
PHYSICAL REVIEW A 92, 042101 (2015)

Complementarity relations for quantum coherence

Shuming Cheng1,2 and Michael J. W. Hall1
1Centre for Quantum Computation and Communication Technology (Australian Research Council),

Centre for Quantum Dynamics, Griffith University, Brisbane, QLD 4111, Australia
2Key Laboratory of Systems and Control, Academy of Mathematics and Systems Science,

Chinese Academy of Sciences, Beijing 100190, P. R. China
(Received 13 August 2015; published 2 October 2015)

Various measures have been suggested recently for quantifying the coherence of a quantum state with respect to
a given basis. We first use two of these, the l1-norm and relative entropy measures, to investigate tradeoffs between
the coherences of mutually unbiased bases. Results include relations between coherence, uncertainty, and purity;
tight general bounds restricting the coherences of mutually unbiased bases; and an exact complementarity relation
for qubit coherences. We further define the average coherence of a quantum state. For the l1-norm measure this is
related to a natural “coherence radius” for the state and leads to a conjecture for an l2-norm measure of coherence.
For relative entropy the average coherence is determined by the difference between the von Neumann entropy and
the quantum subentropy of the state and leads to upper bounds for the latter quantity. Finally, we point out that
the relative entropy of coherence is a special case of G-asymmetry, which immediately yields several operational
interpretations in contexts as diverse as frame alignment, quantum communication, and metrology, and suggests
generalizing the property of quantum coherence to arbitrary groups of physical transformations.
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I. INTRODUCTION

The notion of “coherence” in quantum mechanics is
an old one, arising from the even older notion of phase
coherence for classical light waves. In both cases the loss of
phase correlations leads from superpositions to mixtures. For
example, a projective quantum measurement in some basis
will act on a pure state ensemble to reduce it to a mixture
of orthogonal states, thus decreasing the coherence of the
ensemble with respect to the measurement basis.

It has recently been proposed to regard quantum coherence
as a physical resource, useful for accomplishing certain
tasks, that decreases under certain physical operations such
as measurement [1–3]. In these proposals the coherence is
not a property of the quantum state alone but is defined
with respect to a given measurement basis. Measures of
coherence are required to vanish for states diagonal in this
basis, corresponding to complete incoherence (in particular,
they cannot be further decohered relative to this basis). It has
also been proposed they should decrease under incoherent
operations, i.e., operations that preserve diagonality in the
given basis, and to decrease on average under mixtures of
such operations [1].

Various suitable measures of coherence have been sug-
gested that meet the above requirements [1,2,4–6]. However,
while these measures are formally satisfactory, the question
of whether they in fact quantify some physical resource has
not been settled in most cases (an exception being the relative
entropy of coherence [7,8]; see also below). This question
has an analogy in statistical physics and communication
theory: there are many possible formal measures of entropy
that quantify irreversibility, but only the Gibbs and Shannon
entropies (and their quantum generalizations) appear to have
significance as direct physical resources.

One approach to assessing the degree to which a measure
of coherence relates to a resource is to ask whether there is
“only so much to go ’round.” In particular, if a state has a high

measure of coherence with respect to one basis, how high can
its coherence be with respect to another basis? Is a resource
tradeoff involved?

We examine this question for the case of mutually unbiased
bases (MUBs), for two particular measures of coherence: the
l1-norm and the relative entropy [1]. Here two observables and
their corresponding basis sets are said to be mutually unbiased,
or “complementary,” if the measurement distribution of either
one is uniform for any eigenstate of the other [9–13]. We find
that the l1-norm measure satisfies an exact tradeoff relation
for qubits and more generally has a tight bound determined
by the difference between a quantum and a classical purity
(Sec. II A). Further, the sum of the squared l1-norm coherences
of a maximal set of mutually unbiased bases (MUBs) has a
tight upper bound in terms of a “radius of coherence” for the
state (Sec. II B). These results lead to the conjecture that an
l2-norm measure of coherence may be more natural from the
resource point of view (Sec. II C). We also obtain a nontrivial
upper bound for the corresponding sum of the relative entropies
of coherence, which is tight for maximally mixed states and in
the limit of arbitrarily large dimensions (Sec. III).

