Inserting
(12) into Eq. (8), after adding and subtracting

∑
n ρnWBnSn,

we have ∑
n

{∑
k

(−i)kV (k)W (x)∂k
ω[Bn(ω)Sn(x,ω)]

+ ρnW (x)Bn(ω)Sn(x,ω)

}
= 0. (13)

In our quadratic case, (6), multiplication of Eq. (13) by
Sm(x,ω) and integration over x yield the following set of
equations for Bn(ω),

M (0)
mm[v2B ′′

m + (E − ρm)Bm]

− v2
∑

n

(
2M (1)

mnB
′
n + M (2)

mnBn

) = 0, (14)

where a prime denotes differentiation with respect to ω, and

M (j )
mn ≡

∫
Sm(x,ω)W (x)∂j

ωSn(x,ω)dx

≡ (Sm(ω)|S(j )
n (ω)). (15)

Equations (14) and (15) are the main achievement of the
Sturmian approach: the problem of solving a partial differential
equation, (2), is reduced to one of solving a system of
second-order ordinary differential equations. With only a few
terms usually needed in Eq. (14), the Sturmian approach offers
a significant computational advantage in the case of many
dimensions [17–20]. In the one-dimensional case considered
here, it can offer further insight into the physics of scattering by
time-dependent potentials and simplify calculations in certain
limiting cases, as we demonstrate next.

IV. QUADRATIC ZERO-RANGE MODEL:
THE ADIABATIC LIMIT

We start with the simplest case of a zero-range potential,

W (x) = δ(x), (16)

which for E − v2t2 < 0 supports a single adiabatic bound state
[θ (x) = 1 for x � 0 and 0 otherwise],

φ0(x,t) = [−2μE0(t)]1/4
[
θ (x) exp(i

√
2μE0(t)x)

+ θ (−x) exp(−i
√

2μE(t)x)
]
, (17)

with energy

E0(t) = −μ(E − v2t2)2/2. (18)

There is only one Sturmian [16,20],

S0(x,ω) = [θ (x) exp(i
√

2μωx) + θ (−x) exp(−i
√

2μωx)],

(19)

and the corresponding Sturmian eigenvalue, given by

ρ0(ω) = i
√

2ω/μ, (20)

is single-valued on a two-sheet Riemann surface R of
√

ω, cut
along the positive semiaxis. With no other Sturmians present,
and M

(2)
00 = 0 since S(0,ω) = 1, taking the complex conjugate

of Eq. (14) [22] yields

B∗
0

′′ + v−2q2B∗
0 = 0, q(ω) ≡

√
E − ρ∗

0 (ω). (21)

Equation (21) must be integrated along the contour running
along the real ω axis above the cut of the first sheet of R,
where S0(x,ω) satisfies the required outgoing-decaying wave
boundary conditions, (10).

Equation (21), which is exact, can now be read in a
completely different manner. It has the form of a stationary
SE describing a “particle” of “mass” 1/2 with a “coordinate”
ω, of “energy” E , scattered by a “potential” W(ω) = ρ∗

0 (ω),
with v playing the part of the “Planck constant” � [23]. [We
always use quotation marks when we refer to the fictitious
“particle” in Eq. (21), in order to distinguish it from the real
particle described by the SE, (2)]. We note that the “potential”
W , shown in Fig. 2, has a valley (ReW < 0, ImW = 0) for
ω < 0 and becomes purely absorbing (ReW = 0, ImW < 0)
for ω > 0.
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FIG. 2. (Color online) Schematic diagram of the zero-range
model. A “particle” with “energy” E is scattered by a complex-valued
“potential,” W , whose real and imaginary parts are shown by the
solid and dashed lines, respectively. Also indicated is the “classically
forbidden region,” separating a “particle” with E < 0 from the
absorption region, ω > 0. Inset: The energy of the bound state given
by (18), E0(t) = μ−1/5v−4/5E0(t), as a function of t = μ1/5v4/5t .
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Properties of equations of the type of (21) are well known
(see, e.g., [15]). As ω → −∞, q(ω) → ∞, while W(ω)
becomes flatter, W ′(ω) ∼ 1/

√|ω| → 0, so that B(ω) can be
expressed in semiclassical form [15], in terms of incoming (+)
and outgoing (–) “waves,”

B∗
0 (ω) ≈ A+

√
q(ω)

exp

[
i

v

∫ ω

q(ω′)dω′
]

+ A−
√

q(ω)
exp

[
− i

v

∫ ω

q(ω′)dω′
]
, ω → −∞,

(22)

where A± are unknown constants to be determined. We do not
expect the particle to acquire a very high energy and must,
therefore, require that B(ω) → 0 as ω → ∞. Thus, taking the
principal branch of the square root in Eq. (21), we have

B∗(ω) ∼ 1√
q(ω)

exp

[
− 1

v

∫ ω

|q(ω′)|dω′
]

→ 0, ω → ∞.

