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Fractional averaging of repetitive waveforms induced by self-imaging effects
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We report the theoretical prediction and experimental observation of averaging of stochastic events with an
equivalent result of calculating the arithmetic mean (or sum) of a rational number of realizations of the process
under test, not necessarily limited to an integer record of realizations, as discrete statistical theory dictates. This
concept is enabled by a passive amplification process, induced by self-imaging (Talbot) effects. In the specific
implementation reported here, a combined spectral-temporal Talbot operation is shown to achieve undistorted,
lossless repetition-rate division of a periodic train of noisy waveforms by a rational factor, leading to local
amplification, and the associated averaging process, by the fractional rate-division factor.
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The Talbot effect, or self-imaging, was first observed and
explained in the problem of diffraction of spatially periodic
wave fields [1,2], and later extended and extensively applied
across many different regimes [3], including matter waves [4],
quantum wave functions [5], x-ray diffraction [6], crystal non-
linearity [7], laser physics [8], etc. Manifestations of the Talbot
effect have been also described in the temporal domain [9],
spectral domain [10], and angular spectrum domain [11].
This Rapid Communication describes a conceptual feature of
the Talbot effect, namely, its capability to achieve statistical
averaging of an ensemble of realizations of a given stochastic
process, where the number of averaged realizations can be
any given fractional number. Strikingly, such a capability
enables statistical calculations that are “forbidden” by the
mathematical definition of discrete averaging, which is strictly
limited to application on an integer number of realizations of
the process under test.

The mathematical operation of averaging is a fundamental
one in the context of stochastic processes, simply involving
calculation of the arithmetic mean (essentially, a sum) of
multiple realizations of the process under analysis [12].
Besides its intrinsic mathematical interest, statistical averaging
has found many important applications: it has proved to
be particularly useful as a very direct way of reducing
undesired random noiselike fluctuations in classical [13] and
quantum-probability waveforms [14—17] in any of the different
available measurement domains, e.g., for spatial-domain,
time-domain, or frequency-domain wave fields. Obviously,
the arithmetic mean must be calculated over a discrete set of
realizations of the signal of interest, which necessarily implies
that intrinsically, only integer averaging is mathematically
allowed.

The work reported in [18] showed how a combination of
spectral and temporal Talbot effects can be used to divide
the repetition rate of a periodic waveform train by any
integer factor, N, using energy-preserving mechanisms, thus
producing undistorted passive amplification of each resulting
individual waveform. Such a process can be interpreted as the
result of coherent addition of every N input waveform, so that
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it produces a noise-reduction outcome, equivalent to that of
statistical averaging of N waveforms.

In this work, we show further that the Talbot amplification
concept is not limited to integer gain factors but rather,
it can be extended to realize repetition rate division and
the associated passive amplification process of the original
waveform train by any desired fractional factor (i.e., a rational
number). This suggests the possibility of achieving fractional
averaging of the original repeating waveforms. We provide
experimental results on the effective averaging operation that
is inherently implemented by the process, and conclude that
the resulting statistics are fully consistent with an equivalent
average of a rational number of recorded measurements.
Notice that the specific time-domain implementation reported
and studied here provides a very convenient platform for
experimental analysis of the introduced fractional averaging
concept. However, we recall that the concept is not restricted
to application on periodic time-domain waveforms, yet at any
wavelength regime, but can be also extended for application
across any of the manifestations of the Talbot effect, including
periodic one-dimensional (1D) and two-dimensional (2D)
spatial objects, frequency combs, quantum wave functions,
matter waves, etc.

Figure 1(a) shows the temporal Talbot carpet, representing
the evolution of the instantaneous power of a periodic train
of optical pulses along its propagation through a second-order
dispersive medium (i.e., one providing a linear group delay
variation through the entire pulse bandwidth). Dispersive
propagation speeds up and slows down the different frequency
components of the train, originally in-phase, redistributing its
energy into different temporal intensity patterns. The Talbot
condition, given in Eq. (1) below, allows one to calculate the
total group-velocity dispersion (GVD) associated with each
Talbot (sub-)image [9].

