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Bloch oscillations in non-Hermitian lattices with trajectories in the complex plane
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Bloch oscillation (BO), i.e., the oscillatory motion of a quantum particle in a periodic potential, is one of the
most striking effects of coherent quantum transport in matter. In the semiclassical picture, it is well known that
BOs can be explained owing to the periodic band structure of the crystal and the so-called acceleration theorem:
since in the momentum space the particle wave packet drifts with a constant speed without being distorted, in
real space the probability distribution of the particle undergoes a periodic motion following a trajectory which
exactly reproduces the shape of the lattice band. In non-Hermitian lattices with a complex (i.e., not real) energy
band, extension of the semiclassical model is not intuitive. Here we show that the acceleration theorem holds for
non-Hermitian lattices with a complex energy band only on average, and that the periodic wave-packet motion of
the particle in real space is described by a trajectory in the complex plane, i.e., it generally corresponds to reshaping
and breathing of the wave packet in addition to a transverse oscillatory motion. The concept of BOs involving
complex trajectories is exemplified by considering two examples of non-Hermitian lattices with a complex band
dispersion relation, including the Hatano-Nelson tight-binding Hamiltonian describing the hopping motion of a
quantum particle on a linear lattice with an imaginary vector potential and a tight-binding lattice with imaginary
hopping rates.
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I. INTRODUCTION

Bloch oscillation (BO), i.e., the oscillatory motion of a
quantum particle in a periodic potential driven by a constant
force, is one of the most striking effects of coherent quantum
transport in matter. Originally studied in the context of
electrons in crystals [1–4], BOs have been observed in a wide
variety of different physical systems such as semiconductor
superlattices [5,6], ultracold atomic gases [7–9], and optical
and acoustical waves [10–14]. In the simplest semiclassical
picture, BOs can be explained from the Ehrenfest equations of
motion taking into account the periodic band structure of the
crystal [15–17]. In particular, owing to the so-called accelera-
tion theorem the momentum distribution of the particle moves
in momentum space at a constant speed while preserving its
shape [2,17–19]. As a result, for a wave packet with narrow
momentum distribution the oscillation trajectory of the particle
wave packet in physical space exactly reproduces the shape of
the lattice band dispersion curve. In the spectral domain, BOs
are ascribed to the transition of the energy spectrum from
a continuous band with delocalized Bloch eigenstates in the
absence of the external force to a discrete ladder spectrum
with localized Wannier-Stark (WS) eigenstates [4] when the
external force is applied and Zener tunneling among different
lattice bands is negligible [17,19,20]. Several studies have
extended BOs to include the role of lattice disorder [21,22],
nonlinearities [23], lattice defects and quasicrystals [24,25],
inhomogeneous fields [26], particle interaction and correlation
[27–32], BOs of nonclassical states of light [33,34], long-range
hoppings [35], etc.

