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Electron dynamics following photoionization: Decoherence due to the nuclear-wave-packet width
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The advent of attosecond techniques opens up the possibility to observe experimentally electron dynamics
following ionization of molecules. Theoretical studies of pure electron dynamics at single fixed nuclear geometries
in molecules have demonstrated oscillatory charge migration at a well-defined frequency but often neglecting
the natural width of the nuclear wave packet. The effect on electron dynamics of the spatial delocalization of
the nuclei is an outstanding question. Here, we show how the inherent distribution of nuclear geometries leads
to dephasing. Using a simple analytical model, we demonstrate that the conditions for a long-lived electronic
coherence are a narrow nuclear wave packet and almost parallel potential-energy surfaces of the states involved.
We demonstrate with numerical simulations the decoherence of electron dynamics for two real molecular systems
(paraxylene and polycyclic norbornadiene), which exhibit different decoherence time scales. To represent the
quantum distribution of geometries of the nuclear wave packet, the Wigner distribution function is used. The
electron dynamics decoherence result has significant implications for the interpretation of attosecond spectroscopy
experiments since one no longer expects long-lived oscillations.
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The generation of attosecond pulses in the extreme ultra-
violet range (using high harmonic generation in gases) [1,2]
has opened up the possibility to probe dynamics in atoms,
molecules, and solids with attosecond resolution [3–5]—the
natural time scale of electronic motion. Attosecond techniques
have since been developed and applied successfully to a range
of problems, including the real-time observation of electronic
relaxation in krypton atoms [6], the measurement of delays in
photoemission of electrons in condensed-matter [7] and atomic
[8] systems using the streaking technique, and the observation
of electron dynamics in krypton atoms upon valence ionization
using transient absorption spectroscopy [9].

One key target of attosecond experiments remains the
real-time observation and control of electron dynamics upon
ionization in molecules [10–17]. The interference between
electronic eigenstates, populated coherently, alternates be-
tween constructive and destructive and leads to oscillating
motion of the electronic density with a period inversely
proportional to the energy gap. This is “pure” electron
dynamics (i.e., takes place even if the nuclei are fixed) and
is often called charge migration in the literature [18] or hole
migration if it is induced by electron correlation [19,20].

A fascinating and outstanding question in the theoretical
description of electron dynamics in molecules is the effect
of the nuclei since most studies are carried out at a single
fixed nuclear geometry (usually the equilibrium geometry of
the neutral species) [21–26]. (Some studies include several
conformers [22,27] but again with a single geometry per
conformer.) These simulations predict long-lived oscillating
motion in the electronic density at a well-defined frequency,
but they neglect both the spatial delocalization of the nuclear
wave packet and the nuclear motion. We have previously
shown examples of how nuclear motion affects electron
dynamics after a few femtoseconds [28–30]. Despré and co-
workers recently simulated hole migration at a small number
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of distorted geometries [31]. Therefore, as yet, the effect of
the width of the nuclear wave packet has not been extensively
studied.

In the present Rapid Communication, we investigate the
extent to which the single-geometry approximation is valid.
By using the Wigner distribution function [32]—a quantum
distribution function in classical phase space—to represent the
delocalized nuclear wave packet, we propose a more realistic
approach to describe electron dynamics in molecules. A
distribution of fixed nuclear geometries leads to a distribution
in initial energy gaps and therefore of oscillation periods in
the electronic density (Fig. 1). We show that, as a result of
the nuclear-wave-packet delocalization, it takes only a few
femtoseconds for the electron dynamics to decohere for the two
molecules studied. This calls into question the commonly held
picture of long-lived electronic oscillations at a well-defined
frequency.

In order to get some physical insight about the decoherence
of electron dynamics due to the distribution of nuclear
geometries, we first present a simple analytical model. Let us
consider a system with one nuclear degree of freedom R and
three electronic states (Fig. 1): the ground state of the neutral
species and the ground and first excited states of the cation.
Using a linear approximation of the cation state energies, the
energy gap between the cationic states reads as

�E(R) = d|R|, (1)

where the parameter d is the difference in gradients of the two
potential-energy curves. Note that Eq. (1) implies a point of
degeneracy at R = 0 that does not need to exist (Fig. 1).

Before ionization, the neutral system is assumed to be in
its electronic and vibrational ground states. In the harmonic
approximation, the vibrational ground-state wave function is
a normalized Gaussian,

g(R) =
(

2a

π

)1/4

exp[−a(R − b)2]. (2)
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FIG. 1. (Color online) Ionization process in a model system. The
lower curve represents the ground state of the neutral species;
the upper two curves represent the ground and first excited states
of the cation. The parameter a determines the width of the Gaussian
wave packet; b determines the position of the equilibrium geometry
of the neutral species with respect to the implied point of degeneracy
in the cation; d is the difference of gradients of the two cationic
potential-energy curves.

The parameter a determines the width of the Gaussian; b

determines the center, i.e., the position of the equilibrium
geometry of the neutral species with respect to the implied
point of degeneracy in the cation [Fig. 1 and Eq. (1)].