A second question of interest is whether one can char-
acterize the coherence of a quantum state per se, without
reference to any particular basis. In this respect, for example,
it has recently been shown that the minimum coherence of a
multipartite state, with minimization over all possible product
basis sets, is equivalent to a particular measure of discord
for the state [14]. However, this result cannot be extended to
define the coherence of a quantum state per se, as the minimum
coherence is always zero (corresponding to a basis in which
the state is diagonal).

In answer to this second question we propose using an
average measure of the coherence, over all basis sets (Sec. IV).
Such averages represent the degree to which the state is a
useful coherent resource if a basis is chosen at random. For
the l1-norm measure the average coherence is bounded by
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the coherence radius of the state. For the relative entropy
of coherence the average coherence is proportional to the
difference between the von Neumann entropy and the quantum
subentropy [15] of the state, providing an alternative interpre-
tation of the latter quantity. We also obtain upper bounds for the
subentropy.

Finally, in the concluding section we point out that the
relative entropy of coherence is related to the efficiency
of quantum heat engines [16] and is also a special case
of the G-asymmetry [17]. This yields alternative physical
interpretations of this quantity to those proposed more recently
[7,8] and suggests generalizing the property of quantum
coherence to arbitrary groups of physical transformations and
indeed to arbitrarily defined sets of “incoherent” states.

II. COMPLEMENTARITY FOR l1-NORM MEASURE
OF COHERENCE

For a quantum state described by density operator ρ,
and an orthonormal basis A ≡ {|a〉}, the l1-norm measure of
coherence is defined by [1]

C1(A,ρ) =
∑
a �=a′

|〈a|ρ|a′〉|. (1)

Note that the normalization and positivity of ρ yield the
inequality

C1(A,ρ) =
∑
a,a′

|〈a|ρ|a′〉| − 1

�
∑
a,a′

〈a|ρ|a〉1/2 〈a′|ρ|a′〉1/2 − 1

=
(∑

a

〈a|ρ|a〉1/2

)2

− 1, (2)

with equality for all pure states ρ = |ψ〉〈ψ |. For a d-
dimensional Hilbert space it follows that the maximum possi-
ble value corresponds to a uniform probability distribution of
A for the state, 〈a|ρ|a〉 ≡ d−1, yielding

C1(A,ρ) � Cmax
1 := d − 1. (3)

We now investigate the restrictions on this maximum degree
of coherence, both in terms of the purity of the quantum
state and when more than one basis is considered (and for
MUBs in particular). These restrictions lead to far stronger
upper bounds on individual coherences than Eq. (3), and
connect coherence to uncertainty, to the difference of quantum
and classical purities and to a natural “radius of coherence.”
We first consider qubits and then the general d-dimensional
case.

A. Identities for qubit coherences

Let σ1, σ2, and σ3 denote the three Pauli qubit observables.
These are mutually unbiased, in the sense that the distribution
of any one of these observables is uniform for any eigenstate
of the others [9–13]. Using the same symbols for the
corresponding basis sets, it is straightforward to calculate
from Eq. (1) and the Bloch representation ρ = 1

2 (1 + r · σ )

that

C1(σ3,ρ)2 = 4|〈+|ρ|−〉|2

= 2

( ∑
z,z′=±1

|〈z|ρ|z′〉|2 −
∑
z=±1

|〈z|ρ|z〉|2
)

= 2Tr[ρ2] − 2
∑
z=±1

Tr

[
ρ

1 + zσ3

2

]2

= r · r − (r3)2. (4)

One obtains similar results for σ1 and σ2, yielding the equality

C1(σ1,ρ)2 + C1(σ2,ρ)2 + C1(σ3,ρ)2 = 2 r · r (5)

for mutually unbiased qubit coherences.
The above equality is stronger than Eq. (3) and clearly

constrains the usefulness of the state as a coherence resource.
For example, if the coherence is maximal with respect to σ1

and σ2, i.e., C1(σ1,ρ) = C1(σ2,ρ) = 1, then it must vanish with
respect to σ3, i.e., C1(σ3,ρ) = 0. It also follows from Eq. (5)
that the qubit coherence for a given basis is constrained not
only by the coherences of mutually unbiased bases, but also by
the length of the Bloch vector r . In particular, for the maximally
mixed state with r = 0 all coherences must vanish.