2 ipl = 12, (1)

m

where ¢ = f,z is the slope of the group delay versus radial
frequency of the dispersive medium, B, is the second-order
dispersion coefficient (GVD per unit length, around the pulses’
central angular frequency), z is the propagation length in
the medium, 7. = 1/v, is the temporal period of the original
pulse train (i.e., the inverse of the repetition rate), v, [which
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FIG. 1. (Color online) Operation principle and example caser = b/a = 3 /2. (a) Temporal Talbot carpet. (b) Block diagram: (b.1) prescribed
phase sequence; (b.2) prescribed group delay versus frequency profile. (c) Time-frequency representation of the involved signals: (c.1) input

train; (c.2) phase-conditioned train; (c.3) rate-divided train.

dictates the free spectral range (FSR) of the corresponding
frequency comb representation of the train], and s and m are
two mutually prime natural numbers. Talbot images, where the
input pulse period is preserved, are formed at integer values
of s/m (i.e., m = 1), while Talbot subimages, where the input
pulse period is divided by the integer factor m, are formed
at rational values of s/m (i.e., m > 1). An interesting feature
of the effect is that each Talbot subimage has an associated
deterministic phase profile, consisting of a discrete sequence of
pulse-to-pulse phase steps that follow a quadratic law [19,20].
Introducing these phase profiles to the input train, either by
electro-optic means [21] or by the assistance of a nonlinear
process [22], will emulate previous dispersive propagation
of a hypothetical flat-phase pulse train, first launched at the
input of the dispersive medium (z = 0), with repetition rate
divided by the factor m. Notice that the mentioned temporal
phase modulation induces a spectral self-imaging effect on
the original optical pulse train [23], so that the FSR of
the associated periodic frequency comb is divided by the
factor m, consistently with the mentioned rate division for
the hypothetical input pulse train at z = 0. The resulting pulse
train after phase modulation can then be used as a starting point
inside the Talbot carpet to achieve repetition rate division by
further dispersive propagation to a different (lower rate) Talbot
subimage.

Generally, the rate-division factor can be designed to be
any desired rational number, expressed as r = b/a, where b
and a are two mutually prime natural numbers and a < b,
ie., r € Q and r > 1. Figure. 1(b) illustrates the conceptual
block diagram of the process. Figure 1(c) shows a joint
time-frequency representation of the involved signals. The

example shown in Fig. 1 illustrates the scenario of repetition
rate division by the factor r = 3/2, i.e., two pulses are
generated at the output of the system in the time span
corresponding to three consecutive input pulses. First, the
input train [Fig. 1(c.1)] is phase modulated to achieve spectral
self-imaging by the factor » = 3, producing an FSR of v, /3
[Fig. 1(c.2)]. This is equivalent to a predispersed input pulse
train with a period of 37, to obtain an m = 3 Talbot subimage.
Second, this phase-modulated signal is further dispersed to
reach a Talbot subimage of the equivalent rate-divided train
by a =2 [Fig. 1(c.3)]. The output period is then given by
rt, = 3/2t,, having achieved the target fractional rate-division
process.

The temporal phase to be applied to the nth pulse of the
sequence, ¢[n], and the total dispersion required to achieve
repetition rate division by the factor » can be derived from the
well-known spectral and temporal Talbot conditions [9,23],
and are given by Eq. (2) and Eq. (3), respectively.

O _ 2

tsgn{fo}— n?, 2)
1
27 |Balz = (b, |p + ‘5’ - 3)

where sgn{-} is the sign operator, p and g are two positive
integers, and g > 0 is mutually prime with a. The case
{p =0, g = 1} minimizes the required GVD for a given input
repetition rate. The sequence defined in Eq. (2) is b periodic if
reduced modulo 7 or 2.

