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Demonstration of open-quantum-system optimal control in dynamic nuclear polarization
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Dynamic nuclear polarization (DNP) is used in nuclear magnetic resonance to transfer polarization from
electron spins to nuclear spins. The resulting nuclear polarization enhancement can, in theory, be two or three
orders of magnitude depending on the sample. In solid-state systems, however, there are competing mechanisms
of DNP, which, when occurring simultaneously, reduce the net polarization enhancement of the nuclear spin. We
present a simple quantum description of DNP and apply optimal control theory (OCT) with an open-quantum-
system framework to design pulses that select one DNP process and suppress the others. We demonstrate
experimentally an order of magnitude improvement in the DNP enhancement using OCT pulses.
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I. INTRODUCTION AND MOTIVATION

Dynamic nuclear polarization (DNP) has long been used in
NMR to increase the signal to noise ratio of an experiment
by transferring polarization from electron spins to nuclear
spins [1]. The thermal polarization of an NMR sample is
directly proportional to the external magnetic field, �B0, the
gyromagnetic ratio, γ , of the spins in the sample, and is
inversely proportional to the temperature, T , in the high-
temperature limit, P ≈ γ �B0/kBT . The electron gyromagnetic
ratio, γe, is two to three orders of magnitude larger than
γn, the gyromagnetic ratio for a given nuclear spin. Thus
electron spins are more highly polarized at thermal equilibrium
than nuclear spins. DNP has become a valuable tool for
NMR spectroscopy, medical imaging, magnetic sensors, and
semiconductor spin studies due to the increased sensitivity
provided by nuclear polarization enhancements [2–4].

While DNP has been studied extensively [1,5,6], a
full quantum description has been missing from the
literature. In fact, DNP offers a illustrative example of
open-quantum-system dynamics. Here we consider a two-spin
electron-nuclear hyperfine coupled spin system, in which the
polarization transfer can occur through several processes.
Some of these DNP processes require decoherent mechanisms,
so it is useful to consider the pathways of DNP to be various
information pathways in a more general open-quantum-
systems framework. Often one may want to select a particular
pathway without also addressing unwanted transitions. When
the spin transitions are close or there is an overlap between
the desired excitation frequencies and other transitions in the
system, sophisticated control techniques are required.

In this work we applied optimal control theory (OCT) to
find control sequences that select one DNP pathway to produce
the largest possible nuclear polarization enhancement. OCT
is a valuable tool in magnetic resonance and for control of
quantum information [7–9]. Optimal control pulses have been
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used previously to demonstrate universal control in electron-
nuclear systems with microwave irradiation only [10].

We use DNP to demonstrate the improved control available
in open quantum systems through optimal control methods.
For unitary systems, there is always a perfect solution (i.e.,
unit fidelity) with optimal control, even in systems with
a distribution of Hamiltonians such as powder samples or
samples in the presence of large field inhomogeneities. Finding
optimal solutions becomes more complex when decoherent
processes are involved. There has been theoretical work
applying OCT to open quantum systems [11–13], including
optimization of DNP processes with simultaneous rf and
microwave control [14,15]. Others have also studied optimal
control in the context of quantum measurement [16], quantum
systems coupled to non-Markovian environments [17], and
minimizing noise [18,19]. Nonunitary control of DNP has also
been considered in quantum dots [20,21]. We present here an
experimentally realized scheme for microwave only optimal
control of DNP in an electron-nuclear system with relaxation
mechanisms included.

Our system consists of one electron hyperfine coupled to
one hydrogen nucleus, forming a four level system (Fig. 1).
There are two available DNP pathways, depending on which
transitions are excited. Applying microwave irradiation on
resonance with the zero quantum transition induces an
electron-nuclear mutual spin flip-flop, which directly transfers
polarization from the electron spin to the nuclear spin [1]. This
is known as the solid effect (SE). Alternatively, the Overhauser
effect (OE) indirectly causes this flip-flop through a cross
relaxation process that occurs when both electron resonances
are saturated (see Fig. 1 for diagrams of both mechanisms) [5].
The zero quantum transition is ordinarily forbidden, and cross
relaxation (Tx in Fig. 1) is not allowed. Both the solid effect and
Overhauser effect can occur, however, when the nuclear Zee-
man states are mixed due to an anisotropic hyperfine coupling.

