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Quantum speed limit for a relativistic electron in a uniform magnetic field
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We analyze the influence of relativistic effects on the minimum evolution time between two orthogonal states
of a quantum system. Defining the initial state as a homogeneous superposition between two Hamiltonian
eigenstates of an electron in a uniform magnetic field, we obtain a relation between the minimum evolution time
and the displacement of the mean radial position of the electron wave packet. The quantum speed limit time is
calculated for an electron dynamics described by Dirac and Schrödinger-Pauli equations considering different
parameters, such as the strength of magnetic field and the linear momentum of the electron in the axial direction.
We highlight that when the electron undergoes a region with extremely strong magnetic field the relativistic
and nonrelativistic dynamics differ substantially, so that the description given by the Schrödinger-Pauli equation
enables the electron to travel faster than c, which is prohibited by Einstein’s theory of relativity. This approach
allows a connection between the abstract Hilbert space and the space-time coordinates, besides the identification
of the most appropriate quantum dynamics used to describe the electron motion.
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I. INTRODUCTION

The question of how fast quantum information can be
processed was tackled in 1945 by Mandelstam and Tamm
(MT) [1]. They developed a criterion to find the minimum time
for a closed quantum system with limited energy uncertainty
�H to change the expectation value of a given operator by
the standard of this operator. Such result was supported later
by Refs. [2–4]. On the other hand, Margolus and Levitin
(ML) [5] attributed the speed of a quantum evolution between
two orthogonal states to the mean energy of the system 〈Ĥ 〉.
In Ref. [6] it is assumed that the minimum evolution time
has the expression Tmin = max{π�/2�H,π�/2(〈Ĥ 〉 − E0)},
where E0 is the lowest energy of one of the states of the
superposition. A unified version of the MT and ML bounds
was presented in Ref. [7]. Recent developments on this subject
extended these ideas to include initial mixed states and open
quantum system dynamics, obtaining realistic bounds for
the speed of quantum processes [8–20]. Very recently, the
non-Markovian effects on the quantum speed limit have been
tested experimentally in the cavity quantum electrodynamics
scenario [21].

The answer to the former question is very important for
many areas of quantum physics, including quantum infor-
mation and computation [22,23], quantum metrology [24],
optimal control theory [25–27], and quantum thermodynamics
[28,29].

Although the achievement of an exact expression for the
quantum speed limit is of fundamental importance to attain
precisely the minimum time of a quantum process, the correct
description of the dynamics of the system of interest is as
important as the former. Regarding this point we observe that
for an accurate description of a system dynamics it is necessary
to take into account relativistic effects. In the case of spin-1/2
particles such as electrons, the Dirac equation is able to
accommodate quantum mechanics and special relativity very
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well. It reproduces accurately the spectrum of the hydrogen
atom, provides a natural description of the electron spin,
and indicates the existence of antimatter [30]. The correction
to the energy of atomic levels due to fine structure is a
beautiful example of relativistic effects in low-energy quantum
systems. Such correction is very small, about five orders
of magnitude smaller than the energy values predicted by
the nonrelativistic Schrödinger equation, but nevertheless is
experimentally observable [31].

The target of this work is to encompass relativistic effects
on the quantum speed limit. For this purpose we analyze
the transition between two orthogonal states of an electron
in a uniform magnetic field according to the Dirac equation
[30] and compare it to the nonrelativistic description given
by the Schrödinger-Pauli equation [32,33]. Defining the
electron initial state as an homogeneous superposition of two
eigenstates of the Hamiltonian, the Madelstam-Tamm and
Margolus-Levitin bounds become equivalent [34]. Therefore,
in some sense, our results are independent on the expression
used to calculate the minimum transition time. For some states
the electron mean radial position is initially different from its
final one. The ratio between such average radial displacement
and the minimum evolution time furnishes the average speed in
which the electron travels in spacetime in the radial direction.
Such speed is important for two reasons: (i) it enables us
to find what kind of initial superposition state provides the
greatest spatial displacement in the shortest time and (ii) for
speeds higher than the speed of light in vacuum c it works as a
criterion to invalidate the equation used to describe the electron
dynamics. As expected, the Schrödinger-Pauli equation is the
only one to violate this criterion.