Note that while Eq. (5) may be interpreted as a complemen-
tarity relation for qubit coherences, it should be distinguished
from uncertainty relations. In particular, noting that the mean
square error of σ3 for state ρ is given by (�ρσz)2 = 1 − (r3)2,
Eq. (4) immediately generalizes to the qubit relation

(�ρA)2 = C1(A,ρ)2 + 1 − r · r (6)

for coherence and uncertainty. Thus, a high degree of coher-
ence implies a high degree of uncertainty, and vice versa, but
only for a fixed degree of purity (as defined by the length of
the Bloch vector).

B. General case: Purity and mutually unbiased coherences

We first generalize the qubit identity (4) to arbitrary
dimensions. In particular, using the Schwarz inequality, it
follows from Eq. (1) that

C1(A,ρ)2 =
⎛
⎝∑

a �=a′
|〈a|ρ|a′〉|

⎞
⎠

2

� d(d − 1)

⎛
⎝∑

a �=a′
|〈a|ρ|a′〉|2

⎞
⎠

= d(d − 1)

(∑
a,a′

|〈a|ρ|a′〉|2 −
∑

a

|〈a|ρ|a〉|2
)

= d(d − 1)

(
Tr[ρ2] −

∑
a

〈a|ρ|a〉2

)
. (7)

Hence, defining the quantum and classical purities

P (ρ) := Tr[ρ2], P (A|ρ) :=
∑

a

〈a|ρ|a〉2,
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respectively, the coherence is bounded by

C1(A,ρ) �
√

d(d − 1)[P (ρ) − P (A|ρ)]. (8)

It follows that the difference between the quantum and classical
purity may be regarded as a proxy resource for coherence (see
also Sec. II C). This is analogous to the role played by the
difference between the quantum and classical entropy for the
case of the relative entropy measure of coherence (see Sec. III).

Equation (8) reduces to the qubit identities (4) and (6) when
d = 2. More generally, noting that the classical purity is never
less than d−1, it follows immediately that

C1(A,ρ)2 � (d − 1)[d P (ρ) − 1], (9)

which is equivalent to the bound in Theorem 1 of Singh et al.
[18]. Thus, Eq. (8) is stronger than (and provides a far simpler
derivation of) the latter bound.

We will now use the strong upper bound in Eq. (8) to obtain
a tight “complementarity” tradeoff for the quantum coherences
of a complete set of MUBs. Recall that two orthonormal basis
sets A and B, for a d-dimensional Hilbert space, are said to
be mutually unbiased, or maximally complementary, if their
overlaps are constant, i.e., if |〈a|b〉|2 = d−1 for all a and
b [9–13]. Thus, no information encoded in basis B can be
recovered by a measurement in basis A; the measurement
completely decoheres any such encoded information. This is
reflected in the property

C1(A,|b〉〈b|) = d − 1 = Cmax
1 (10)

for MUBs, following from definitions (1) and (3); i.e., eigen-
states of B are maximally coherent relative to A and hence
undergo maximum possible decoherence under a projective
measurement of A.

It is known that there exists a complete set of d + 1 MUBs,
A1,A2, . . . ,Ad+1, when the Hilbert space dimension d is a
prime power [11,13], and we will now consider this case (in
Sec. IV we will give a related result holding for arbitrary
dimensions d). Ivanovic showed that a such complete set is
useful for quantum state tomography: one has the beautiful
identity [10]

ρ =
∑

j

ρ(Aj ) − 1̂, (11)

where the density operator ρ(A) is defined by

ρ(A) :=
∑

a

|a〉〈a| 〈a|ρ|a〉

for basis set A and state ρ. For qubits, Eq. (11) corresponds
to reconstructing the components of the Bloch vector from
measurements of σ1,σ2, and σ3, while more generally the
measurement distributions of A1, . . . ,Ad+1 suffice for recon-
struction of the state. From the above identity one can easily
derive the relation [19]

d+1∑
j=1

P (Aj |ρ) = 1 + P (ρ), (12)

connecting the individual classical purities to the quantum
purity.

We now sum over the square of Eq. (8) for a set of MUBs
A1, . . . ,Ad+1, and substitute Eq. (12) into the result, to obtain
the complementarity relation

d+1∑
j=1

C1(Aj ,ρ)2 � d(d − 1) [dP (ρ) − 1] (13)

for mutually unbiased coherences. This relation is stronger
than that obtained by summing over the weaker bound in
Eq. (9) and implies, in particular, that at most d of the
d + 1 MUBs can simultaneously achieve the maximal possible
coherence Cmax

1 = d − 1 in Eq. (3), with the remaining
coherence forced to vanish.