More recently, the onset of BOs has been investigated in
lattices with a complex periodic potential [36,37], so-called
complex crystals [38,39] including those with parity-time
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(PT) symmetry [40,41]. The observation of BOs in complex
crystals, reported in the landmark experiment of [42] using
light waves in PT-symmetric synthetic lattices, has raised
interest into the coherent transport properties in non-Hermitian
lattices. Some peculiar properties of non-Hermitian BOs have
been disclosed, such as the occurrence of complex WS ladders
[36], unidirectional BOs at the symmetry-breaking transition
[36,42] arising from one-way Bragg scattering [39,43], and
periodic BOs at exceptional points in spite of lattice truncation
[44]. However, it is not clear whether the acceleration theorem
and semiclassical picture of BOs for wave packets in ordinary
lattices can be extended (and to what extent) to complex
crystals. For the case where the imaginary part of the potential
can be regarded as a perturbation to the real potential or
whenever the band spectrum remains real in spite of the
complex potential, the wave packet in real space undergoes
an oscillatory trajectory like in the Hermitian case, except that
BOs are damped or amplified depending on the sign of the
force [36]. However, in strongly non-Hermitian potentials the
band structure can become imaginary, and in this case it is
not clear whether and how the semiclassical picture of BOs
can be extended to account for a complex energy lattice band.
Several examples of tight-binding lattice models that show a
nonvanishing imaginary part of the band dispersion curve have
been discussed in many works, including the Hatano-Nelson
model describing the hopping motion of a quantum particle in a
linear tight-binding lattice with an imaginary vector potential
[45–48], the non-Hermitian extension of the Su-Schrieffer-
Heeger tight-binding model [49–51], PT-symmetric binary
superlattices [36,52], and the PT-symmetric Aubry-Andre
model [53]. Lattice bands with a nonvanishing imaginary
part could be realized in synthetic temporal optical crystals,
waveguide lattices, coupled-resonator optical waveguides,
microwave resonator chains, etc., as discussed in several recent
works [42,44,48,52,54–56].
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In this work we aim to investigate the onset of BOs in
non-Hermitian lattices with a nonvanishing imaginary part
of the band dispersion curve. Our analysis discloses that the
ordinary wisdom of BOs that uses a semiclassical description
can not be trivially extended to non-Hermitian lattices when
the band dispersion curve has a nonvanishing imaginary part.
In particular, we show that the acceleration theorem (i.e., the
uniform drift in the momentum space of the wave-packet
distribution) holds only on average, whereas in real space
a particle wave packet with narrow spectral distribution
undergoes a periodic motion but following a closed orbit in
the complex plane. As a result, strong wave-packet reshaping
is generally observed within each BO cycle, in addition to the
transverse oscillatory motion. We exemplify the concept of
BOs involving complex trajectories by considering the onset
of BOs in two nearest-neighbor tight-binding lattice models
with a complex energy band dispersion curve, including the
Hatano-Nelson model describing the hopping motion of a
quantum particle on a linear lattice with an imaginary vector
potential. In such a case, it is shown that the BO motion of a
particle wave packet corresponds to an elliptical orbit in the
complex plane and the trajectory followed by a wave packet
in real space cannot be merely predicted by the real part solely
(group velocity) of the energy dispersion relation.

The paper is organized as follows. In Sec. II we briefly
review the semiclassical approach to BOs in ordinary crystals,
and highlight the difficulties to extend such a simple picture
to BOs in lattices described by an effective non-Hermitian
Hamiltonian. The exact analysis of BOs is presented in Sec. III,
where an extension of the acceleration theorem is derived
and the concept of complex trajectories is introduced. Two
examples illustrating the onset of BOs in lattice models with
a complex energy band are presented in Sec. IV, and the main
conclusions are outlined in Sec. V.

II. THE SEMICLASSICAL ANALYSIS
OF BLOCH OSCILLATIONS

In this section we briefly review the simple semiclassical
model that describes BOs as introduced for ordinary crystals,
and show the limitations that arise when trying to extend such
an analysis to complex crystals.

A. Single-band lattice model and effective Hamiltonian

We consider the motion of a quantum particle in a one-
dimensional periodic potential with lattice period a driven by
an external constant force F . As is well known, for a weak
force Zener tunneling among different bands is negligible
and a single-band model can be used to describe the onset
of BOs and the formation of WS localized states within each
band [4,19,20]. Indicating by W (x − na) the Wannier state
of the lattice band that localizes the particle at site n of the
lattice [4], after expanding the particle wave function ψ(x,t)
as ψ(x,t) = ∑

n cn(t)W (x − na), the evolution equations for
the site occupation probabilities read (taking � = 1)

i
dcn

dt
=

∑
l

κlcn+l + nFacn, (1)

where F is the external driving force and κl (l �= 0) are the
hopping rates among different lattice sites. The dispersion
relation E = E(q) of the lattice band is given by the relation

E(q) =
∑

n

κn exp(iqan), (2)

where −π/a � q < π/a is the Bloch wave number. Note that
the constant κ0 just provides an energy bias of the lattice band,
and it will be taken to be zero in the following analysis for the
sake of definiteness. In a Hermitian lattice, κ−n = κ∗

n and the
energy dispersion curve E(q) is a real function, whereas for a
non-Hermitian lattice E(q) can become complex. As is well
known, the solution to the tight-binding equations (1) can be
expressed as cn(t) = φ(x = na,t), where the function φ(x,t)
satisfies the continuous Schrödinger equation i(∂φ/∂t) =
Ĥφ(x,t) with the effective Hamiltonian

Ĥ = E(p̂x) + Fx (3)

where p̂x = −i(∂/∂x) is the momentum operator and E(q)
is the band dispersion relation defined by the Fourier expan-
sion (2).