Under continuous wave (cw) irradiation all transitions
are excited to varying degrees, driving both processes. The
OE leads to a positive nuclear polarization, and the SE to
negative nuclear polarization. Consequently, if both the OE
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FIG. 1. Energy-level diagram on the left illustrates the Over-
hauser effect: the two electron resonances, ν1

e and ν2
e , are saturated,

and polarization is transferred through the zero quantum cross
relaxation, Tx . The diagram on the right represents the solid effect:
the zero quantum transition, νx , is directly irradiated. The left arrow
in each ket indicates the electron spin state, and the right arrow the
nuclear spin state.

and SE are driven, the net polarization enhancement is less
than the polarization achievable by either process acting on
the system alone. It is therefore advantageous to find a control
sequence that selects one DNP process and suppresses the
other. A pulse sequence capable of driving exclusively one of
these two opposing methods of DNP must account for both
decoherent processes and unitary evolution.

The theoretical nuclear polarization enhancement is limited
by the ratio γe/γn [22]. For hydrogen, the maximum achievable
enhancement is 660. In any physical system the enhancement
will be less than the theoretical limit due to factors such as
imperfect saturation, leakage effects from relaxation, and the
competition between various DNP processes.

II. QUANTUM DESCRIPTION OF DNP

Historically, DNP has been described using a semiclassical
model with systems of rate equations. We have the tools,
however, to analyze the polarization transfer as a fully quantum
process with system-environment interactions. We can write
both the solid effect and Overhauser effect as quantum maps,
and we do so here using a Kraus operator representation.
The minimum set of operators necessary to determine these
maps are the drift Hamiltonian, Hdrift, the control Hamiltonian,
Hcontrol, a set of Kraus operators for the T e

1 relaxation of the
electron, and Kraus operators for Tx , the zero quantum cross
relaxation between the electron and the nucleus.

The drift Hamiltonian is the same for both DNP mecha-
nisms. Hdrift is the sum of the Zeeman interactions for the
electron and the nucleus and the hyperfine coupling between
the two spins. We assign a particular Hamiltonian, which
contains a hyperfine coupling with both isotropic (A) and
anisotropic (B) terms. In the high field limit the electron
Zeeman term will be much larger than the other terms, we
take the secular approximation with respect to the electron
spin quantum number, and the drift Hamiltonian is

Hdrift = ωSSz + ωI Iz + ASzIz + BSzIx, (1)

where �S and �I are the spin operators for the electron and the
nucleus, respectively, and ωS/ωI the electron/nucleus Larmor
frequency. For efficient polarization transfer, it is necessary
to use a system in which the anisotropic hyperfine is on the
same order as the nuclear Zeeman term, so that the eigenstates

TABLE I. Maps for both mechanisms in rotating frame of the
electron.

Overhauser effect Solid effect

Udrift e−i(ωI Iz+ASzIz+BSzIx )t e−i(ωI Iz+ASzIz+BSzIx )t

Ucontrol e(−iωd tSx⊗1) e[−iωd t(SxIy+SxIy )]

Relaxation T e
1 , Tx T e

1

are mixtures of nuclear spin up and spin down and the zero
quantum transition is weakly allowed [1].

The control Hamiltonian for the OE is produced by
microwave irradiation on resonance with the electron spin flip
transitions. In the rotating frame of the electron this is [23]

HOE = ωdSx ⊗ 1, (2)

where ωd is the Rabi frequency of the drive field. Because
the nuclear spin states are mixed, this Hamiltonian can drive
the zero quantum or double quantum transition when the
microwave control field is tuned to resonance with either
transition. This yields the effective control Hamiltonian for
the solid effect,

HSE = ωd (SxIx − SyIy). (3)

The remaining operators needed to mathematically describe
DNP are the nonunitary operators that drive the decoherent
processes. The SE requires only T e

1 relaxation, while both T e
1

and Tx are necessary for the OE. All the unitary and nonunitary
operators for the solid and Overhauser effects are listed in
Table I.

To illustrate that these operators are sufficient, we consider
the following discrete maps which increase the nuclear
polarization. Here we assume that T1 of the nuclear spin is
much longer than T e

1 and can be neglected.
For the Overhauser effect:

�OE = [UOE] → [Tx] → [
T e

1

]
. (4)

(1) UOE saturates the electron spins, removing any electron
polarization.

(2) Tx drives population to the nuclear spin |↓〉 state.
(3) T e

1 removes entropy by driving the system to a state with
higher purity.

And the solid effect:

�SE = [USE] → [
T e

1

]
. (5)

(1) USE transfers polarization from the electron through the
zero quantum transition.

(2) T e
1 removes entropy from the system and resets the

electron spin.
In a physical system decoherence is continuous, and

we cannot sequentially apply the unitary processes then
decoherent processes compose these discrete maps. Instead
we can move to a continuous time map and find the generators
for DNP. We choose the Kraus operator formalism to describe
the decoherent processes and determine the continuous map.