The complementarity relation (13) is in fact tight, in the
sense that it is saturated by some quantum state for any given
value of the quantum purity. For example, for pure states, with
maximum purity P (ρ) = 1, the bound reaches its maximum
possible value of d(d − 1)2 and is saturated by choosing ρ to
to be any one of the basis states. Conversely, for the maximally
mixed state ρ = d−11̂, with minimum purity P (ρ) = d−1,
both sides of the relation vanish. More generally, Eq. (13)
is saturated by the states of the form

ρε = (1 − ε)|b〉〈b| + ε

d − 1
(1̂ − |b〉〈b|), (14)

where |b〉 is an element of any of the d + 1 MUBs and 0 �
ε � 1. These states vary continuously from the pure state |b〉〈b|
to the maximally mixed state d−11̂, for ε ∈ [0,1 − d−1], and
hence achieve all possible values of the quantum purity.

The saturation of Eq. (13) by the states ρε follows directly
from the saturation of the Schwarz inequality in the second
line of Eq. (7), the only point at which an inequality enters
the derivation of the complementarity relation, by any state
satisfying |〈a|ρ|a′〉| = constant for all a �= a′. In particular, if
A = Aj is the basis set that contains |b〉 then b = a0 for some
a0 and the off-diagonal elements all vanish; otherwise |b〉 must
be from a basis set mutually unbiased with respect to A and
so |〈a|ρ|a′〉| = ε[1 − (d − 1)−1]|〈a|b〉〈b|a′〉| = ε(d − 1)(1 −
2d−1), which is again constant, for a �= a′. This argument can
also be used to show that the bound in Eq. (9) is saturated by
ρε , with |b〉 chosen from any basis set mutually unbiased to A,
greatly simplifying the derivation of Theorem 2 in Ref. [18].

C. Radius of coherence and a conjecture

It is of interest to note that the complementarity relation for
mutually unbiased coherences in Eq. (13) can be rewritten in
the geometric form

d+1∑
j=1

C1(Aj,ρ)2 � R1(ρ)2, (15)

with

R1(ρ) :=
√

d(d − 1) [dP (ρ) − 1]. (16)

Thus, the coherences C1(Aj ,ρ) are constrained to lie on or
within a hypersphere of radius R1(ρ). We will call this the
radius of coherence of the state. It is maximal for pure states
and vanishes for the maximally mixed state.
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The radius of coherence may be thought of as quantifying
the “intrinsic” coherence of the state as a resource, indepen-
dently of any particular basis set. This resource places a strict
bound on coherences of a complete set of MUBs via Eq. (15).
More generally, as will be shown in Sec. IV, it bounds the
average coherence over all basis sets, for any Hilbert space
dimension d, whether or not a complete set of MUBs exists.

Equations (8) and (15) further suggest that the quantity

C2(Aj ,ρ) :=
⎛
⎝∑

a �=a′
|〈a|ρ|a′〉|2

⎞
⎠

1/2

(17)

is a very natural candidate for a measure of coherence. We will
call this quantity, for obvious reasons, the l2-norm measure.
The square of this quantity has been previously considered
as a possible coherence measure but rejected as it was
shown by a counterexample to not satisfy all of the required
properties mentioned in the Introduction [1]. However, this
counterexample fails for C2(Aj ,ρ) itself, and we conjecture
that this quantity does satisfy the necessary properties. It is
easy to check that the l2-norm measure vanishes if and only
if only ρ is diagonal with respect to the basis A, and that it
is convex with respect to ρ (since it is the matrix norm of the
difference between ρ and its diagonal in the A basis). However,
further efforts are needed to determine whether or not the
remaining requirements proposed in Ref. [1] (relating to the
decrease of coherence measures under incoherent operations)
are also satisfied.

The main advantage of the l2-norm measure, from the
point of view of coherence as a resource, is that all of
the inequalities derived above for C1(Aj ,ρ) become strict
equalities for C2(Aj ,ρ). In particular, the derivations of Eqs. (8)
and (13) lead directly to

C2(A,ρ) =
√

[P (ρ) − P (A|ρ)], (18)

d+1∑
j=1

C2(Aj ,ρ)2 = dP (ρ) − 1 =: R2(ρ)2, (19)

where R2(ρ) is a coherence radius analogous to (and propor-
tional to) R1(ρ) in Eq. (15). Hence, if the conjecture is valid,
the difference of the quantum and classical purity moves from
being merely a proxy coherence measure in Eq. (8) to (in
square root form) a genuine coherence measure in Eq. (18).
Further, the complementarity of the coherences of a complete
set of MUBs becomes precisely captured, by the geometric
property that they must lie on a hypersphere of radius R2(ρ)
as per Eq. (19).