B. Semiclassical analysis

In an ordinary crystal, the onset of BOs for a wave packet
with a narrow spectral distribution is generally explained on
the basis of the Ehrenfest equations derived from the effective
Hamiltonian (3), that describe the evolution of mean position
(in units of the lattice period a) and momentum distributions
of the particle wave function. Such equations read explicitly

i
d〈x〉
dt

= 〈[x,Ĥ ]〉 = i

〈
∂E

∂q
(p̂x)

〉
, (4)

i
d〈p̂x〉

dt
= 〈[p̂x,Ĥ ]〉 = −iF. (5)

From Eq. (5) it follows that the mean particle momentum
〈p̂x(t)〉 drifts in time with a constant speed F , i.e.,

〈p̂x(t)〉 = 〈p̂x(0)〉 − F t, (6)

a relation generally referred to as the “acceleration theorem”
in its simplest version [15]. Moreover, provided that the
momentum distribution remains narrow in the evolution,
the approximation 〈 ∂E

∂q
(p̂x)〉 � ∂E

∂q
(〈p̂x〉) in Eq. (4) can be

introduced, yielding

〈x(t)〉 = 〈x(0)〉 − 1

F
{E(〈p̂x(t)〉) − E(〈p̂x(0)〉)}. (7)

Since E(q) is periodic with period 2π/a, i.e., E(q + 2π/a) =
E(q), it follows that in real space the particle wave packet
undergoes an oscillatory motion, at the BO frequency ωB =
Fa, along a path that reproduces the band dispersion curve of
the lattice [according to Eq. (7)].

The question is whether such a simple semiclassical
analysis of BOs can be extended to the case of a complex
lattice with a band dispersion relation E(q) which is complex
valued, i.e., E(q) = ER(q) + iEI (q), where ER(q) and EI (q)
are the real and imaginary parts, respectively, of the band
dispersion curve. It should be noted that, as we will rigorously
prove in the next section, even though the energy spectrum
E(q) of the lattice is complex, as soon as F �= 0 a real
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WS ladder energy spectrum is obtained, corresponding to a
periodic motion at the BO frequency ωB = Fa like in an
ordinary crystal. However, the extension to the non-Hermitian
case of the semiclassical analysis is a nontrivial issue and it is
actually not very helpful. The reasons for this are that, since
the effective Hamiltonian Ĥ is now non-Hermitian, (i) the
norm of the wave packet 〈φ(t)|φ(t)〉 ≡ ∫

dx|φ(x,t)|2 is not
conserved and (ii) the Ehrenfest equations are modified taking
into account the commutation and anticommutation relations
of the Hermitian and anti-Hermitian parts of Ĥ . Namely, for
any self-adjoint operator Â corresponding to an observable A

that does not explicitly depend on time, after introduction of
the expectation value of Â defined as

〈Â(t)〉 ≡ 〈φ|Âφ〉
〈φ|φ〉 =

∫
dxφ∗(x,t)Âφ(x,t)∫

dx|φ(x,t)|2 (8)

it can be readily shown that

i
d

dt
〈Â(t)〉 = 〈[Â,Ĥ1]〉 + 〈[Â,Ĥ2]+〉 − 2〈Â(t)〉〈Ĥ2〉. (9)

To derive Eq. (9), we introduced the decomposition of the
effective Hamiltonian Ĥ

Ĥ = Ĥ1 + Ĥ2 (10)

as a sum of the Hermitian (Ĥ1) and anti-Hermitian (Ĥ2) parts,
with [57]