In the Kraus operator form, a set of operators {Mk} act on
the state ρ yielding the map,

ρ ′ =
∑

k

MkρM
†
k . (6)
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This map is completely positive and trace-preserving (CPTP)
if the Kraus operators satisfy the condition

∑
k

M
†
kMk = I. (7)

We start with the Kraus operators that describe T1 relax-
ation. During the T1 process, the electron spin flips while the
nuclear spin remains in the same state (indicated by T e

1 Fig. 1).
A set of Kraus operators driving this type of relaxation must
act as the operator Sx ⊗ 1I in the energy eigenbasis. We also
require the Kraus operators for a T1 process to return the system
(or relevant subsystem) to thermal equilibrium. The following
set of Kraus operators describes T1 relaxation on the electron
spin:

A1 = √
p

(
1 0
0

√
ε

)
⊗ I,

A2 = √
p

(
0

√
1 − ε

0 0

)
⊗ I,

(8)

A3 =
√

1 − p

(√
ε 0

0 1

)
⊗ I,

A4 =
√

1 − p

(
0 0√

1 − ε 0

)
⊗ I,

where the parameter ε = exp(−t/T e
1 ) sets the rate of the

process and p = exp(−hωS/2kBT ) determines the final po-
larization [24].

The other set of Kraus operators that is required to describe
DNP is that which implements the electron-nuclear cross
relaxation, Tx (see Fig. 1). This is essentially a T1 process that
acts on the zero quantum subspace, a depolarizing channel that
leads to transitions |↓β〉 ⇔ |↑α⊥〉. As in the electron T1 case
the system should return to thermal equilibrium. The following
operators satisfy these requirements:

B1 = √
pzq

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0

√
εzq 0

0 0 0 1

⎞
⎟⎠,

B2 = √
pzq

⎛
⎜⎜⎝

0 0 0 0
0 0

√
1 − εzq 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠,

(9)

B3 = √
1 − pzq

⎛
⎜⎝

1 0 0 0
0

√
εzq 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎠,

B4 = √
1 − pzq

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0

√
1 − εzq 0

0 0 0 0

⎞
⎟⎟⎠,

with pzq= exp[−h(ωS − ωI )/2kBT ] and εzq= exp(−t/TZQ),
where TZQ is the zero quantum cross relaxation. These Kraus
operators satisfy the condition

∑
k B

†
kBk = 1.

We now have the Kraus map for the total evolution

ρ ′ =
∑

k

Ak

[∑
l

Ble
−iH tρ eiHtB

†
l

]
A

†
k, (10)

which we rewrite in terms of a single set of Kraus operators,
{Mk},

ρ ′ =
∑

k

MkρM
†
k . (11)

The next step is to find the reduced map that acts on the
nuclear spin subsystem and to write it in the Kraus form.
We start by transforming the Kraus map to a supermatrix
representation that acts on the vectorized density matrix, ˆ̂ρ,

ˆ̂ρ ′ = S ˆ̂ρ. (12)

In a general sense, we can consider the electron to be the
environment of the nucleus. We evaluate the reduced map
on the nuclear spin by tracing over this “environment.” This
is accomplished by applying S to a known state of the
environment and taking the partial trace,

Sn = TrE(S ˆ̂ρE ⊗ ˆ̂ρn). (13)

The Kraus operators acting on the reduced space can be
found from the Choi matrix, which is given by a reshuffling of
the reduced supermatrix, Sn [25]. The Choi matrix is defined
as

�C = (I ⊗ �)
∑
ij

Eij ⊗ Eij =
∑
ij

Eij ⊗ �(Eij ), (14)

where Eij = |i〉〈j | and the vectors {|i〉,|j 〉} form a basis of the
Hilbert space. The procedure for extracting Kraus operators
from the Choi matrix follows. We rewrite �C in terms of its
normalized eigenvectors, |ak〉,

�C =
∑

k

|ak〉〈ak|. (15)

The columns of �C form a set of columnized Kraus operators
{Ak} satisfying the condition of Eq. (7) with d2 operators in
the set, where d is the dimension of the Hilbert space.

Using this procedure we find the following Kraus operators
for the nuclear spin map. The final Kraus operators for both
DNP processes are similar in form to the T1 Kraus operators
of Eq. (8) and do in fact describe polarizing channels on the
nuclear spin. For the solid effect effect the four Kraus operators
found have the following structure:

M1 = α

(
0

√



0 0

)
,

M2 = α

(
0 0√

1 − 
 0

)
,

(16)

M3 = β−

(
�− 0
0 1

)
,

M4 = β+

(
�+ 0
0 1

)
,
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where the parameters 
, α, β±, and �± depend on the
Hamiltonian parameters and T1 as follows:


 = γ1 = exp
�ωS

2kBT
,

α =
√

(1 − e−t/T1 )

2
,

β± = (∓4 − 3
√

2)(t − 4T1)

8
√

3 ± 2
√

2T1

+ O(t2), (17)

�± = −8T1 + t[2 ± √
2 + i4T1(η− + η+) ∓ 2

√
2γ1]

2(t − 4T1)

+O(t2),

with

η± =
√

4A2 + 4B2 ± 4AωI + ω2
I . (18)

β± and �± are approximated to first order in time, t . This
approximation is valid under the assumption that the time step
is much shorter than the relaxation time, T1.