(23)

Finally, inserting (12) and (22) into Eq. (7) we note
that as t → ±∞ the integral over ω may be evaluated by
the stationary-phase method [25], and as t → −∞ we have
(details are given in Appendix A)

�(x,t) ≈ 2v
√

πiA+φ(x,t) exp

[
− i

∫ t

E0(t ′)dt ′
]
. (24)

This describes a particle trapped in the ascending bound
state, which approaches the continuum threshold from below.
Similarly, for t → ∞ we have

�(x,t) ≈ 2v
√−πiA−φ(x,t) exp

[
− i

∫ t

E0(t ′)dt ′
]

+ δ�(x,t), (25)

where the first term describes a particle trapped in the
descending bound state, moving away from the continuum
threshold. For the probability of completing the passage and
remaining in the bound state, we therefore have

P
stay
00 = |A−|2

|A+|2 , (26)

which is �1, as guaranteed by the absorbing nature of
the “potential” for ω > 0. (More information on absorbing
boundary conditions for the SE can be found, e.g., in [26], and
references therein).

Reduction of the original time-dependent problem to one
of determining the reflection coefficient of a complex-valued
barrier allows us to prove the existence of the adiabatic limit
in the case where the bound state turns without touching
the continuum E < 0. Now absorption represents the loss
of the particle to the continuum, and to be absorbed, the
“particle” must first cross the “classically forbidden region”
(see Fig. 2), impenetrable in the “classical limit” v → 0.
This is the adiabatic theorem. The behavior at E � 0 requires
somewhat more attention, and we consider it next.

V. A ZERO-RANGE WELL: JUST TOUCHING
THE CONTINUUM

With E = 0, we have E0(t = 0) = 0, so the bound state
of a zero-range well approaches the continuum threshold and
touches it at the moment it turns to begin the downward leg of
its journey. In this special case the equation for B0,

B ′′
0 + b

√
ωB0 = 0, b =

√
2/μ exp(3πi/2)/v2, (27)

can be solved analytically in terms of the Bessel functions
[27]. The solution which vanishes as ω → ∞ is given by

B(ω) = √
ωH

(1)
2/5(z), z ≡ 29/4

5v
e3πi/4ω5/4, (28)

where H
(j )
ν (z), j = 1,2, is the Hankel function of the j th kind

[28]. As ω → ∞, we have (omitting inessential phase factors)

B(ω) ∼ ω−1/8 exp[−(1 + i)Kω5/4]ω→∞ → 0, (29)

where K ≡ 27/4/5μ1/4 > 0. Equation (29) is readily rec-
ognized as a special case of Eq. (23), with q(ω) =
(2ω/μ)1/4 exp(−iπ/4). To find the asymptotic form of B(ω)
for ω → −∞, we use the formula connecting the values
of H

(1)
2/5(z) on the ray z′ = ρ exp(3πi/4) with those along

z = z′ exp(iπ ) = ρ exp(7πi/4) (see [28], Sec. 3.62):

H
(1)
2/5(z′) = 2 cos(2π/5)H (1)

2/5(z) + exp(−2πi/5)H (2)
2/5(z). (30)

Recalling that H (1,2)
ν (z) ∼ (2/πz)1/2 exp[±i(z − νπ/2 −

π/2)] [28], and taking the complex conjugate of Eq. (30), we
identify H

(2)
2/5(z) with the incoming wave in Eq. (22), which

gives

P
stay
00 (v) = 4 cos2(2π/5) ≈ 0.38197. (31)

Thus, for a narrow well such that its bound state just touches
the continuum at t = 0, the probability of remaining in the well
is independent of the rate of change of the potential. There is a
perfect balance: a rapidly changing well is more likely to eject
the particle into the continuum, yet the time the bound state
spends near the threshold is short. If the well changes slowly,
this time is longer, yet the particle is ejected less efficiently. As
a result, there is no adiabatic limit as v → 0, and the value of
P

stay
00 is always given by Eq. (31). Below we show that Eq. (31)

has a more general meaning also, beyond the zero-range model
considered in this section.