Ĥ1 = ER(p̂x) + Fx, Ĥ2 = iEI (p̂x) (11)

and indicating by [Â,B̂] = ÂB̂ − B̂Â and by [Â,B̂]+ =
ÂB̂ + B̂Â the commutator and anticommutator of operators Â

and B̂, respectively. The extension of the Eherenfest equations
(4) and (5) to the non-Hermitian crystal is obtained from
Eq. (9) by letting Â equal either x or p̂x . The resulting
equations are rather cumbersome and are actually not very
useful to predict the dynamical evolution of the particle wave
packet. In particular, as compared to the Hermitian limit
Ĥ2 = 0, additional terms, arising from the anticommutator
and nonenergy conservation terms in Eq. (9), do arise in the
analysis, which completely destroy the simple solutions (6)
and (7) and prevent their extension in the non-Hermitian case.
As a matter of fact, in a non-Hermitian lattice with complex
energy dispersion both the acceleration theorem [as least as
stated by Eq. (6)] and Eq. (7) are violated, as discussed in the
next section.

III. BLOCH OSCILLATIONS, ACCELERATION
THEOREM, AND COMPLEX TRAJECTORIES

A comprehensive analysis of BOs in non-Hermitian lattices
with a complex energy dispersion curve should abandon the
simple semiclassical model. The exact analysis, discussed in
this section, shows that the following general results hold.

(i) For any applied force F �= 0, the energy spectrum of the
Hamiltonian is a WS ladder of equally spaced levels (energy
spacing ωB = Fa) like in an ordinary Hermitian crystal; thus
the particle motion is periodic with a period:

TB = 2π

Fa
. (12)

(ii) The acceleration theorem holds only on average in time,
namely, one has

〈q(t)〉 = 〈q(0)〉 − F t + θ (t) (13)

where 〈q(t)〉 is the mean value of the wave-packet distribution
in momentum space at time t and θ (t) is a periodic function of
time with period TB , θ (t + TR) = θ (t), and θ (0) = 0.

(iii) For a wave packet with initial narrow distribution in
momentum space at around q = 0, one has under certain
smooth conditions

|φ(x,t)|2 � G(t)|φ(x − x0(t),0)|2 (14)

where x0(t) is a path in the complex x plane, defined by the
relation

x0(t) = E(0) − E(−F t)

F
(15)

whereas G(t) is a periodic function with period TB , describing
norm oscillation within each BO cycle and given by

G(t) = exp

[
2

F

∫ 0

−F t

dξEI (ξ )

]
. (16)

A. Wannier-Stark energy spectrum

The exact analysis of BOs in non-Hermitian lattices can be
done starting from the tight-binding equations (1) in the Wan-
nier basis extending the procedure used for ordinary lattices.
Let us introduce the spectrum S(q,t) defined by the relation

S(q,t) =
∞∑

n=−∞
cn(t) exp(−iqna), (17)

which is a periodic function of q with period 2π/a. Once the
evolution of the spectrum S(q,t) has been determined, the
amplitude probabilities cn(t) are obtained after inversion of
Eq. (17), namely, one has

cn(t) = a

2π

∫ π/a

−π/a

dqS(q,t) exp(iqna). (18)

From Eqs. (1), (2), and (17) it readily follows that the
spectrum S(q,t) satisfies the following differential equation:

i
∂S

∂t
= E(q)S(q,t) + iF

∂S

∂q
. (19)

To determine the energy spectrum ε of the driven
Hamiltonian, let us assume cn(t) = Cn exp(−iεt), i.e.,
S(q,t) = s(q) exp(−iεt). Then from Eq. (19) it follows that

iF
∂s

∂q
= [ε − E(q)]s, (20)

which can be solved for s(q), yielding

s(q) = s(0) exp

[
−i

εq

F
+ i

F

∫ q

0
dξE(ξ )

]
. (21)

Since the spectrum S(q,t) is a periodic function with respect
to q with period 2π/a, one has s(2π/a) = s(0), and thus
from Eq. (21) it follows that the allowed energies ε satisfy the
condition