This paper is organized as follows: in Sec. II we briefly
describe the nonrelativistic and relativistic dynamics of an
electron in a uniform magnetic field by the Schrödinger-Pauli
and Dirac equations, respectively. In Sec. III we show an
analysis of a particular case of an initial superposition state
which gives us enough information about both quantum
mechanical descriptions and used it to realize in Sec. IV a
numerical calculation for looking for fastest superposition
states. In Sec. V is our conclusion.
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II. MODEL AND FRAMEWORK

For didactic reasons we briefly review the nonrelativistic
and relativistic dynamics of an electron in a uniform magnetic
field, respectively. The Pauli Hamiltonian is

H = 1

2m0
( �p + e �A)2 + e

m0

�B · �S, (1)

with �p being the linear mechanical momentum, e being the
absolute value of the electron charge, and m0 being the electron
rest mass. The magnetic vector potential �A is expressed by the
symmetric Landau gauge �A = ( �B × �r)/2, where �B = Bẑ is
the magnetic field oriented in the z direction and �r is the vector
position of the electron. The eigenstates of the Hamiltonian (1)
are [32,33]

ψn,ml,ms ,p(�,ϕ,z) = Fn,ml
(�,ϕ)eipz/��ms

, (2)

where the radial wave function is

Fn,ml
(�,ϕ) = (−1)( n−|ml |

2 )
(

n−|ml |
2

)
!√

π
(

n+|ml |
2

)
!
(

n−|ml |
2

)
!

×β(β�)|ml |L|ml |
( n−|ml |

2 )
(β2�2)e−β2�2/2eimlϕ, (3)

with L
|ml |
( n−|ml |

2 )
(β2�2) being the generalized Laguerre polynomi-

als,

L
|ml |
( n−|ml |

2 )
=

( n−|ml |
2 )∑

j=0

(−1)j

⎛
⎝

(
n−|ml |

2

)
+ |ml|(

n−|ml |
2

)
− j

⎞
⎠ (β�)2j

j !
. (4)

Here β ≡
√

eB
2�

is the inverse of the characteristic length of the
harmonic oscillator, the indexes n = 0,1,2,... and ml = −n,

− n + 2,...,n − 2,n refer to the eigenstates Fn,ml
(�,ϕ) of the

2-dimensional harmonic oscillator in the plane perpendicular
to the orientation of the magnetic field and also to the coupling
between the magnetic field and the orbital angular momentum.
�ms

represents the eigenstates of the spin operator Sz with
eigenvalues �ms , so that the index ms = {−1/2,+1/2}. p is
the projection of the linear momentum in z direction. The
corresponding eigenvalues of Hamiltonian (1) are

En,ml,ms ,p = p2

2m0
+ �ω(n + ml + 2ms + 1), ω ≡ eB

2m0
.

(5)

By its turn, the relativistic dynamics of the electron is given
by Dirac equation, which is expressed as

i�
∂

∂t
ψ(�r,t) = (c�α · �� + βm0c

2)ψ(�r,t), (6)

where �� = �p + e �A is the linear canonical momentum. We are
using the Bjorken-Drell convention to represent the γ matrices,
here denoted by �α and β. The Dirac Hamiltonian eigenstates
are spinors with four components, in which the two upper
components have positive energy and are described by Eq. (2),
while the two lower components with negative energy are

given by

c�σ · ��
E + m0c2

ψn,ml,ms ,p(�,ϕ,z). (7)

The quantity E represents the eigenenergies

En,ml,ms ,j,p = j

√
m2

0c
4 + p2c2 + eB�c2(n + ml + 2ms + 1),

(8)
with j = {+,−} indicating the sign of the energy. For more
details about this solution see Ref. [30].

The electron initial state is assumed to have +1/2 spin
projection along the z direction and a Gaussian wave packet
in the same spatial direction with standard deviation d and
expectation value p0 for the linear momentum operator p̂z,

ψz(z) = 1

(2πd2)1/4
e−z2/4d2

eip0z/�. (9)

Our idea is to establish a connection between the quantum
speed limit and the speed in which the electron wave packet
moves through the spacetime. For this purpose we consider the
initial state of the system in an x-y plane as a homogeneous
superposition of two radial eigenstates Fn,ml

(�,ϕ) in different
Landau energy levels. After the time of evolution Tmin the
state of the system is orthogonal to the initial one, so
that the mean radial position of the electron wave packet
experiences a displacement. In the next sections we analyze
the relativistic effects on Tmin, besides the dependence of the
electron’s displacement on the initial superposition state and
on the relativistic and nonrelativistic descriptions of quantum
mechanics.