VI. A ZERO-RANGE WELL: THE GENERAL CASE

No analytic solution of (27) is known (at least to us) for
E �= 0, so the equation must be solved numerically. We note
first that, for a narrow well, (16), P

stay
00 is determined by a

single dimensionless parameter,

γ ≡ Eμ2/5

v2/5
. (32)

Indeed, in the scaled variables τ = μ1/5v4/5t and y =
μ3/5v2/5x, the SE, (2), reads i∂τ�(y,τ ) = −∂2

y�/2 + (γ −
τ 2)δ(y)�, and Eq. (27) only needs to be solved for v = 1
and various values of E = γ . The dependence of P

stay
00 (γ )

on γ is shown in Fig. 3. The probability tends to 1 for
γ → −∞, where the “absorbing potential” in Fig. 2 is
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FIG. 3. (Color online) Probability P
stay
00 vs γ for the quadratic

zero-range model, (16), obtained by integrating Eq. (21) [solid (red)
curve] and by solving numerically the original SE, (2) (filled circles).

separated by a broad “classically forbidden” region. At γ =
0 the curve passes through the value given by Eq. (31),
P stay(0) = 4 cos2(2π/5), and tends to 0 as γ → ∞, i.e., when
the “particle” can penetrate deep into the “absorbing region,”
and nothing is reflected.

Using Fig. 3, it is easy to predict the behavior of the retention
probability P stay as a function of v, for a given E . For E < 0 and
v  μ|E |5/2 the passage will be adiabatic, with almost none of
the particles lost. For E > 0 and v  μ|E |5/2

0 , the bound state
will disappear for a long time (see inset in Fig. 2), and none of
the particles will be recovered when it finally reappears. With
v → ∞, γ will vanish for any choice of E , and we have

limv→∞P
stay
00 (E,v) = 4 cos2(2π/5), (33)

so that a rapidly changing zero-range well will retain the
particle in about 38% of all cases, regardless of the value
of E . The dependence of P

stay
00 (E,v) on v for different values

of E is shown in Fig. 4.
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FIG. 4. (Color online) Probability P
stay
00 vs v for the quadratic

zero-range model, (16), for different values of E .
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FIG. 5. (Color online) The population of the moving bound state,
P0(t) = |〈φ0(t)|�(t)〉|2, vs τ = μ1/5v4/5t for three values of γ =
Eμ2/5v−2/5. For γ = 1 the bound state disappears at τ = −1 and
reappears again at τ = 1.

Finally, in order to study the evolution of the population
P0(t) of the moving bound state, we solved numerically the
original SE, (2). The results shown in Fig. 5 demonstrate that
P0(t) ≡ |〈φ0(t)|�(t)〉|2 undergoes oscillations before reaching
the asymptotic value P0(t) = P

stay
00 , when the bound state is

well removed from the continuum.

VII. A RECTANGULAR WELL: THE ADIABATIC LIMIT

The more realistic case of a rectangular well of width 2a,

W (x) = [θ (x + a)θ (a − x)]/2a, (34)

is somewhat more involved. There are two types of Sturmians,
symmetric and antisymmetric about the origin, Sn(x,ω) =
Sn(−x,ω) and Tn(x,ω) = −Tn(−x,ω). For −a � x � a, these
are given by

Sn(x,ω) = cos(pnx)/[1 + sin(2pna)/2pn]1/2,
(35)

n = 0,2,4, . . . ,

and

Tn(x,ω) = sin(pnx)/[1 − sin(2pna)/2pn]1/2,
(36)

n = 1,3,5 . . . ,

so that (Sn|Sn) = (Tn|Tn) = 1. Since the matrix elements
in Eq. (14) couple only Sturmians of the same parity,
(Sm(ω)|T (j )

n (ω)) = (Tm(ω)|S(j )
n (ω)) = 0, we may limit our

analysis to the case where a particle is prepared initially in
a bound state symmetric about the origin. The corresponding
Sturmian eigenvalues ρn, n = 0, 2, 4,. . . , are then found by
solving a transcendental equation,

sin(pna)/ cos(pna) + ik/pn = 0, (37)

where

pn(ω) = {2μ[ω − ρn(ω)]}1/2 and k(ω) = (2μω)1/2. (38)

Thus, ρn(ω), is the magnitude of the rectangular potential,
real or complex, such that at a given energy ω, there is
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(a), also shown by the dashed line is the large-ω asymptote of ReW0,
ωa − π 2/2μa.

a symmetric solution Sn(x) of the SE, (9), satisfying the
boundary conditions, (10).