III. COMPLEMENTARITY FOR RELATIVE ENTROPY
MEASURE OF COHERENCE

For a quantum state described by density operator ρ and an
orthonormal basis A ≡ {|a〉}, the relative entropy measure of
coherence is defined by [1]

Crel(A,ρ) := H (A|ρ) − S(ρ) � log d − S(ρ), (20)

where H (A|ρ) := −∑
a〈a|ρ|a〉 log〈a|ρ|a〉 is the Shannon

entropy of the probability distribution of A for state ρ, and

S(ρ) := −Tr[ρ log ρ] is the von Neumann entropy of ρ.
Note that the base of the logarithm in Eq. (20) is arbitrary,
corresponding to a choice of units, with base 2 corresponding
to units of bits. It is seen that Crel(ρ) is the difference between
a quantum and a classical entropy, providing an interesting
analogy to the difference of quantum and classical purities in
Eqs. (8) and (18).

To obtain a complementarity relation for the coherences
of a complete set of d + 1 MUBs, we will make use of the
entropic certainty relation [20]

d+1∑
j=1

H (Aj |ρ) � (d + 1) log d

− (d − 1)[d P (ρ) − 1]

d(d − 2)
log(d − 1). (21)

For qubits the upper bound reduces to 3 log 2 −
[P (ρ) − 1

2 ] log e by taking the continuous limit d → 2. This
can be improved (by up to ≈ 2%), to the tight qubit relation
[20]

3∑
j=1

H (σj |ρ) � h(
√

[2P (ρ) − 1]/3), (22)

for the MUBs corresponding to the Pauli spin matrices
σ1,σ2,σ3, with h(x) := − 1+x

2 log 1+x
2 − 1−x

2 log 1−x
2 .

Equations (20) and (21) immediately yield the complemen-
tarity relation

d+1∑
j=1

Crel(Aj,ρ) � (d + 1)[log d − S(ρ)]

− (d − 1)[d P (ρ) − 1]

d(d − 2)
log(d − 1) (23)

for the coherences of a complete set of MUBs. The first term
in the upper bound corresponds to summation over the trivial
bound in Eq. (20). Hence, the subtraction of the second term
generates a nontrivial bound for the sum of the coherences.
This bound is tight for the maximally mixed state, with both
sides of the inequality vanishing. It is also tight for pure states
in the limit d → ∞. In particular, in this limit the upper
bound approaches d log d, which is saturated by choosing ρ to
correspond to any one of the basis elements in A1, . . . ,Ad+1.
More generally the bound becomes more closely achievable
as d increases, for any given value of the purity.

For qubits, Eqs. (20) and (22) yield the stronger comple-
mentarity relation

3∑
j=1

Crel(σj ,ρ) � 3[h(
√

[2P (ρ) − 1]/3) − S(ρ)]. (24)

This relation is tight in the sense that it is saturated by
some state ρ for any given value of the quantum purity
P (ρ) [in particular, one may choose ρ to have equal Bloch
vector components rj = √

(2P (ρ) − 1)/3, which saturates the
certainty relation in Eq. (22) [20]).

Finally, we note that the coherence radiuses R1(ρ) and
R2(ρ) from Sec. III C appear naturally in the complementarity
relations (23) and (24).
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IV. AVERAGE QUANTUM COHERENCES

As mentioned in the Introduction, it is of interest to
characterise the coherence of a quantum state per se, without
reference to any specific basis. We propose using an average
of the coherence over all basis sets. Such an average may
be interpreted as the degree to which the state is a useful
coherent resource for a randomly chosen measurement basis.
There are, however, many ways to define averages. We
will consider both the mean coherence and the root mean
square coherence, defined for any given measure of coherence
C(A,ρ) by

C(ρ) :=
∫

dUC(UAU †,ρ), (25)

rms[C(ρ)] :=
[∫

dU C(UAU †,ρ)2

]1/2

, (26)

respectively. Here U ranges over the group of unitary trans-
formations (where any two basis sets are connected by such
a transformation), and dU denotes the normalized invariant
Haar measure over this group [21]. Note that the convexity of
the function f (x) = x2 implies the relation

C(ρ) � rms[C(ρ)]. (27)

Hence, any upper bound for the root mean square coherence
is also a bound for the mean coherence.