Similarly for the Overhauser effect, we find the reduced Kraus
operators,

M ′
1 = α′

(
0

√

1(1 − 
x)

0 0

)
,

M ′
2 = α′

(
0 0√

(1 − 
1)
x 0

)
,

(19)

M ′
3 = β ′

−

(
�′

− 0
0 1

)
,

M ′
4 = β ′

+

(
�′

+ 0
0 1

)
,

with the parameters,


1 = 1 − 2γ1(1 − et/T1 ),


x = γx = exp
�(ωS − ωI )

2kBT
, (20)

α′ = e−t(1/T1+1/Tx )(et/Tx − 1),

and

β ′
± =

√√√√−t ∓ 4Tx ±
√

4 × { − 4tTx + 8T 2
x + t2

[
1 + 2T 2

x (η− + η+)2 − 2γx(1 − γx)
]}

4Tx

+ O(t2),

�′
± =

2i
(±t(1 − 2γx) +

√
4 × { − 4tTx + 8T 2

x + t2
[
1 + 2T 2

x (η− + η+)2 − 2γx + 2γ 2
x

]})
8iTx − t[2i + 4T x(η− + η+)]

+ O(t2),

with γ1 and η as defined in Eqs. (17) and (18), respectively.
Again, for simplicity, we have taken β ′

± and �′
± to first order

in t with the assumption that t is shorter than T1 and Tx . If we
make the same approximation for 
1 and 
x , then the cross
relaxation term dominates and the Kraus operators M ′

1 and M ′
2

take the same form as those for the solid effect [M1 and M2 in
Eq. (16)] but with the direction of polarization reversed:

M ′
1 →

√
t

2Tx

(
0

√
1 − γx

0 0

)
,

(21)

M ′
2 →

√
t

2Tx

(
0 0√
γx 0

)
.

These Kraus operators satisfy the requirement of Eq. (7) for a
CPTP map. {Mk} and {M ′

k} resemble the Kraus operators for
a return to thermal equilibrium, each with a new equilibrium
defined by γ1 and γx . These reduced maps on the nuclear spin
drive the spin to a hyperpolarized state, and with opposite sign
for the solid effect versus the Overhauser effect.

III. OPTIMAL CONTROL THEORY

The generators given above assume perfect control. In
reality, we cannot produce the perfect unitaries USE and
UOE. Any microwave field that we apply to the system will
excite all four transitions to some degree, resulting in nonideal
unitaries that will drive the Overhauser effect and solid effect

simultaneously and reduce the final nuclear polarization. In
order to increase selectivity, we incorporate optimal control
theory (OCT).

OCT allows the design of pulse sequences that perform
any desired unitary on the four level system. There are many
unitary operators that result in a hyperpolarized nuclear state.
Exciting the transitions that drive the Overhauser effect, for
example, requires a unitary that acts only on the subspace
of the electron spin, whereas the solid effect is driven by
unitary operators acting on the zero quantum subspace. For
the experimental implementation we choose a single operator
to optimize towards; in principle, we can optimize to any
operator on the electron subspace that leads to a polarization
transfer.

There are four possible transitions in the hyperfine coupled
electron-nuclear system, as shown in Fig. 2. Depending on
which transitions are driven during the DNP experiment, the
effective unitary will lead to a combination of the OE and SE.
As will be explained in the next section, the pulse sequence
used to drive DNP in this work is a saturation train (Fig. 3),
where each pulse will either be a hard pulse or a composite
OCT pulse. The angle of rotation that a single pulse performs
on each transition in Fig. 2 determines the degree of saturation
of that transition.

By varying the rotation angle of each transition we can
explore the space of DNP and find points in this space that
yield a nuclear polarization enhancement. Figure 4 presents
the DNP enhancement of the nuclear spin signal for varying
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1
2

3

4

FIG. 2. Four possible transitions in the two spin system. 1 and 2
are electron only transitions. 3 is the zero quantum transition, and 4
the double quantum.

saturation levels of the four transitions. There are four angles θi

corresponding to the transitions of Fig. 2. These plots illustrate
several representative slices of the full space of DNP. The x

axes of (a)–(c) indicate the rotation angle of the pulses in Fig. 3
on transitions 1 and 2 (i.e., the transitions that involve flipping
only the electron spin), with no excitation of the zero quantum
and double quantum transitions. These points in the space
indicate unitaries which drive the Overhauser effect only and
lead to positive nuclear polarization enhancement. When the
cross transitions (3 and 4 in Fig. 2) are also excited (increasing
saturation corresponds to larger rotations on the y axes), the
microwave control also induces the solid effect and drives
the nuclear spin towards a negative polarization. In regions
where single quantum transitions and cross transitions are both
excited, the net nuclear polarization is less than the theoretical
maximum of 660.