The described process involves phase-only operations
exclusively (i.e., temporal phase modulation and spectral
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FIG. 2. (Color online) Experimental setup. MLL: mode-locked
laser, RFS: radio-frequency synthesizer, VOA: variable optical atten-
uator, EDFA: erbium-doped fiber amplifier, OTDL: optical tunable
delay line, PC: polarization controller, AWG: arbitrary waveform
generator, RFA: radio-frequency amplifier, EOPM: electro-optic
phase modulator, DCF: dispersion-compensating fiber.

phase filtering), which are inherently energy-preserving mech-
anisms. As such, conservation of energy states that the energy
of each individual output pulse will be increased with respect
to the input by the rate-division factor, r (except for the
involved practical passive losses). This is the fundamental
principle of the Talbot amplification concept, here generalized
to fractional gain factors. Previously, it was shown how an
integer Talbot amplifier with an amplification factor of N € N
generates an output waveform which in terms of noise, is
equivalent to a classical averaging process of N realizations
of the input waveform [18]. The generalized Talbot amplifier
described by Egs. (2) and (3) will implement the fractional
amplification factor r € Q. Assuch, we predict that this system
will produce an equivalent fractional averaging process, such
as if the mean had been calculated over a “rational number”
of recorded waveforms. In sharp contrast to a conventional
averaging operation, the concept of fractional averaging is
possible in the context of self-imaging since there is no
one-to-one relationship between input and output pulses in
a Talbot amplifier; instead, each output pulse is built from
contributions (interference) of many consecutive input pulses,
and the same input pulse contributes to the formation of
several different output pulses. In what follows, we report
experimental validation of the concept of fractional Talbot
amplification and the related averaging process.

Figure 2 shows a schematic of the used experimental setup.
An actively mode-locked laser is driven by a radio-frequency
synthesizer, tuned at the desired input repetition rate. This
setup delivers a flat-phase train of 6 ps full width at half
maximum (FWHM) Gaussian-like transform-limited optical
pulses, at a central wavelength of 1550 nm. The corresponding
spectrum is a coherent optical frequency comb. This signal is
then injected with amplified spontaneous emission (ASE) from
an open-input erbium-doped fiber amplifier, connected via a
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TABLE I. Experimental results.

Input Output Configuration
vﬁi)a tr(i)b l)ﬁo)c tr(a)d b/a — e D- ZI'
(1) 7.928 126.139 5.946 168.185 4/3 ~1.333 —2649.071
(2) 11.892 84.092 7.928 126.139 3/2=1.5 —1324.535
(3) 12.535 79.777 7.521 132.962 5/3 ~1.667 —2649.071
(4) 15.731 63.568 8.989 111.244 7/4=1.75 —2649.071
(5) 18.802 53.185 7.521 132962 5/2=2.5 —2649.071
(6) 15.856 63.069 5.946 168.185 8/3 ~2.667 —6622.677
(7) 15.898 62.902 4.542 220.157 7/2=3.5 —8646.204

2Configured input repetition rate (GHz).

®Configured input pulse period (ps).

“Measured output repetition rate (GHz).

dMeasured output pulse period (ps).

¢Implemented rate-division factor. All the cases satisfy Eq. (3) for the
condition of minimum dispersion {p = 0, ¢ = 1}.

fTotal second-order chromatic dispersion (ps/nm).

3 dB directional fiber coupler. This system can be modeled as
a source of additive white Gaussian noise (AWGN), as long as
the complete signal bandwidth is covered by the amplification
bandwidth [24]. A variable optical attenuator is used to
maintain a specific level of input optical signal-to-noise ratio
(OSNR). The prescribed temporal phase modulation profile,
calculated from Eq. (2), is generated by a 24 Gsps electronic
arbitrary waveform generator and introduced to the signal by a
40 GHz electro-optic phase modulator. The phase-conditioned
signal is finally propagated through a dispersion-compensating
fiber with total GVD satisfying Eq. (3).

Table I presents the set of tested experimental conditions
and obtained fractional rate-division results. The dispersion
coefficient D (second-order dispersion per unit length, around
the central wavelength, A), given in ps/nm/km in Table I,
follows the conversion law D = —2nﬁzc/)»2, where c is the
speed of light in the vacuum.