−2πε

aF
+ 1

F

∫ 2π/a

0
dξE(ξ ) = −2lπ (22)
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where l = 0,±1,±2,±3, . . . . Since
∫ 2π/a

0 dξE(ξ ) =
2πκ0/a = 0 [58], it follows that the energy spectrum is given
by a Wannier-Stark ladder, i.e.,

εl = lFa (l = 0,±1,±2,±3, . . .). (23)

The corresponding eigenstates, C(l)
n , are readily obtained from

Eqs. (18) and (21), and read explicitly

C(l)
n = Nl

∫ π/a

−π/a

dq exp

[
iqa(n − l) + i

F

∫ q

0
dξE(ξ )

]

(24)
where Nl is a normalization constant.

B. Acceleration theorem

The extension of the acceleration theorem to non-Hermitian
lattices is obtained by looking at the general solution to the
spectral equation (19), which reads explicitly

S(q,t) = S0(q + F t) exp

[
−i

∫ t

0
dξE(q + F t − Fξ )

]
(25)

where S0(q) is the spectrum of the particle wave packet at
initial time t = 0, i.e., S0(q) = S(q,0). Clearly, in a Hermitian
lattice in which E(q) is a real function from Eq. (25) one
has |S(q,t)|2 = |S0(q + F t)|2, i.e., the particle wave packet in
the momentum space drifts undistorted with a constant speed
equal to the force F (acceleration theorem). In a non-Hermitian
lattice with complex energy dispersion curve E(q) such a result
does not hold, since one has in this case

|S(q,t)|2 = |S0(q + F t)|2 exp

[
2
∫ t

0
dξEI (q + F t − Fξ )

]
.

(26)

It is worth determining the motion of the center of mass 〈q(t)〉
of the spectrum, defined by the relation

〈q(t)〉 =
∫ π/a

−π/a
dqq|S(q,t)|2∫ π/a

−π/a
dq|S(q,t)|2

. (27)

From Eqs. (26) and (27) it readily follows that [59]

〈q(t)〉 = 〈q(0)〉 − F t + θ (t) (28)

where θ (t) is a periodic function of period TB , i.e., θ (t + TB) =
θ (t), with θ (0) = 0, given by

θ (t) =
∫ π/a

−π/a
dqq|S0(q)|2 exp

[
2
∫ t

0 dξEI (q − Fξ )
]

∫ π/a

−π/a
dq|S0(q)|2 exp

[
2
∫ t

0 dξEI (q − Fξ )
]

−
∫ π/a

−π/a
dqq|S0(q)|2∫ π/a

−π/a
dq|S0(q)|2

. (29)

Equation (28) shows that, in addition to the constant drift of
the particle momentum 〈q(t)〉 found in the Hermitian limit, an
oscillatory motion is superimposed, i.e., the drift occurs only
on average over each BO cycle.

C. Bloch oscillations and complex trajectories

The evolved amplitude probabilities cn(t) at time t > 0 are
determined from the initial spectral distribution S0(q) of the

particle wave packet and can be determined from Eqs. (17),
(18), and (25). One obtains

cn(t) =
∑

l

Un,l(t)cl(0)

where the propagator is given by

Un,l(t) = a

2π
exp(−iFant)

×
∫ π/a

−π/a

dq exp

[
−i

∫ t

0
dξE(q − Fξ ) + iq(n − l)a

]
. (30)

Let us now consider a particle wave packet with an initial
narrow distribution in momentum space, i.e., let us assume
that |S0(q)|2 = |S(q,0)|2 is a narrow function of q peaked at
around q = q0, falling off sufficiently rapidly far from q = q0.
For the sake of simplicity, in the following we will consider
the case q0 = 0. In this case, the energy dispersion relation
E(q) in the exponent on the integral on the right-hand side of
Eq. (30) can be expanded in series of q at around q = 0:

E(q − Fξ ) � E(−Fξ ) + q

(
dE

dq

)
(−Fξ )

+ · · · , (31)

and the integral can be extended from q = −∞ to ∞. If we
limit the expansion in Eq. (31) up to first order in q, after
setting cn(t) = φ(x = na,t) one readily obtains [60]