Experimentally it is difficult to drive polarization enhance-
ment through the solid effect. The zero quantum and double
quantum transitions are only weakly allowed, and therefore
require large microwave powers to saturate. In this work we
choose instead to drive the Overhauser effect by optimizing
π/2 rotations on the 1 and 2 transitions with no excitation on
the cross transitions, 3 and 4. This case is indicated by arrows
on figures (a) and (c) of Fig. 4.

IV. PULSE FINDING

We accomplish the saturation of the electron resonances for
the OE through a π/2 microwave pulse train as shown in Fig. 3.
The goal of the pulse finder is to produce composite pulses
that perform the π/2 rotation on both electron resonances
without any rotation on the zero quantum (or double quantum)

Saturation Train

Readout

ESR

NMR OCT Composite
Pulse

t1 t2 t3

FIG. 3. Timing diagram of the experiment: the π/2 saturation is
applied for a variable length of time followed by the NMR readout
pulse.

subspace. The desired unitary for Overhauser DNP is

U = exp(−iπ/2Sx ⊗ 1). (22)

Our pulse optimization method uses the Nelder-Mead
simplex algorithm to numerically search over the control
parameter space [26]. The pulses are restricted to on/off
modulation; the total pulse consists of several time steps during
which the microwave control is either on or off and the lengths
of each step are left as parameters.

To optimize the pulses, we first find the map that the OCT
pulse performs when relaxation is present in the system and
compare this to the map produced by the desired π/2 rotation.
We have a set of operators {Mk} such as in Eq. (6) for each
time step. The successive application of these Kraus operators
for each segment of the pulse gives the map for the composite
pulse:

ρ ′ =
∑
n1

M1
n1

[
· · ·

∑
nN

MN
nN

ρMN
nN

† · · ·
]
M1

n1

†
. (23)

In order to speed up the computation time, we use the
procedure from Sec. III to find the smallest set of Kraus
operators from the Choi matrix.

The pulse finder’s fit function measures the overlap of the
superoperator generated by the OCT pulse with the desired
unitary, represented by the gate fidelity [8,27],

F =
∑

k

Tr(U †Mk)2/2d , (24)

where U is the unitary we want to perform and {Mk} is
the nonunique set of Kraus operators that describe the pulse
superoperator [28].

We found two sets of OCT pulses: one including the
electron T1 and the cross relaxation processes (Tx), and one
considering only unitary evolution. The pulse found with
optimal control but without including relaxation consists of
two pulses (pn) with a delay (τn) between them:

(τ1) − (p1) − (τ2) − (p2) − (τ3). (25)

This composite pulse, which was found neglecting relaxation,
has a fidelity with the desired unitary of 0.56.

The OCT pulse found by including relaxation processes is
three square pulses with delays as follows:

(τ1) − (p1) − (τ2) − (p2) − (τ3) − (p4) − (τ4). (26)

The computed fidelity for this pulse is 0.74. It appears that
the additional square pulses in the OCT sequences correct
errors that hard pulses do not. These fidelities may appear
low, but it should be noted that they correspond to a single
application of the composite pulse. We need only to saturate a
transition in order to transfer polarization. Therefore, the angle
of the pulse does not matter as it is repeated many times in
the saturation train, and we can still achieve large polarization
enhancements. Additionally, these fidelities are calculated for
the unitary that acts on the full electron-nuclear space. For
DNP we are not concerned with the full map that acts on
the electron-nuclear system, but we are interested only in the
action of the control pulses on the nuclear subspace. Over the
length of the saturation train the reduced map on the nuclear
spin after tracing out the electron is essentially a polarizing
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FIG. 4. (Color online) Color map indicates the DNP enhancement, with the maximum of 660 in red and minimum of −660 in blue. The
x and y axes units are in degrees. The angles, θi , indicate the degree of rotation for a repeated train of pulses (as in Fig. 3) on the transition
corresponding to i in Fig. 2. The following cases are depicted: (a) increasing saturation on transitions 1 and 3 while applying π/2 pulses to 2;
(b) increasing the 2 and 3, with π/2 pulses on the other electron resonance, 1; (c) increasing 2 and 4 with full π/2 saturation on 1; (d) increasing
3 and 4 with both electron resonances saturated; and (e) increasing the electron resonance simultaneously and increasing 4 with π/2 pulses on
3. The ideal case for the Overhauser effect occurs at the points indicated by arrows in (a) and (c).

channel for all sets of the pulses found. This map takes the
identity state to a polarized state as follows:

�(1) = 1 + pZ, (27)

with the value of p determining the final nuclear polarization
for each type of pulse. The OCT pulses found including the full
open system dynamics act as the strongest polarizing channel
and have a fidelity of 0.95 with the reduced map produced
by the ideal Overhauser effect. In contrast the fidelity of the
reduced system dynamics with the ideal case is 0.66 for the
closed system OCT pulses and 0.31 for hard pulses.