Figure 3 (a) shows the phase modulator drive voltages, as
prescribed by Eq. (2), for the configurations listed in Table I.
The anticipated spectral self-imaging effect is observed in
the measured optical spectra, in Fig. 3(b), leading to the
expected FSR division by the factor b. Figure 4 (a) shows the
temporal traces of the input and output trains, in the absence of
noise, as recorded by a 500 GHz bandwidth optical sampling
oscilloscope. The amplitudes are normalized to the peak power
of the input signal. To establish a fair definition of the gain
in the system, the total passive input-to-output loss of the
setup (13.5 dB) is accounted for, and thus we compare with a
correspondingly attenuated version of the input train. In this
situation the system presents a power gain of r. Figure 4(b)
shows the measured input and output radio-frequency spectra,
verifying the correct fractional rate division. It is also important
to mention that as expected for a self-imaging effect, the
individual output pulses are nearly undistorted copies of the
input ones.

The central and perhaps most interesting result of this work
is on the predicted fractional averaging effect. In order to
quantify the effect of averaging of the noise in the output
pulses, we calculate the coefficient of variation, CV, of the ASE
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FIG. 3. (Color online) Experimental results. (a) EOPM drive
voltages (solid line) and prescribed phase sequences (dashed line).
(b) Optical power spectra of the input (dashed line) and output (solid
line) signals.
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FIG. 4. (Color online) Experimental results. (a) Temporal traces
of the input (dashed line) and output (solid line) signals. (b) Radio-
frequency spectra of the input (dashed line) and output (solid line)
signals.
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FIG. 5. (Color online) Noise analysis of the experimental results.
(a) VRF versus rate-division factor r, and record length N. (b) Single-
shot traces of the input and output pulses for fractional averaging
(r =8/3 =~ 2.667)and N = 2 times scope averaging. The time scale
is normalized to the FWHM of the input pulse, and the power scale
is normalized to the input peak power.

fluctuations around the peak intensity level of the measured
pulses (defined as the ratio of the standard deviation to the
mean of the fluctuations) [25]. In particular, the used figure
of merit is the ratio of the coefficient of variation of the
individual output pulses (e.g., for an averaging process of
N € N measurements), CVy, to that of the individual input
pulses, CV;. We label this figure of merit as the “variation
reduction factor,” VRF = CVy/CV,. As predicted by the
classical central limit theorem [12], if the measured samples
are independent and identically distributed (as is the case for
AWGN processes), this ratio scales as N~'/2. In [18] it was
shown how an integer Talbot amplifier verifies this VRF trend
with N playing the role of the power gain, or equivalently, the
rate-division factor. It is only reasonable to assume that the
same principle will apply to a fractional rate-division process
with N < r, i.e., a situation equivalent to the averaging of
r € Q samples.

Figure 5 (a) shows the measured VRF after the fractional
averaging process, in comparison with the result obtained by
(integer) averaging in a sampling oscilloscope, with equal
OSNR (setto 10 dB). The obtained VRF for the evaluated frac-
tional repetition rate division (and associated fractional passive
amplification) cases precisely follows the expected trend r~'/2.
This result corresponds to interpolations in between the values
obtained by conventional scope averaging (where the VRF is
originally defined), generally following the theoretical trend
N~1/2_ Hence, as predicted, the Talbot amplification process
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implements an averaging operation where the record length is
effectively equal to the rational number r.

For completeness, Fig. 5(b) shows an example of measured
temporal traces for a rate-division factor of r = 8/3 ~ 2.6667,
together with an N = 2 times averaged pulse, captured by
an electrical sampling oscilloscope equipped with a 45 GHz
bandwidth photodiode.

In summary, this work reports the theoretical prediction
and experimental observation of a process of statistical
averaging with an effective result of calculating the arithmetic
mean of a rational number of measurements, a strikingly
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counterintuitive operation enabled by self-imaging passive
amplification. In the specific reported implementation, we
employ a specific realization of combined spectral-temporal
Talbot effects to induce undistorted, lossless repetition-rate
division of a periodic train of optical waveforms by a rational
factor, leading to the corresponding fractional amplification
and averaging of the individual input waveforms. This
unique concept represents a generalization of the conventional
operation of discrete statistical averaging, enabling an un-
precedented, wider range of mathematical and experimental
conditions.
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