The interpretation of equations for B∗
n (ω) is similar to that

given in Sec. IV. One may think of a fictitious “particle” with
“energy” E which can move on several complex-valued “po-
tential surfaces”Wn(ω) = ρ∗

n(ω). On each surface, absorption,
possible at ω > 0, accounts for the loss of the real particle to
the continuum. There is also the possibility of hopping between
the “surfaces,” facilitated by matrix elements M (1)

mn(ω) and
M (2)

mn(ω). If a particle is prepared in the mth state of the deep
well, we must look for a solution of this “coupled-channels
problem” containing, as ω → −∞, an incoming wave on the
mth “potential surface” and, possibly, “outgoing waves” in all
other “channels,”

B∗
n (ω) ∼ δmn

A+
m√
qm

exp
[ i

v

∫ ω

qm(ω′)dω′
]

+ A−
n√
qn

exp

[
− i

v

∫ ω

qn(ω′)dω′
]
, ω → −∞,

(39)

where m,n = 0,2,4 . . . . The probabilities of a particle’s
starting in the mth and ending up in the nth adiabatic bound
states are given by

P stay
mn = |A−

n |2
|A+

m|2 , m,n = 0,2,4, . . . . (40)

The “potentials” Wn(ω) are shown in Fig. 6 for m = 0,2,4.
We have ImWn(±) ≡ 0 for ω < 0, where Sturmians are just
bound states of a real potential well. We also note that

lim
ω→±∞ ReWn(ω) = ωa − (2n + 1)2π2/2μa (41)

and

lim
ω→∞ ImWn(ω) = 0. (42)

This is because for a large negative ω, the Sturmians tend to
the eigenstates of a potential box with infinite walls at x = ±a.
Since the energy of the state is ω, ρn is found by subtracting
from ω the energy of the nth state, as measured from the floor

-200

0

200

-0.02 -0.01 0 0.01 0.02

M
(2

) 00

FIG. 7. (Color online) Real (solid curves) and imaginary (dashed

curves) parts of the correction term M
(2)
00 = μaM

(2)
00 vs ω = μa2ω.

of the well. In the opposite limit, ω → ∞, the particle becomes
bound at the top of an infinitely high rectangular barrier. These
bound states, quantized between the sharp potential drops at
x = ±a, are essentially the same as those quantized between
the walls of an infinite potential box [29]. Since the Sturmians
cease to depend on ω as ω → ±∞,

Sn(x,ω) ∼ θ (x + a)θ (a − x) cos[(2n + 1)πx/2a], (43)

the matrix elements, coupling the “potential surfaces,”, vanish
in the same limit,

M (1,2)
mn (ω) → 0, ω → ±∞. (44)

Both M (1)
mn and M (2)

mn are singular at the threshold ω = 0, as
explained in Appendix B. In particular, for M

(2)
00 , which is

required in the next section, we find M
(2)
00 (ω) ∼ ω−1.5 (see

Fig. 7).
We can now formulate the adiabatic limit for a particle

prepared in the ground state of a rectangular well, m = 0,
at t → −∞, provided the state turns before reaching the
continuum threshold, E < 0. As in the case of the zero-range
potential, the “absorbing region” is separated by a “classically
forbidden region” in Fig. 6 and becomes inaccessible for a
“particle” incident on the n = 0 “potential surface” as v → 0.
There is, however, the possibility of accessing the “absorbing
potential” in Fig. 6 by hopping to a different “potential
surface.” But as v → ∞ the hopping also becomes improbable,
since the solutions on different “surfaces” become highly
oscillatory, and the integrals involving M

(1,2)
0n (ω) vanish. We,

therefore, have the adiabatic limit

P
stay
0n (E < 0,v → 0) → δ0n. (45)

This result is easily extended to other initial states, m �= 0. The
behavior at other values of E and v requires more attention,
and we consider it next.

VIII. A RECTANGULAR WELL: THE SINGLE-STURMIAN
APPROXIMATION

The above discussion suggests that if the trapping potential
changes sufficiently slowly, one can largely neglect scattering
into other bound states of the well, thus leaving a few Eq. (14)
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FIG. 8. (Color online) Probability of remaining in the ground
state of a rectangular well, P

stay
00 , vs v = 8μ3/2a3v for E = −4,

−2, 0, 2, 4 (solid curves). Also shown are the single-Sturmian
approximations to these probabilities obtained with (dashed curves)
and without (dot-dashed curve) the last term in Eq. (46). Inset: Total
probability P

stay
0 [thick solid (red) curve], exact P

stay
00 (solid black

curve), and single-Sturmian approximation to P
stay
00 [dashed (blue)

curve]. Dashed vertical lines indicate the three regimes described in
Sec. VIII.

or, indeed, just one Eq. (14). For a particle arriving in the
adiabatic ground state, m = 0, we, therefore, write

B∗
0

′′ + [
v−2(E − ρ∗

0 ) + (
S0

∣∣∂2
ωS0

)∗]
B∗

0 = 0, (46)

where we have retained the diagonal correction term M
(2)
00 (ω).