φ(x,t) � exp

[
−iFx − i

∫ t

0
dξE(−Fξ )

]
φ(x − x0(t),0)

(32)

where the complex path x0(t) is defined by Eq. (15). From
Eq. (32) it follows that

|φ(x,t)|2 � G(t)|φ(x − x0(t),0)|2 (33)

where G(t) is defined by Eq. (16) [61]. Hence, apart from an
oscillation of the amplitude over each BO cycle as defined
by the periodic function G(t), in real space the particle wave
packet undergoes an oscillatory motion described by the orbit
x0(t) in the complex plane. Note that the trajectory of the
wave-packet center of mass in real space is not simply related
to x0(t), and it generally depends on the specific profile φ(x,0).
For some initial profiles, e.g., for a Gaussian wave-packet
distribution φ(x,0) = N exp(−γ x2) with γ real, from Eq. (33)
it turns out that the trajectory in real space is simply given by
the real part of x0(t), i.e., it is determined by the real part of
the energy dispersion curve (like in the Hermitian lattices).
However, this is not a general rule, as discussed in the next
section for a specific non-Hermitian lattice model.

IV. EXAMPLES OF BLOCH OSCILLATIONS
WITH COMPLEX TRAJECTORIES

To exemplify the concept of BOs with complex trajectories,
we consider two exactly solvable examples of non-Hermitian
lattices with a complex band dispersion relation.

The first example is provided by the Hatano-Nelson non-
Hermitian tight-binding lattice, which describes the hopping
motion of a quantum particle on a one-dimensional tight-
binding lattice in the presence of an imaginary vector field; see
Fig. 1(a). In the nearest-neighbor approximation, it is described
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FIG. 1. (Color online) (a) Schematic of a one-dimensional tight-
binding chain with an imaginary gauge field (Hatano-Nelson model)
and (b) corresponding band diagram (real and imaginary parts of
the band dispersion curve). (c) Closed orbit in the complex x plane
(ellipse) followed by a particle wave packet under a forcing F .

by the following set of equations for the site occupation
probabilities cn(t):

i
dcn

dt
= κ exp(μ)cn+1 + κ exp(−μ)cn−1 + Vncn (34)

where κ > 0 is the hopping rate between adjacent lattice
sites, μ > 0 is the imaginary vector potential, and Vn are the
on-site energies. The model (34) was originally introduced by
Hatano and Nelson in a pioneering work to study the motion
of magnetic flux lines in disordered type-II superconductors
[45], showing that an “imaginary” gauge field in a disordered
one-dimensional lattice can induce a delocalization transition,
i.e., it can prevent Anderson localization [45–47]. A possible
implementation in an optical setting of the Hatano-Nelson
model (34), based on light transport in coupled resonator
optical waveguides, has been recently suggested in [48]. Here
we consider the case of an ordered lattice with Vn = Fan, so
that the lattice model (34) is obtained from the general model
described by Eq. (1) after setting

κl = κ exp(μ)δl,1 + κ exp(−μ)δl,−1. (35)

Note that non-Hermiticity in the Hatano-Nelson model arises
from the imaginary gauge field (μ �= 0), the Hermitian case
being reached in the limit μ = 0 [62]. The energy dispersion
relation of the lattice band reads [Fig. 1(b)]

E(q) = 2
R cos(qa) + 2i
I sin(qa) (36)

where we have set


R = κ cosh(μ), 
I = κ sinh(μ). (37)

An interesting feature of the Hatano-Nelson model is that
it can be mapped into a Hermitian lattice problem after
the substitution cn(t) = an(t) exp(−μn) in Eq. (34). Such a
property can be readily used to derive the analytical expression
of the WS eigenstates C(l)

n , which are given by [according to
Eq. (24)]

C(l)
n = Nl exp[−μn + iπ (n − l)]Jn−l

(
2κ

Fa

)
, (38)