We will first investigate average coherences for the l1-norm
and l2-norm measures of coherence considered in Sec. II, and
then for the relative entropy measure of coherence considered
in Sec. III. Bounds for these average coherences are closely
related to the complementarity relations obtained in previous
sections, and in particular to the coherence radiuses R1(ρ) and
R2(ρ). However, the bounds we obtain have the advantage of
being applicable to all Hilbert space dimensions d, whereas
complete MUBs are only known to exist for the case that d is
a prime power.

A. Average l1-norm and l2-norm measures of coherence

Averages of the l1-norm and l2-norm measures cannot be
evaluated analytically, with the exception of the root mean
square average for the l2-norm as per below. However, upper
bounds may be obtained, using the results of previous sections
together with the identity∫

dU P (UAU †|ρ) = 1 + P (ρ)

1 + d
(28)

following from Eq. (10) of Ref. [22]. Note that, comparing with
Eq. (12), this identity shows that the average classical purity
over all basis sets is equal to the average over a complete set
of MUBs (whenever such a set exists).

Now, from Eqs. (8) and (26) it follows that

rms[C1(ρ)]2 � d(d − 1)

[
P (ρ) −

∫
dUP (UAU †|ρ)

]
,

while from Eqs. (18) and (26) one has the identity

rms[C2(ρ)]2 = P (ρ) −
∫

dUP (UAU †|ρ).

Using Eqs. (27) and (28) then yields the upper bounds

C1(ρ) � rms[C1(ρ)] � R1(ρ)√
d + 1

, (29)

C2(ρ) � rms[C2(ρ)] = R2(ρ)√
d + 1

(30)

for the average l1-norm and l2-norm coherences, in terms of
the radiuses of coherence defined in Eqs. (16) and (19).

Equations (29) and (30) hold whether or not a complete
set of MUBs exists and so may be regarded as generalizations
of Eqs. (16) and (19) to arbitrary dimensions. Further, the
result for the root mean square coherence of the l2-norm in
Eq. (30) is an equality rather than an upper bound and is
directly proportional to the corresponding radius of coherence.
This result provides additional motivation for the conjecture
in Sec. III C, that C2(A,ρ) satisfies all of the requirements for
a measure of coherence.

B. Average relative entropy measure of coherence

The mean relative entropy measure of coherence follows
from Eqs. (20) and (25) as

Crel(ρ) =
∫

dU H (UAU
† |ρ) − S(ρ). (31)

The mean entropy over all basis sets may be expressed in terms
of the quantum subentropy Q(ρ) by [15,23,24]∫

dU H (UAU †|ρ) = Q(ρ) + Cd, (32)

where Cd := ( 1
2 + 1

3 + · · · + 1
d

) log e, and

Q(ρ) := −
d∑

i=1

⎛
⎝∏

i �=j

λi

λi − λj

⎞
⎠λi log λi, (33)

in terms of the eigenvalues {λ1, . . . ,λd} of ρ.
The quantum subentropy is a tight lower bound on the

accessible information of pure-state ensembles and is never
greater than the von Neumann entropy S(ρ) [15,24]. It follows
from the above that

Crel(ρ) = Cd − [S(ρ) − Q(ρ)], (34)

providing an alternative interpretation of the quantum suben-
tropy in terms of quantum coherence. In particular, the
coherence of state ρ, as quantified by Crel(ρ), is determined
by the difference between the von Neumann entropy and the
subentropy. A maximum coherence of Cd is obtained for
pure states, for which S(ρ) = Q(ρ) = 0, while a mininum
coherence of 0 is obtained for the maximally mixed state.

The subentropy is a rather complicated function of the
eigenvalues of the quantum state and is nontrivial to evaluate
when ρ has degenerate eigenvalues [15,23,24] (see also
below). Hence, it is of interest to bound the average coherence
in Eq. (34) via a corresponding bound on the subentropy. For
example, the known bound Q(ρ) � log d − Cd [24] yields
Crel(ρ) � log d − S(ρ). However, this not particularly strong,
and indeed follows immediately by taking the average of the
inequality in Eq. (20). A stronger upper bound for the average
coherence and the subentropy may be obtained using either the
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entropic certainty relation (21) or the complementarity relation
(23), whenever a complete set of MUBs exists. For example,
averaging the former relation over density operators U †ρU

with respect to the Haar measure, and noting H (A|U †ρU ) =
H (UAU †|ρ), yields

d+1∑
k=1

∫
dU H (UAkU

†|ρ) � (d+1) log d

− d−1

d(d−2)
[dP (ρ)−1] log(d−1).