With no analytical solution available for Eq. (46), we have to
solve it numerically.

In the dimensionless variables τ = 4ma2t , y = x/2a, [E =
4μa2E , and v = 8μ3/2a3v, the SE, (2), reads i∂τ�(y,τ ) =
−∂2

y�/2 + [E − v2τ 2)]θ (y + 1/2)θ (1/2 − y)�, and we must
solve Eq. (46) for a particle of unit mass in a well of unit
length, replacing ω with μa2ω. The results for P

stay
00 are shown

in Fig. 8 together with the exact curves, obtained by solving
numerically the original SE, (2).

The exact results are worth a brief discussion. For the
ground state just touching the continuum threshold, E = 0,
the P

stay
00 tends to the constant value in Eq. (31),

P
stay
00 (E = 0,v → 0) → 4 cos2(2π/5). (47)

This can be understood by scaling the variables in Eq. (2) in
a different way, so as to put to unity the particle’s mass μ

as well as v, i.e., τ = m1/5v4/4t , i.e., y = μ3/5v2/5x. With
this we also have W (y) = [θ (y + μ3/5v2/5a)θ (μ3/5v2/5a −
y)]/2μ3/5v2/5a. As v → 0, the width of W (y) tends to 0, and
we recover the zero-range result, (47), which holds universally
for all values of v and, in particular, for v = 1.

For a rapidly changing rectangular trap, v → ∞, the
particle always returns to the well, regardless of whether
the adiabatic state turns before touching the continuum, just
touches it, or even disappears for a while. A different type
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FIG. 9. (Color online) Rectangular barrier. (a) P
stay
0 vs τ =

4μa2t for v = 0.05. (b) Same as (a), but for v = 10. Dashed vertical
lines indicate the moments when the first and the second excited states
enter the well. (c) Same as (a), but for v = 200.

of scaling can be used to explain why. Putting to unity
the well’s width as well as v, we have a particle of mass
μ = 4a2v2/3μ and a new parameter, E = E/v2/3. As v → ∞,
we have a picture of a very heavy particle, μ → ∞, brought
to the continuum threshold, E → 0, and then down again. The
massive particle has no chance to escape, and we have

P
stay
00 (E,v → ∞) → 1, (48)

which holds for all finite values of E .
Finally, if a bound state disappears, the particle’s state is a

wave packet of continuous states, which spends a duration of
2
√
E/v spreading away from the region. For v → 0 the time

of spreading is very long, so that little is recaptured after the
bound state reappears at t = √

E/v. Thus we have

P
stay
00 (E > 0,v → 0) → 0. (49)

The single-Sturmian approximation for P
stay
00 , obtained by

solving Eq. (46), is in good agreement with the exact result for
v � 40. Comparing the two curves with the total probability
of staying in the well, P

stay
0 = ∑

n P
stay
0n , shown in the inset in

Fig. 8 helps identify three approximate regimes.

A. Slow passage

For v � 5, we have P
stay
0 ≈ P

stay
00 . The loss and recapture of

particles are determined by interaction of a single bound state
with the continuum. There is no scattering into other bound
states. Mathematically, the problem reduces to solving a single
equation, (46) [see Fig. 9(a)].

B. Intermediate passage

For 5 � v � 80, we have P
stay
0 > P

stay
00 , (P stay

0 −
P

stay
00 )/P stay  1, where P

stay
00 is correctly described by

Eq. (46). This suggests that a downward-bound initial state
recaptures some of the particles, and later each new bound
state which enters the deepening well scoops some more
[see Fig. 9(b)]. This regime can be described by solving
Eq. (14) iteratively, using the solution of (46) as an initial
approximation.

C. Rapid passage

For 80 � v we find notable discrepancies between the
single-Sturmian approximation for P

stay
00 and the exact result.

This indicates that the loss to continuum is accompanied also
by transitions between different bound states. Mathematically,
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this requires solution of the full coupled-channels problem,
(14) [see Fig. 9(c)]. We note that in the case of several spatial
dimensions reduction of the original problem, (2), to that of
solving a system of ordinary differential equations may be a
significant simplification.