III. QUANTUM SPEED LIMIT FOR AN ELECTRON
UNDER RELATIVISTIC AND NONRELATIVISTIC

QUANTUM DYNAMICS

We start analyzing the nonrelativistic case of superposition
between the radial eigenstates F0,0(�,ϕ) and F2,0(�,ϕ),

ψ(�r,0) = 1√
2

[F0,0(�,ϕ) + F2,0(�,ϕ)]ψz(z)�+1/2. (10)

After the evolution from ψ(�r,0) to ψ(�r,Tmin), we obtain the
quantities required to evaluate the quantum speed limit criteria,

�H = 〈H 〉 − E0 = eB�

2m0
. (11)

Thus the minimum evolution time is

Tmin = πm0

eB
. (12)

As we are considering basically the change in the radial part
of the system state, we analyze the radial displacement of
the electron, which enable us to set the expectation value
of the linear momentum in the axial direction as p0 = 0. Thus,
the mean radial position at any time is given by the expression,

〈�〉t = 1
2 [〈0,0|�|0,0〉 + 〈2,0|�|2,0〉 + 2〈0,0|�|2,0〉 cos(E t)].

(13)

By using the Dirac notation, we nominated each eigenstate by
its quantum numbers n and ml , and E = eB/m0 is a constant
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with dimension of frequency. Therefore, the maximum radial
displacement of the electron’s mean position is

|〈�〉Tmin − 〈�〉0| = |〈0,0|�|2,0〉[cos(ETmin) − 1]|.

=
√

π�

2eB
. (14)

The expression above shows us the relevancy of the crossed
term DS(�) = 〈0,0|�|2,0〉 = 2π

∫ ∞
0 F

†
0,0(�,ϕ)�F2,0(�,ϕ)�d�

for the electron’s displacement. From Eqs. (2), (3), and (14) we
observe that for a non-null radial displacement of the electron,
the initial superposition state must be built by eigenstates with
the same quantum numbers of spin ms and orbital angular
momentum ml , besides ETmin �= sπ , with s even. Then the
average speed of the mean radial position of the electron from
its initial state to the orthogonal one is

v̄ = 1

m0

√
eB�

2π
. (15)

On the other hand, in the relativistic description with p0 = 0,
the minimum evolution time is

Tmin = π�√
m2

0c
4 + 4eB�c2 −

√
m2

0c
4 + 2eB�c2

. (16)

In what follows we write the two spinors that compose the
evolved state of the system

U0,0 = N0,0

⎛
⎜⎜⎜⎜⎜⎝

F0,0(�,ϕ)

0
cpF0,0(�,ϕ)
(E0,0+m0c2)

2i�cβF1,1(�,ϕ)
(E0,0+m0c2)

⎞
⎟⎟⎟⎟⎟⎠eipz/� (17)

and

U2,0 = N2,0

⎛
⎜⎜⎜⎜⎜⎝

F2,0(�,ϕ)

0

cpF2,0(�,ϕ)
(E2,0+m0c2)

2i�cβ
√

2F3,1(�,ϕ)
(E2,0+m0c2)

⎞
⎟⎟⎟⎟⎟⎠eipz/�, (18)

where N0,0 and N2,0 are normalization constants and E0,0 and
E2,0 are positive eigenvalues given by Eq. (8). Therefore, the
superposition state evolves in time as

ψ(�r,t) = 1√
2

∫ ∞

−∞
α(p)[U0,0e

−iE0,0t/� + U2,0e
−iE2,0t/�]dp,

(19)

with α(p) being the coefficient of expansion of the Gaussian
wave packet defined in Eq. (9). Now we are able to calculate
the radial displacement of the electron’s mean position in
the relativistic case, which one is made numerically [35].
In Fig. 1 we plot the average speed of the electron’s wave
packet when moving from the initial to final state during the
time interval Tmin under both relativistic and nonrelativistic
quantum dynamics. We noticed in the nonrelativistic case that
there is a magnetic field strong enough to yield v̄ � c given by
B � 2.77 × 1010T , which contradicts the Einstein’s theory of
relativity.

FIG. 1. Average radial speed as function of the external magnetic
field according to relativistic and nonrelativistic quantum dynamics.