FIG. 2. (Color online) (a) Propagation of a Gaussian wave packet
[snapshots of |cn(t)|2/ ∑

n |cn(t)|2] in the Hatano-Nelson lattice over
one BO cycle for parameter values Fa/κ = 0.2 and μ = 0.1. In (b)
and (c) the trajectories of the beam center of mass 〈n(t)〉 and 〈q(t)〉
in real and momentum space, over one BO cycle, are shown by solid
lines. The dashed curve in (b), almost overlapped with the solid one,
is the beam trajectory in real space as predicted by Eqs. (14) and
(15), which turns out to be given simply by Re(x0), where x0(t) is the
elliptical orbit in the complex plane depicted in Fig. 1(c). Breakdown
of the acceleration theorem is clearly shown in panel (c), where the
mean momentum 〈q(t)〉 is not a linear function of time owing to a
small correction θ (t) according to Eqs. (28) and (29).

whereas the propagator Un,l(t), as obtained from Eq. (30),
reads explicitly

Un,l(t) = Jn−l

[
4κ

Fa
sin

(
Fat

2

)]
exp(−iFnat)

× exp [i(n − l)(Fat − π )/2 + μ(l − n)] (39)

where Jn is the Bessel function of first kind and order n.
According to Eq. (15), a particle wave packet with narrow
distribution in momentum space undergoes an oscillatory
motion with a trajectory in the complex plane described by
the equation

x0(t) = 2
R

F
[1 − cos(Fat)] + i

2
I

F
sin(Fat), (40)

which describes the orbit of an ellipse [see Fig. 1(c)]. As an
example, Fig. 2 shows the numerically computed propagation
of an initial Gaussian wave packet with distribution cn(0) ∝
exp(−γ n2) for parameter values Fa/κ = 0.2, γ = 0.02, and
μ = 0.1. In the figure, the evolution of the wave-packet center
of mass 〈n(t)〉 and 〈q(t)〉 in real and momentum space, over
one BO cycle, are also depicted. For comparison, the limit
of a Hermitian lattice (μ = 0) is shown in Fig. 3. Note that
in the non-Hermitian case the mean momentum 〈q(t)〉 does
not exactly vary linearly in time because of a nonvanishing
(though small) variation θ (t), as shown in Fig. 2(c). Note also
that for a Gaussian wave packet, according to Eqs. (14) and
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FIG. 3. (Color online) Same as Fig. 2, but in the Hermitian limit
(μ = 0).

(15), the behavior of 〈n(t)〉 is simply given by

〈n(t)〉 = Re[x0(t)/a], (41)

i.e., the trajectory of the wave packet in real space over one
BO cycle basically maps the real part of the band dispersion
curve ER(q). At first sight one might think that this should be a
general result, since the real part of the band dispersion curve is
associated to the group velocity of the wave packet. However,
this is not the case since the semiclassical model cannot be
readily extended to the non-Hermitian case, as discussed in
Sec. II. For example, let us consider a two-humped complex
initial distribution defined by the relation

cn(0) ∝ 1

cosh2[(α + iβ)n]
(42)

with α and β real parameters. A narrow wave-packet dis-
tribution at around q = 0 in momentum space is ensured
by assuming |α|,|β| 
 1. Figure 4 shows the numerically
computed wave-packet evolution for the initial condition
(42) and for parameter values Fa/κ = 0.2, α = 0.02, β =
0.04, and μ = 0.1. The Hermitian limit μ = 0 is shown,
for comparison, in Fig. 5. While in the Hermitian limit the
wave-packet trajectory in the real space maps the energy band
dispersion curve, in the non-Hermitian case the trajectory does
not merely correspond to Eq. (41). As a second example, let us
consider a non-Hermitian lattice with a completely imaginary
dispersion relation, given by

E(q) = 2iκ cos(qa) (43)

with κ > 0. Such a lattice model is obtained from the general
model described by Eq. (1) after setting

κl = iκδl,1 + iκδl,−1, (44)

i.e., by taking imaginary hopping rates for nearest-neighbor
sites. Such a model can be realized, for example, in optical