IX. UNIVERSALITY OF THE 38% RULE IN
THE v → 0 LIMIT

We have shown that in the two cases considered above,
there is no conventional adiabatic limit for a ground state
just touching the continuum threshold. Rather, as v → 0, the
probability of remaining in the state is given by Eq. (31) and
equals approximately 38%. It easy to show that, for a quadratic
evolution, (6), this result holds true in one dimension for a
finite-width potential of an arbitrary form. Indeed, scaling the
time and coordinate so as to put to unity v and the particle’s
mass μ, while maintaining the normalization

∫
W (x)dx = 1,

τ = μ1/5v4/5τ, y = μ2/5v2/5x, (50)

converts the SE (2) (V (0) = 0) into

i∂τ�(x,t) = −∂2
y�/2 + τ 2W (y)�, (51)

where W (y) ≡ μ−3/5v−2/5W (μ−3/5v−2/5y). As v → 0, we
have W (y) → δ(y) for any choice of W (x), so that P

stay
00 is

given by Eq. (31). To illustrate this, we plotted the results for
a rectangular well, (34), and a cutoff parabolic potential,

W (x) = 1.5[θ (x + a)θ (a − x)]x2/a3, (52)

in Fig. 10(a).
The case where the mth excited state of the well touches

the continuum requires more attention. Let the evolution of the
potential be such that at t = 0, in the potential −V (0)W (x), we
have Em = 0. Returning to Eq. (14) we note that as v → 0, the
last sum in it may be neglected. Also, in this limit absorption
of the “particle” occurs in a small vicinity of ω = 0. Thus, if
we can demonstrate that, for ω ≈ 0, Bm(ω) satisfies Eq. (27),
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00 for E = 0, vs v = 8μ3/2a3v. Inset: Different
shapes of the parabolic well, (52). (b) Same as (a), but for the first
four states of a rectangular well touching the continuum threshold.
The dashed line shows P

stay
00 for E = −0.015.

obtained earlier for a zero-range well, we have also proven
that P

stay
mm (v → 0) = 4 cos2(2π/5), for all m’s and all potential

shapes.
To show that this is the case, we use the standard approach,

commonly used to describe potential scattering at low energies
[24]. To this end, we consider a potential, ρW (x), whose
mth bound state lies just below the threshold, construct
a continuum state for a low positive energy, ω > 0, and
look for the condition under which the scattering amplitude
diverges, S(E,ρ) → ∞. Namely, our state will have the
form exp(±ikx) + S(ω,ρ) exp(∓ikx), k = √

2μω, for x<
>a.

In the low-energy limit, ka  1, the wavelength of the
particle is large, and the well is characterized by a single
parameter, the logarithmic derivative of the bound state’s
wave function at x = ±a, which we denote −κ , so that
φm(x,ρ) ∼ exp[−κ(ρ)x]. We note that κ depends on the
potential shape via ρ, but not on the energy ω, as long as
ω is small. Matching the log-derivatives at x = ±a, and using
ka � 1 then yields

S(E,ρ) = ik − κ(ρ)

ik + κ(ρ)
, (53)

which diverges whenever ik + κ(ρ) = 0. The condition is
usually used to obtain the pole in the complex ω plane, given
a real value of ρ [24]. We, on the other hand, require the value
of ρ, given a real value of ω, and need to make an additional
assumption about how κ depends on ρ. The scattering length,
defined as L = −1/κ , is known to remain real, diverge, and
change its sign as the shallow bound state moves toward the
continuum threshold and, eventually, becomes a virtual state
[24]. Thus, we assume κ to be a linear function of ρ,

κ(ρ) ≈ C(ρ − ρ0), (54)

where C > 0 is a real constant and Em(ρ0) = 0. Solving the
pole condition ik + κ(ρ) = 0 for ρ, we have

ρm(ω) = i
√

2μω/Cm + ρ0
m, (55)

where we have recalled that our derivation is for a particle
prepared in the mth state of the deep well and added the index
m, where required. Inserting (55) into Eq. (14), neglecting all
but one of them, and noting that V (0) = ρ0

m, for ω ≈ 0 we have

Bm
′′ + c

√
ωBm = 0, c = −i

√
2μ/Cmv2. (56)

The similarity between Eq. (27) and Eq. (57) in the region
of interest allow us to conclude that for any state φm, m =
0,1,2,..., touching the continuum threshold,

lim
v→0

P stay
mn = 4 cos2(2π/5)δmn � 0.3819 × δmn. (57)

This general result is valid for any potential, provided the
scattering length L has a simple pole when the bound state φm

joins the continuum, L(ρ) ∼ 1/(ρ − ρ0), where Em(ρ0) = 0.
This condition is fulfilled, for example, for a rectangular well,
(34), with the results for various excited states, obtained by
integrating Eq. (46), shown in Fig. 10(b).