Naturally, it is impossible to achieve this intensity of
magnetic field in a laboratory on the earth, but not in special
neutron stars, called magnetars [36]. Conversely, Dirac’s
theory for the electron predicts the asymptotic value of
v̄ � 0.2407c. To attain this value we first need to evaluate
the radial displacement of the electron mean position, which
one depends on the crossed term DS(�) = 2πU

†
0,0�U2,0 and

on the minimum evolution time Tmin as in Eq. (16). In the
limit case B → ∞ the expressions for the eigenenergies can
be approximated by

E0,0 ≈ 2c�β, E2,0 ≈ 2
√

2c�β, (20)

which renders

Tmin ≈ π

2cβ(
√

2 − 1)
. (21)

Inside this approximation, the spinor normalization constants
become N0,0 = N2,0 = 1/

√
2 and the radial displacement of

the electron’s mean position becomes

|〈�〉Tmin − 〈�〉0| = 2

∣∣∣∣
∫ ∞

0
�DS(�)d�

∣∣∣∣,
=

√
π

4β

(
1 + 3

2
√

2

)
. (22)

Unlike the nonrelativistic case, now the displacement in time
and space have the same dependence on the magnetic field, as
shown in Eqs. (21) and (22), respectively. Consequently, the
maximum value of the average speed of the electron in the
radial direction is

v̄ = c

4
√

2π
(1 +

√
2) ≈ 0.2407c. (23)

Hence, as expected, the relativistic quantum dynamics is the
most appropriate to describe the electron dynamics in the pres-
ence of high-intensity magnetic fields. Throughout the present
development we observed that the relativistic theory of
quantum mechanics funded by Dirac does not restrict the time
interval of a quantum process of being arbitrarily small, as
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shown in Eq. (16). Making a comparison between Eqs. (12)
and (16) we verify that there is a quadratic dependence on
the magnetic field in the nonrelativistic case in relation to the
relativistic one. Such difference can turn out to be important for
B ∼ m2

0c
2/e� ∼ 5 GT. However, our relativistic description of

the electron dynamics, and consequently the quantum speed
limit, applies for low-intensity magnetic fields in graphene,
where the charge carriers can effectively be described by
relativistic particles with zero rest mass [37,38].

IV. THE FASTEST SUPERPOSITIONS

In the preceding section we verified that the dynamics of
an electron described by Schrödinger-Pauli equation violates
a basic principle of Einstein’s theory of relativity, which
states that any object with non-null rest mass cannot travel
faster than c. For that reason, we study the dependence of
the quantum speed limit for an electron evolving according
to the Dirac theory as function of the initial superposition
state. Our main purpose here is looking for the maximum
radial displacement in the shortest time interval. Since the
electron’s radial displacement depends strongly on the crossed
term DS(�), its maximum absolute value is attained when
the initial and final states have the same spin orientation
(ms = 1/2), zero angular momentum projection ml = 0, and
the initial superposition state is made of two nearest neighbors
eigenstates, i.e., with quantum numbers n and n + 2. In Fig. 1
we observe that v̄ increases as the intensity of the magnetic
field is strengthened. Therefore, in the regime β → ∞ the
minimum evolution time between two orthogonal states, where
the initial superposition state is composed by two eigenstates
with positive energy (called particle-particle states), is

Tmin ≈ π

[
√

n + 4 − √
n + 2]

√
2cβ

(24)

and the crossed term turns out to be

DS(�) ≈ π�[F †
n,0Fn+2,0 + F

†
n+1,1Fn+3,1]. (25)

After some steps we get an analytic expression for the
maximum radial displacement as function of n,

|〈�〉Tmin − 〈�〉0|

= 1

β

( n
2 )∑

i=0

( n+2
2 )∑

j=0

(−1)i+j

i! j !

(
n
2

n
2 − i

)(
n+2

2
n+2

2 − j

)

×�

(
i + j + 1 + 1

2

)

×
⎡
⎣1 +

√(
n
2 + 2

)(
n
2 + 1

)
(i + 1)(j + 1)

(
i + j + 1 + 1

2

)⎤
⎦. (26)

In Fig. 2 we plot the average radial speed of the electron for
different even values of n ranging in the interval [0,132]. The
evaluation of v̄ for higher values of n is very hard, provided that
Eq. (26) has many factorials. The inset of such figure shows the
convergence of v̄/c to the asymptotic value 0.269814 found
numerically. We notice that in the interval 80 � n � 132 the
value of v̄ changes in the fourth decimal place only, which

FIG. 2. Average radial speed of an electron for different initial su-
perpositions of two positive-energy eigenstates (Un,0 + Un+2,0)/

√
2.

shows that the average radial speed is reaching a constant
value less than c for n → ∞.