To analyze the map on the full space for each of the pulses,
we rewrite it in the supermatrix formalism. Figure 5 gives the
superoperator matrices, S, in the Pauli basis for the solid effect,
Overhauser effect, both sets of OCT pulses, and hard pulses.
The eigenvector of S with eigenvector 1 is equal to the final
state into which the superoperator drives the system. These fi-
nal states for the Overhauser effect and solid effect superopera-
tors are given in Table II. The IZ and ZI terms are proportional
to the final nuclear and electron polarizations, respectively.

The final-state coefficients indicate that the OE drives the
system to a positive nuclear polarization while depolarizing
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FIG. 5. (Color online) Supermatrices for OE (a) and SE (b) as well as for the three sets of pulses: open OCT (c), closed OCT (d), and
hard pulses (e). Dark red indicates elements with magnitude 1, and at the other side of the spectrum dark blue elements are equal to zero.
The operator describing the open OCT pulses has the best overlap with that for the OE. The two other pulses have large contributions from
components not present in (a), indicating that they are less effective at isolating the OE.

the electron spin. In contrast, the SE results in a negatively
polarized nuclear state but does not perform a strong depolar-
izing channel on the electron spin. Additionally the SE creates
coherences in the zero quantum terms, XY and YX, while
the OE only leads to single quantum coherences in the final
density matrix.

From the superoperator matrices in Fig. 5 we can see
qualitatively that the superoperator for OCT pulses has
the same structure as the superoperator for the Over-
hauser effect with perfect π/2 rotations on the electron
only transitions. The closed system OCT pulses and hard
pulses are also similar in structure to the OE map, but
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TABLE II. Final states given by the superoperators for the Overhauser effect and solid effect compared to the states driven by the
superoperators for the three sets of pulses found.

OE SE Open OCT Closed OCT Hard pulses

II 1 1 1 1 1
IX 0 0 3.25 × 10−7 −3.70 × 10−7 2.18 × 10−7

IY 0 0 −5.72 × 10−7 −7.04 × 10−7 2.21 × 10−10

IZ 7.52 × 10−4 −7.40 × 10−4 7.16 × 10−4 4.96 × 10−4 2.36 × 10−4

XI 0 0 −6.76 × 10−5 −1.59 × 10−4 1.55 × 10−4

XX 0 0 −2.52 × 10−11 5.52 × 10−11 3.52 × 10−11

XY 0 −5.12 × 10−6 3.97 × 10−11 1.18 × 10−10 5.44 × 10−14

XZ 0 0 −5.00 × 10−8 −8.24 × 10−8 3.84 × 10−8

YI 2.05 × 10−5 0 1.06 × 10−5 1.07 × 10−5 −2.28 × 10−5

YX 0 5.12 × 10−6 2.00 × 10−12 −3.41 × 10−12 −4.28 × 10−12

YY 0 0 −4.08 × 10−12 −8.16 × 10−12 −1.37 × 10−13

YZ 1.54 × 10−8 0 8.28 × 10−9 5.76 × 10−9 −5.08 × 10−9

ZI −2.61 × 10−5 −7.52 × 10−4 −5.40 × 10−5 −2.66 × 10−4 −5.20 × 10−4

ZX 0 0 −1.72 × 10−11 1.00 × 10−10 −1.18 × 10−10

ZY 0 0 3.60 × 10−11 1.97 × 10−10 2.80 × 10−14

ZZ 4.80 × 10−5 5.60 × 10−7 −3.97 × 10−8 −1.37 × 10−7 −1.26 × 10−7

have increasing contributions from terms not present in the
OE map.

V. SIMULATIONS

Figure 6 shows the results of simulating the OCT and non-
OCT pulses. The simulations show that both sets of OCT
pulses (solid black for open system OCT and dot-dashed red
for closed system OCT) give a greater enhancement than hard
π/2 pulses (dashed blue). The open system OCT pulses yield
a nuclear polarization of 654, almost the full enhancement.
The closed system OCT pulses produce a nuclear polarization
491, while the enhancement due to hard pulses is 140.