To conclude this section, we note that any similarity
between the rule, Eq. (57), and the celebrated 37% stopping
rule of the statistical Secretary Problem [30] is fortuitous.
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While the latter rule follows from simple combinatorial
considerations and is, in fact an approximation to 1/e, Eq. (57)
is a consequence of the Stokes phenomenon experienced by
the Hankel function in Eq. (28).

X. SUMMARY AND CONCLUSIONS

In summary, we have analyzed, in one dimension, the
evolution of a particle prepared in a bound state of a trapping
potential, whose magnitude has a simple maximum at t = 0,
as described by Eq. (6). There are three possible scenarios
for the state, which first approaches the continuum threshold
and then moves away from it. It may (i) turn before reaching
the continuum threshold, (ii) just touch it once, or (iii) cross
the threshold and temporarily disappear. Whether the particle
remains in the trap or is lost to the continuum depends on how
fast the variation of the trapping potential is.

In the slow-passage limit, the particle always remains
in its initial (mth) state, provided the state turns before
reaching the threshold, in accordance with the adiabatic
theorem. If the state touches the threshold, the probability
of remaining in it P

stay
mm is approximately 38%. This result

holds universally for all excited states and various potentials,
under a very general assumption about the behavior of the
scattering length, (54), and replaces the conventional adiabatic
limit. It follows from the fact that in the slow-passage limit,
scattering into other states can be neglected, and one recovers
the picture of a single state interacting with a continuum.
This is the situation which arises in the case of a zero-range
potential, where we have an analytic solution, as described in
Sec. V.

If the bound state disappears for a while, a particle ejected
into the continuum has sufficient time to move away from
the potential. Thus, there is 100% loss to the continuum, and
nothing is recovered when the state reappears.

In the rapid-passage limit, the outcome depends on the
choice of the potential. Thus, for a zero-range well, P stay

00 tends
to the same 38% limit, regardless of whether the bound state
turns, touches the threshold, or crosses it. This appears to be
the consequence of a perfect balance between the time a bound
state of a δ well spends near the threshold and the efficiency
with which the particle is ejected. On the other hand, in the
case of a rectangular potential, a rapidly evolving well always
retains the particle in its original state, whichever the fate of
the bound state.

The general case of a passage which is neither slow nor fast
is conveniently studied in the Sturmian representation. Unless
the potential changes very rapidly, it is sufficient to employ
only one Sturmian state, and the task of solving the time-
dependent SE, (2). reduces to that of evaluating the reflection
coefficient of a complex-valued “potential,” where absorption
of a fictitious “particle” accounts for the loss of the real particle
to the continuum. For larger values of v, several Sturmian
states need to be taken into account, and the picture is that of a
“particle” capable of moving on several absorbing “potential
surfaces.” In general, one can loosely identify three regimes. If
the passage is sufficiently slow, the state ejects the particles on
its way up and then recovers some of them on its way down.
For faster variations, the original state recovers its share of
the particles, while more particles are scooped by other states,

which enter the well as its depth increases. At yet larger v’s, the
loss to the continuum is accompanied by scattering into other
bound states, and one needs to solve a full coupled-channels
problem, (14).

Verification of the above theory is within the capabilities of
modern experimental techniques, e.g., of laser-based methods
for containing cold atoms in quasi-one-dimensional traps. In
particular, realization of a quasi-one-dimensional optical box
trap was reported in [6]. The shape of the trapping potential
can be manipulated externally, which allows one to use it, for
example, for preparing the desired number of states by ejecting
unwanted particles into the continuum [5,7–10]. In spite of
the practical difficulty of assuring that the state just touches
the threshold, this result should be amenable to experimental
verification. Figure 10(b) shows P

stay
00 for a state that turns

shortly before reaching the continuum, E = −0.015, then
closely follows the E = 0 curve before shooting up to its
adiabatic limit P

stay
00 = 1 for very small values of v. Thus,

the condition E can be fulfilled approximately, provided that v

is chosen to be not too small.
Among other advantages offered by the Sturmian technique

is the simple interpretation of the adiabatic condition for a
state which turns before reaching the threshold. In this case, in
order to be absorbed the fictitious “particle” must first cross the
classically forbidden region in Fig. 2. With v playing the role of
“Planck’s constant,” this becomes improbable, if the passage
is slow. The manner in which P

stay
mm tends to the adiabatic limit

as v → 0 can then be studied by evaluating the corresponding
phase integrals. We consider this in our future work, as well as
extending the analysis to several spatial dimensions, different
temporal evolutions, and to the case of several identical bosons
trapped in the same bound state.
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APPENDIX A