The left-hand side is just d + 1 times the left-hand side of
Eq. (32), yielding the bound

Q(ρ) � log d − Cd − (d − 1)[dP (ρ) − 1]

d(d + 1)(d − 2)
log(d − 1) (35)

for the quantum subentropy, and a corresponding upper bound
for the average coherence via Eq. (34). By inspection, this
is stronger than the bound Q(ρ) � log d − Cd [24] (with
equality only for the maximally mixed state). It is also
stronger than the recent bound Q(ρ) � − log λmax(ρ) derived
in Ref. [15], for sufficiently mixed states [where λmax(ρ)
denotes the maximum eigenvalue of ρ], as illustrated in Fig. 1
for the cases d = 2 and d = 11. A marginally stronger bound
for d = 2 may be similarly obtained, using Eq. (22).

The upper bound in Eq. (35) is valid when there is a
complete set of MUBs, where such sets are only known to
exist when d is a prime power [11,13]. It is plausible that
the bound in fact holds for all dimensions d. However, it is
possible to obtain a weaker bound that is certainly valid for
all dimensions, based on a result by Harremoës and Topsøe
relating classical entropies and purities. In particular, from
Theorem II.8 and Corollary II.9 of Ref. [25], one has

H (A|ρ) �
{

1 − τd

d − 1
[dP (A|ρ) − 1]

}
log d, (36)

where τd is a strictly increasing sequence with τ2 = (ln 4)−1 ≈
0.7213 and limd→∞ τd = 1. Lemma VI.8 of Ref. [25] further
gives the analytic lower bound τd � 1 − (1 + ln d)−1. Replac-
ing A by UAU † in this inequality, integrating over U with
respect to the Haar measure, and using Eqs. (28) and (32)
yields the general result

Q(ρ) � log d − Cd − τd [dP (ρ) − 1]

d2 − 1
log d (37)

valid for all dimensions. A corresponding upper bound follows
for the average coherence via Eq. (34). Note that τd may
be replaced by its upper bound 1 − (1 + ln d)−1 for easier
evaluation of bounds.

The performance of the bounds (35) and (37) for subentropy
is exhibited in Fig. 1, using the states ρε in Eq. (14), where these
states range from a pure state to the maximally mixed state.
The bounds are seen to be stronger than the known bound
Q(ρ) � log d − Cd [24] (the horizontal line in the figure)
and also significantly stronger than the known bound Q(ρ) �
− log λmax(ρ) [15] for sufficiently mixed states. Corresponding
bounds for Crel(ρ) immediately follow via Eq. (34).

Finally, we note that the usefulness of such bounds is
emphasized by the fact that the calculation of Q(ρε) in Fig. 1 is
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FIG. 1. (Color online) Bounds for subentropy for d = 2 and d =
11, plotted for the states ρε in Eq. (14) for ε ∈ [0,1 − 1/d]. Note that
ε = 0 corresponds to a pure state and ε = 1 − 1/d to a maximally
mixed state. The lower black curve in each subfigure shows the exact
value of the subentropy, Q(ρε), in Eq. (39); the green dash-dotted
and blue dashed curves show the upper bounds in Eqs. (35) and (37),
respectively (identical for the d = 2 case); the horizontal red curve is
the known upper bound log d − Cd in Ref. [24], and the dotted purple
curve is the known upper bound − log λmax in Ref. [15]. The bounds
may also be used to bound the average relative entropy of coherence
in Eq. (34), as discussed in the main text.

highly nontrivial. In particular, since d − 1 of the eigenvalues
of ρε are degenerate, it is necessary to use the contour integral
representation of Q(ρ) [24],

Q(ρ) = 1

2πi

∮
dz

zd log z

det(I − ρ/z)
, (38)

with the contour containing the nonzero eigenvalues of ρ, to
calculate

Q(ρε) = − λd
1 log λ1

(λ1 − λ2)d−1
− 1

(d − 2)!

(
d

dλ2

)d−2
λd

2 log λ2

λ2 − λ1

(39)

with λ1 = 1 − ε, λ2 = ε/(d − 1), which cannot be readily
evaluated for large d.