Instead of considering only initial particle-particle states,
we will take into account superpositions of eigenstates with
negative and positive energies (called antiparticle-particle
states). The reason we are tackling this subject only now is
that it is not clear if it is fair to compare the nonrelativistic
dynamics, which describes only particle states, with the
relativistic antiparticle dynamics. Despite that, antiparticle-
particle dynamics reveals the role played by the electron
rest mass in the energy spectrum and thus imposes physical
limits on the quantum speed limit [23]. Repeating the same
procedure above to obtain the maximum displacement of the
mean radial position of the electron, we find that the two
states of the superposition must have the same spin orientation
(spin up), have null angular momentum projection along the z

direction, and be made of nearest neighbor eigenstates with
even quantum numbers n. Assuming the negative energy
eigenvalue as the lowest one in the module, according to
Eq. (8) we attribute to it the quantum number n, while for the
positive energy eigenvalue the quantum number n + 2. Thus,
the minimum evolution time for the particular case n = 0 and
p0 = 0 is given by

Tmin = π�√
m2

0c
4 + 4eB�c2 +

√
m2

0c
4 + 2eB�c2

. (27)

This time is shorter than in the particle-particle case [see
Eq. (16)] because the energy gap is bigger by a quantity that
is at least the energy of the electron rest mass. To evaluate
the mean radial displacement of the electron, we need the
expression of the negative-energy spinor for a general quantum
number n and null angular momentum,

U−
n,0(�r) = N−

n,0

⎛
⎜⎜⎜⎜⎝

cp

(En−m0c2)Fn,0
√

2ic�β
√

n+2
(En−m0c2) Fn+1,1

Fn,0

0

⎞
⎟⎟⎟⎟⎠eipz/�, (28)

where N−
n,0 is the normalization constant. In addition, the radial

displacement of the electron is proportional to the absolute
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FIG. 3. Average radial speed of an electron for different initial
superposition states composed by a positive- and negative-energy
eigenstate (U−

n,0 + Un+2,0)/
√

2.

value of the crossed term

DS = 2π�N−
n,0Nn+2,0cp

×
[

1

En − m0c2
+ 1

En+2 + m0c2

]
F

†
n,0Fn+2,0, (29)

which one is maximized for p0 ≈ β� � m0c. In Fig. 3 we
plot the average radial speed of the electron to change from
an n-dependent initial negative-positive state to a final one
orthogonal to the former in the minimum time interval Tmin.
The asymptotic value of v̄ is 0.134743c and lower than the
speed in the positive-positive case (see Fig. 2).

Comparing Figs. 2 and 3 we observe that v̄ for negative-
positive states is always less than v̄ for positive-positive states.
This behavior is clarified in Fig. 4, where v̄/c is plotted for
both cases of initial superposition states as function of p0 for
three different values of the magnetic field. If the initial state is
negative-positive, then, according to Eq. (29), the displacement
of the radial mean position of the electron depends linearly
on p0, which justifies the null value of v̄/c at the origin of
Fig. 4. For intermediate values of p0, we observe that v̄/c

attains a maximum value for p0 ≈ β� � m0c, while for great
values of p0 � β�,m0c regardless of the initial superposition
the average radial speed becomes smaller. In the latter case
both positive- and negative-energy eigenstates have the same
expression, and therefore the same radial displacement of the
electron and Tmin.

In the context of Dirac’s theory, this can be explained by
the fact that each spinor does not describe its own particle only
but also its antiparticle by the two terms in the bottom position
of the spinor. One of these antiparticle terms is relevant to the
whole description when the electron presents a very high linear
momentum or when the particle is strongly confined in a region
less than or equal to its Compton wavelength. In these cases
we could say that the spinor by itself describes a superposition
between its particle and its antiparticle [30,39,40].

FIG. 4. Average radial speed of an electron for particle-particle
(solid lines) and antiparticle-particle (dashed lines) states as function
of the expectation value of the linear momentum along the z

direction, p0.

V. CONCLUSIONS

We analyzed the role played by relativistic effects on the
quantum speed limit of a system composed by an electron
in a uniform magnetic field. The relativistic dynamics by
itself does not restrict the minimum time of evolution of
being arbitrary small, but imposes constraints on the average
speed at which the electron travels along the space-time. As
expected, we observed that the quantum dynamics described
by Schrödinger-Pauli equation enables the electron wave
packet traveling faster than c, in contradiction to Einstein’s
theory of relativity. Such problem is circumvented by the use
of Dirac’s equation. The minimum evolution time between
two orthogonal states in the relativistic formulation can be
significantly different from the nonrelativistic case. If the
initial state of the system is a homogenous superposition
of two Hamiltonian eigenstates with positive energies, then
the minimum evolution time is dilated in the laboratory
frame. On the other hand, if the Hamiltonian eigenstates have
negative and positive energies, then the minimum evolution
time is contracted in the laboratory frame. This last result
can be useful for quantum computing, since it can speed up
quantum gates, although a precise control over the creation of
particle-antiparticle states is necessary [41].
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