FIG. 4. (Color online) Same as Fig. 2, but for an initial two-
humped wave-packet distribution defined by Eq. (42). Parameter
values are given in the text. In panel (b) the dashed curve, almost
overlapped with the solid one, corresponds to the trajectory of the
wave-packet center of mass as predicted by Eqs. (14) and (15),
whereas the tiny dotted curve shows the behavior of Re[x0(t)/a].

waveguide lattices with synthetic complex hopping rates
obtained by longitudinal gain and loss management [44,54]
or in optical fiber loops with an amplitude modulator [44,55].
In this case, the orbit x0(t) in the complex plane is simply
given by

x0(t) = (2κ/F )i[1 − cos(Fat)], (45)

FIG. 5. (Color online) Same as Fig. 4, but in the Hermitian limit
(μ = 0).
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FIG. 6. (Color online) (a) Propagation of a Gaussian wave packet
[snapshots of |cn(t)|2/∑

n |cn(t)|2] over one BO cycle in the non-
Hermitian lattice defined by Eqs. (1) and (44) for Fa/κ = 0.2.
The initial condition is cn(0) ∝ exp(−γ n2) with γ = 0.02. In (b)
the behavior of the wave-packet width 
n(t), defined as 
n(t) =√∑

n n2|cn(t)|2/ ∑
n |cn(t)|2, is shown, indicating a breathing (rather

than oscillatory) dynamics of the wave packet. The behavior of the
centroid in momentum space, 〈q(t)〉, is shown in panel (c).

i.e., it is a straight line along the imaginary axis. The propagator
Un,l(t), as obtained from Eq. (30), reads explicitly

Un,l(t) = In−l

[
4κ

Fa
sin

(
Fat

2

)]
exp(−iFnat)

× exp [i(n − l)Fat/2] (46)

where In is the modified Bessel function of order n.
Interestingly, for an initial Gaussian distribution

cn(0) ∝ exp(−γ n2) the center of mass of the wave packet in
real space does not undergo any oscillation, i.e., 〈n(t)〉 = 0;
the purely imaginary trajectory x0(t) in the complex plane
corresponds this time to a breathing dynamics of the wave

packet, as shown in Fig. 6. Hence rather generally the fact that
in non-Hermitian lattices with a complex dispersion curve
the trajectory of a wave packet occurs in the complex plane
means that a combined oscillatory and breathing dynamics
can occur, and that such effects may depend on the specific
initial wave-packet profile.

V. CONCLUSION

In this work we have theoretically investigated the onset
of BOs in non-Hermitian lattices with a complex energy
band, highlighting a few distinctive features as compared
to BOs in lattices (either Hermitian or non-Hermitian) with
an entirely real energy band. Specifically, we have shown
that the simple semiclassical model of BOs, based on the
Ehrenfest equations of motion for an effective Hermitian
Hamiltonian, can not be extended to non-Hermitian lattices
with a complex energy band. In particular, we have shown
that the so-called acceleration theorem must be extended
to account for reshaping of the wave-packet distribution
in momentum space, and that the particle wave packet in
real space undergoes a periodic motion describing rather
generally a complex trajectory, i.e., it generally corresponds
to reshaping and breathing of the wave packet in addition
to a transverse oscillatory motion. The concept of BOs with
complex trajectories has been exemplified by considering
two examples of non-Hermitian lattices with a complex band
dispersion relation, namely, the Hatano-Nelson tight-binding
Hamiltonian describing the hopping motion of a quantum
particle on a linear lattice with an imaginary vector potential
and the nearest-neighbor tight-binding lattice Hamiltonian
with imaginary hopping rates. Our results shed light onto the
coherent transport properties in driven non-Hermitian crystals,
and the predictions of the analysis could be observed in
synthetic temporal or spatial crystals realized with optical
structures [42,52,55]. Here we have focused our study to
one-dimensional non-Hermitian lattices driven by a dc force,
however it would be interesting to extend the analysis to ac
and dc-ac driven lattices, to bidimensional lattices, to lattices
with synthetic gauge fields, etc. (see, for instance, [63–65]
and references therein). In such systems, it will be interesting
to investigate the impact of a non-Hermitian effective lattice
band to such important phenomena like dynamic localization,
trapping, and unidirectional transport.
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