V. CONCLUSIONS

We have obtained relations between uncertainty, purity,
and coherence and have shown that the l1-norm and relative
entropy measures of coherence quantify resources in the sense
of satisfying the complementarity relations and identities in
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Secs. II and III for complete sets of MUBs. In particular,
the corresponding coherences cannot be simultaneously max-
imised. We have also shown that the coherence radiuses R1(ρ)
and R2(ρ) defined in Sec. III C are natural measures of the
coherence of a quantum state per se, that determine tight
upper bounds for MUB coherences as well as upper bounds
for average coherences. These bounds reduce to identities
for the l2-norm measure defined in Eq. (18), leading to the
conjecture that this quantity, the square root of the difference
between a quantum purity and a classical purity, satisfies the
necessary requirements for coherence measures [1]. Finally,
we have shown that the average relative entropy of coherence
is determined by the difference between the von Neumann
entropy and the quantum subentropy and have obtained
nontrivial upper bounds for the latter quantity.

We conclude by drawing attention to previous contexts
in which the relative entropy of coherence in Eq. (20) has
appeared, where these contexts provide further interpretations
of this quantity as a resource in addition to the operational
interpretations proposed recently [7,8]. First, noting that
Crel(A,ρ) is the entropy increase due to a measurement in
basis A on state ρ, Lloyd has shown that measurements and
similar decoherence processes reduce the Carnot efficiency of
quantum heat engines by an amount proportional to the relative
entropy of coherence [16]. Second, the relative entropy of
coherence is a special case of the asymmetry of a quantum state
with respect to a given group of operations G, the so-called
G-asymmetry [17]. In particular, Crel(A,ρ) is equal to the
G-asymmetry of ρ under the group of unitary transformations
that are diagonal with respect to A, implying that the concepts
of coherence and asymmetry are equivalent in this case.
For example, it is known that the G-asymmetry is equal to
the Holevo bound on accessible information, for a quantum
communication channel corresponding to equally weighted
signal states generated by applying elements of G to state
ρ [26,27] (where this bound is achievable in the limit of
arbitrarily long signals), and that it quantitatively characterizes
the ability of a quantum system to act as a reference frame
[17,27,28] and as a probe state in quantum metrology [29].
Thus, the relative entropy of coherence immediately inherits
corresponding resource interpretations from these contexts.

It is of some interest to proceed in the opposite direction
and use the notion of G-asymmetry to generalize the concept

of quantum coherence, from basis sets to groups of physical
transformations (and beyond). In particular, for such a group
G, let SG denote the set of states that are invariant under the
elements of G. Further, let MG denote the set of measurement
operations with postmeasurement states invariant under G, i.e.,
such that the postmeasurement ensemble {pm,ρm} for any state
ρ satisfies ρm ∈ SG. One can then interpret states in SG and
measurement operations in MG as “incoherent” with respect
to G.

This interpretation naturally leads one to define a function
CG(ρ) to be a measure of the coherence with respect to G,
or a “G-coherence,” if and only if (1) coherence vanishes for
incoherent states, i.e., CG(ρ) = 0 for all ρ ∈ SG; (2) coherence
decreases on average under incoherent measurement oper-
ations, i.e.,

∑
pm CG(ρm) � CG(ρ) for all postmeasurement

ensembles generated by elements of MG; and (3) coherence
decreases under mixing, i.e., CG(

∑
j pjρj ) �

∑
j pj CG(ρj )

for arbitrary ensembles {pj ,ρj }. These properties generalize
those for C(A,ρ) in Ref. [1], where G corresponds in this case
to the group of unitary transformations diagonal with respect
to the basis A. The second property distinguishes coherence
from the broader notions of “asymmetry” [17] and “frameness”
[27].

For example, the minimum quantum relative entropy,
minσ∈SG

S(ρ‖σ ), satisfies the above properties and so is a
suitable G-coherence measure. It reduces to the G-asymmetry
S(ρ‖ρG) for the case of compact unitary groups, where
ρG := ∫

G
dg g(ρ) and dg is the normalized Haar measure

on G [17,27]. Possible future work includes investigating
coherence relative to groups of interest in quantum information
and computation, such as angular momentum and stabilizer
groups, and going beyond the group framework to consider
coherence (and/or asymmetry) relative to an arbitrarily defined
set S of incoherent states.
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