We simulated the performance of the open system OCT
pulse with variations in both Rabi frequency and the
anisotropic hyperfine coupling and compared it to hard pulses
with the same variations (see Fig. 7). The OCT pulses are

FIG. 6. (Color online) Comparison of OCT pulses to hard pulses.
Black solid line is saturation by open system OCT pulses, dashed red
is closed system OCT pulses, and short dashed blue is saturation with
hard pulses.

optimized for a Rabi frequency of 8 MHz, the frequency
experimentally achievable at a reasonable power. The simula-
tions show that the OCT pulses are quite robust to changes
in Rabi frequency, while hard pulses reach the maximum
polarization enhancement at a Rabi frequency equal to the
anisotropic hyperfine coupling (14 MHz in this simulation).
The enhancement falls off relatively quickly for hard pulses as
compared to the OCT pulses.

Figure 7(b) presents the results of varying the anisotropic
hyperfine frequency, B [as in the Hamiltonian of Eq. (1)]. The
OCT pulses give the highest enhancements when the hyperfine
coupling is near maximal, where there is the largest amount
of nuclear state mixing. The hard pulses actually improve
with lower anisotropic hyperfine values. This result is some-
what nonphysical, however, as the simulated cross relaxation
rate is the same for all values of B. In reality the cross relaxation
is weaker when B is smaller. In these simulations where Tx is
constant and B decreases, the hard pulses improve because the
solid effect becomes less likely as the zero quantum transitions
is more strongly forbidden, while the Overhauser effect is still
allowed through the constant cross relaxation.

One possible leakage pathway in the physical system is the
double quantum transition. While relaxation through flip-flip
interactions will be a weaker process than the flip-flop that
drives DNP, both pathways are present. We have simulated
DNP in a system with a double quantum relaxation rate of
0.5 times the zero quantum rate. The results are shown in
Fig. 8. When double quantum relaxation is included, the DNP
enhancements are lowered for all pulses: 218 for open OCT,
152 for closed OCT, and 38 for hard pulses.

It should be noted that there is a significant difference
between the simulated system and the physical system. In
the simulations we are looking only at the two spin system
consisting of one electron and one proton with the couplings
found in the experimental sample used. We find the DNP
enhancement of the coupled proton. In the experiment,
however, we observe the bulk proton signal, as the number
of protons coupled directly to an electron is too small to detect
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FIG. 7. (Color online) Simulations of pulses varying the Rabi
frequency (a) and the anisotropic hyperfine coupling (b). The solid
black line indicates simulations of the open system OCT pulses; red
dashed is hard pulses.

directly. The actual experimental nuclear polarization depends
on the couplings between the bulk protons and the hyperfine
coupled protons, and the buildup times are limited by spin
diffusion [29].

FIG. 8. (Color online) DNP with double quantum relaxation. The
black solid line is open OCT pulses, red dashed closed OCT, and blue
dotted is hard pulses. Here Tdq = 2Tzq .

FIG. 9. Probe diagram: the figure on the left shows the side view
of the probe, and on the right is the top view. The ESR resonator in
the shape of a loop gap is concentric to the NMR coil.

VI. EXPERIMENT

The system used in this work is irradiated malonic acid,
an organic radical with one electron hyperfine coupled to one
proton. Malonic acid is a well characterized sample widely
used in ESR [30,31]. The malonic acid sample used here
is a single crystal irradiated for 5 h with 8 keV x rays and
subsequently annealed at 45 ◦C for 15 h.

The Hamiltonian for this two spin system is the drift
Hamiltonian of Eq. (1). In an external field of 3406 G,
the electron Larmor frequency is 9.59 GHz and the nuclear
resonance is 14.57 MHz [31,32]. The terms A and B depend
on the orientation of the crystal in the external magnetic field.
In the orientation that maximizes the mixing of the nuclear
states, the isotropic (A) and anisotropic (B) parts of the hyper-
fine coupling are −42.7 MHz and 14.7 MHz, respectively. We
determine this orientation in a cw-ESR spectrometer.

We have built a double frequency probehead with an ESR
resonator surrounded by a split coil for NMR detection. The
schematic for the probe is shown in Fig. 9. The ESR resonator
is based on the standard loop-gap resonator design, but is
easier to construct than typical bridged loop-gap resonators
commonly used in DNP experiments [33,34].

The resonator is soldered onto the outer conductor of a
microwave coax at one end, while the other end is open (see
top view of Fig. 9). A tuning screw on the opposite side of the
shield allows tuning and matching of the ESR resonance over
a 1 GHz range around 10 GHz.