For t > 0, the stationary-phase approximation to the inte-
gral, (7), evaluated along the contour specified in Sec. IV is
given by

I (t) ≡
∫

�

q(ω)−1/2S(ω,x) exp

[
−iωt + i

∫ ω

ω0

q(ω′)dω′
]
dω

≈ [2πi/q(ωs)�
′′(ωs)]

1/2S(ωs,x) exp[i�(ωs,t)], (A1)

where �(ω,t) ≡ −iωt + i
∫ ω

ω0
q(ω′)dω′, and ωs < 0 is defined

by

q(ωs) = t. (A2)

Given the time evolution of the magnitude of the δ potential,
there are three quantities, each of which can be used as an
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independent variable. These are the time itself τ , the well’s
depth V (τ ) = E0 − v2τ 2, and the energy of the adiabatic
bound state supported by the well E(τ ) = −μV 2(τ )/2. It is
readily seen that q(ω) in Eq. (21) gives the time τ , at which
E(τ (ω)) = ω,

q(ω) = τ (ω) = [E − i
√

2ω/μ]1/2/v. (A3)

Let the lower limit in the integral in the exponent in
Eq. (A1) be ω0 = −μE2/2 if E � 0 and 0 otherwise. This
ensures that q(ω) is always real non-negative for ω < 0.
Changing variables, ω− → τ (ω), and integrating by parts, we
have∫ t(ω)

t(ω0)
τdω/dτdτ = τE(τ )

∣∣τ=τ (ω)
τ=τ (ω0) −

∫ τ (ω)

τ (ω0)
E(τ )dτ. (A4)

With τ (ωs) = t and either τ (ω0) or E(τ (ω0)) vanishing, we
have

�(ωs) = −
∫ t

ω0

E(τ )dτ. (A5)

For the second derivative of the phase, �′′(ωs), and the pre-
exponential factor, we obtain

�′′(ωs) = q ′(ωs) = [dE(τ )/dτ |τ=t ]
−1

= −[2μv2t(�0 + v2t2)]−1 = −[2v2t
√

−2μE(t)]−1,

(A6)

g(ωs) ≡ S(x,ωs)/
√

q(ωs) = S(x,E(t))/
√

t . (A7)

Inserting (A5), (A6), and (A7) into (A1) and using (17) yield
the term which multiplies A+ in Eq. (25). Equation (24)
for t < 0 can now be obtained as the complex conjugate
of Eq. (A3).

APPENDIX B

For a rectangular potential of unit width, a = 1/2, and a
particle of unit mass, μ = 1, we have

(Sm(ω)|Sn(ω′)) = F ((pm + pn)/2) + F ((pm − pn)/2)
[F (pm)F (pn)]1/2

≡ G(pm,pn), (B1)

where pm(ω) = [2(ω − ρm(ω)]1/2, pn(ω′) = [2(ω −
ρn(ω′)]1/2, and F (x) ≡ sin(x)

x
. Thus, the coupling matrix

elements are given by

M (1)
mn = ∂G(pm,pn)

∂pn

dpn

dω′

∣∣∣∣
ω′=ω

(B2)

and

M (2)
mn = ∂G(pm,pn)

∂pn

d2pn

dω′2 + ∂2G(pm,pn)

∂p2
n

(
dpn

dω′

)2∣∣∣∣
ω′=ω

.

(B3)

The divergencies of M (1,2)
mn at ω = 0 come from the deriva-

tives of pn, which has a branching singularity at ω′ = 0.
It follows from Eq. (37) that, as ω′ → 0, p0 ∼ ω′1/4 and
pn�=0 ∼ ω′1/2. Therefore, for ω → 0 we obtain M (1)

mm ≡ 0 since
(Sm(ω)|Sn(ω)) = 1,

M
(1)
m0 ∼ ω−3/4 and M (1)

mn ∼ ω−1/2 for m �= 0,n. (B4)

Similarly, since the first term in Eq. (B3) vanishes for n = m,

M
(2)
00 ∼ ω−1.5 and M (2)

mm ∼ ω−1 for m �= 0. (B5)

For m �= n the first term in Eq. (B3) dominates, which leads to

M
(2)
m0 ∼ ω−1.75 and M (2)

mn ∼ ω−1.5 for m �= 0. (B6)
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