We perform three sets of experiments, all using the basic
pulse sequence given in Fig. 3, with hard pulses, closed system
OCT, and open system OCT pulses as the π/2 saturation pulse.
To measure the thermal signal without DNP, we use an Ernst
angle detection with 400 000 scans. Due to the large dipolar
coupling between protons in malonic acid, T2 of the proton
signal is less than the deadtime of the probe. The NMR signal
is detected with a magic echo sequence to overcome this issue.
The proton linewidth was 40 kHz.

VII. RESULTS

Figure 10 shows the buildup curves for the three sets of
pulses. The open system OCT pulses produce the highest
nuclear polarization, 11.1 times the enhancement produced
by hard pulses, and 2.2 times that produced by the OCT pulses
found without relaxation (closed system pulses). The closed
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FIG. 10. (Color online) Results of the experiment with fits of the
buildup curves. Black triangles are the data from saturation with open
system OCT pulses, red circles are for closed OCT pulses, and blue
squares are for hard pulses.

system pulses yield a polarization 5.1 times that of hard pulses.
These ratios are consistent with those found in the simulations.
The maximum polarization enhancement achieved with the
open OCT pulses was a factor of 180 ± 36.

From fits of the data in Fig. 10 we find the buildup times for
each curve. For all three curves the rate determining process is
spin diffusion, as we detect the bulk proton signal and do not
measure the polarization of the spins directly coupled to the
electron defects. The hard π/2 pulses produce a buildup time
of 12.7 ± 1.8 s, the closed OCT buildup is 14.9 ± 1.7 s, and
13.2 ± 1.5 s for the open OCT pulses.

Figure 11 shows the measured effective T1 of the bulk nu-
clear spins after DNP. A fit of this curve to a single exponential
decay gives T1 = 10.5 ± 1.6 s. Like the DNP process, the
return to thermal equilibrium depends on spin diffusion. The
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FIG. 11. Effective T1 measurement after polarization for 10 s.
Fit to a single exponential given by black line. T1 measured to be
10.5 ± 1.6 s.

fast electron T1 process will depolarize nuclear spins in its
vicinity, which will then diffuse through the bulk. Thus we
expect the effective T1 of the bulk nuclear spins to be on the
same order as the polarization buildup times. We attribute the
slight difference between the polarization and depolarization
times to the fact that there are more pathways for the bulk spins
to relax through than there are pathways for polarizing.

These findings provide an example of how optimal control
theory can improve polarization transfer in DNP experiments,
and, more generally, provide superior control in open quantum
systems. Even with a relatively simple pulse sequence with few
time steps we can achieve an order of magnitude increase in
polarization using OCT pulses versus hard pulses.

While the OCT pulses do produce a nuclear polarization
enhancement of 180, this increase is less than the theoretical
maximum enhancement of 660 and less than the simulated
value. The inability to reach this level of enhancement
could be due to several factors already discussed in Sec. V,
such as leakage pathways or asymmetric saturation of the
electron resonances. The simulations presented earlier have
shown that leakage through double quantum relaxation (in
Fig. 8), or asymmetric saturation (Fig. 4) will also reduce
the final nuclear polarization. We have also seen that the
hard pulses are more susceptible to such deviations from the
idealized case, and it is not surprising that the hard pulses
are worse than the simulations by a factor of 10, while OCT
pulses are only a factor of 5 different than their simulated
value.

VIII. DISCUSSION

These results could be extended to find control sequences
for larger spin systems. In particular we have neglected any
nuclei further from the electron defect than the nearest proton.
These nuclear spins may still have small hyperfine interactions
with the electron spin, and we have not allowed any transfer
pathways in the pulse optimization which might polarize these
spins directly. We could also include the dipolar couplings
between nuclear spins to simulate spin diffusion, the rate
limiting step in this experiment.

It may also be useful to design control pulses for samples
other than single crystals. In the case presented here the
two spin system was assumed to be in the same orientation
throughout the sample. It may be particularly useful to consider
DNP in powder samples. This would require optimizing pulses
for a set of internal Hamiltonians.

This method of pulse finding is useful for quantum control
in systems where relaxation plays a strong role in the dynamics.
The Kraus operator description is particularly convenient
as one can write a modular pulse finding code in which
decoherent processes can be added to the superoperator
successively. In principle another superoperator formalism,
such as the Lindblad representation under the condition that the
system is Markovian, should give the same results. Including
relaxation processes in the pulse finder produces pulses that
select the desired transitions more accurately than using a
superoperator that accounts only for unitary processes. This
experiment demonstrates that we can design control sequences
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for open quantum systems that account for interactions with
the environment.

Not only is it possible to create control operations in
dissipative systems, but we have shown that an open-quantum-
system approach can provide significant improvements over
unitary control. We anticipate that superoperator optimized
pulse design will lead to superior control in spin based systems
and other quantum devices.
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