Let us consider a prompt ionization (by a pulse of broad
bandwidth for instance) that leads to a coherent superposition
of the two electronic states of the cation,

�(r,R,t = 0) = g(R)[c0ψ0(r; R) + c1ψ1(r; R)], (3)

where the expansion coefficients in the adiabatic basis c0

and c1 are assumed to be independent of the geometry
R for simplicity. By solving the electronic time-dependent
Schrödinger equation with fixed nuclei, one obtains the
following time-dependent wave function (in atomic units):

�(r,R,t) = g(R){c0 exp[−iE0(R)t]ψ0(r; R)

+c1 exp[−iE1(R)t]ψ1(r; R)}. (4)

The electronic density is obtained by multiplying the wave
function by its complex conjugate and integrating over all
but one electronic spatial coordinate. Assuming real initial
expansion coefficients and real basis states, it reads

ρ(r,R,t) = |g(R)|2[|c0|2ρ00(r; R) + |c1|2ρ11(r; R)]

+ 2c0c1|g(R)|2 cos[�E(R)t]ρ01(r; R), (5)

with ρij (r; R) = ∫
drN−1ψi(r; R)ψj (r; R). Note that the last

term of Eq. (5), noted as C(r,R,t) hereafter, is the sum
of the off-diagonal elements of the electronic density matrix
that are also called electronic coherences. It corresponds to
the interference between the two electronic states, alternating
between constructive and destructive, with a period inversely
proportional to the energy gap between the two eigenstates—
and therefore R dependent,

T (R) = 2π

�E(R)
. (6)

The amplitude of the oscillations depends on the product of
expansion coefficients c0c1.

The effect of the spatial delocalization of the nuclei is taken
into account by calculating the expectation value over the range
of nuclear geometries,

〈C(r,t)〉 = 2c0c1

∫
dR|g(R)|2 cos[�E(R)t]ρ01(r; R), (7)

where |g(R)|2 is the probability density function. If ρ01(r; R)
does not change much with R, it can be approximated to the
constant ρ01(r; b). Equation (7) then reads

〈C(r,t)〉 ≈ 2c0c1 cos(db t) exp(−d2t2/8a)ρ01(r; b). (8)

We get back the cosine oscillation of the equilibrium geometry
R = b but diminished with time by a Gaussian function. As
t → ∞, the electronic coherences disappear: 〈C(r,t)〉 → 0.
The system decoheres. Note that here the origin of the
decoherence is not the coupling with an environment but rather
the dephasing of the different oscillations. One can define a
coherence half-life as the time at which the amplitude of the
cosine oscillation is reduced to half its initial value due to the
Gaussian decay,

t1/2 = 2
√

2 ln 2a

d
. (9)

The coherence half-life depends on the physical properties of
the system. It is long if: (i) The wave packet is narrow (large
a), or (ii) the two potential-energy curves are almost parallel
(small d). Indeed, both characteristics result in a narrow
energy-gap distribution which postpones the dephasing. The
position of the equilibrium geometry of the neutral species
b does not affect t1/2; it only determines the period of
oscillations.

Our simple analytical model shows how the nuclear-wave-
packet width leads to the dephasing of the electron dynamics
oscillations. It also provides the general conditions for long-
lived electron dynamics. Note that it has several limitations:
The nuclei are kept fixed (the kinetic operator of the nuclei is
absent from the Hamiltonian of the system), and the interaction
between the cation and the photoelectron is not taken into
account (assuming a photoelectron with high kinetic energy
and therefore ionization by a high-energy photon). Also, the
electronic density is calculated as an expectation value over
all nuclear geometries treated independently.

Let us now move beyond the model system treated above
and investigate numerically the decoherence of electron
dynamics in two real molecular systems: paraxylene and
polycyclic norbornadiene (PLN) cations (Fig. 2). In both

040502-2



RAPID COMMUNICATIONS

ELECTRON DYNAMICS FOLLOWING PHOTOIONIZATION: . . . PHYSICAL REVIEW A 92, 040502(R) (2015)

(a) (b) 

FIG. 2. Structures of (a) paraxylene and (b) PLN.

molecules, the equilibrium geometry of the neutral species is
in the vicinity of a crossing between the two lowest-energy
electronic states of the cationic species [30,33–35]. The
nonzero energy gap at the equilibrium geometry of the neutral
species is needed to induce the electron dynamics we study.

In both molecules, the two cationic states correspond to
ionization of the π system. These two states are relatively
close in energy and well separated from higher excited
states [30,36]. Therefore, the generation by photoionization
of a coherent superposition of only these two states by, for
instance, a short pulse of broad bandwidth is reasonable. The
exact composition of the superposition—relative weight and
phase—will depend on any experimental setup. Here a 50:50
and a 60:40 in-phase superposition of cationic states will be
considered in paraxylene in order to represent a range of
possible superpositions generated by experiment. By doing
that, we test the sensitivity of the results with respect to the
initial conditions.

In practice, time is discretized, and the electronic wave
function is propagated by numerically solving the time-
dependent Schrödinger equation, assuming a constant Hamil-
tonian over the time step [37,38]. We use a time step of 0.05 fs
and state-averaged complete active space self-consistent field
(CASSCF) electronic basis states to expand the electronic
wave function. Using the standard 6-31G∗ basis set, we choose
the π orbitals as active: six orbitals in paraxylene and four
in PLN.

To follow the evolution of the electronic wave function, its
electronic spin density—that allows one to locate the unpaired
electron—is computed at each step of the simulation [30,37].
Because of two resonance structures where the unpaired
electron and the positive charge are interchanged, locating the
unpaired electron is equivalent to locating the positive charge.
This is how we monitor the hole dynamics. Note that similar
to the hole density of Ref. [20], the electronic spin density
is a theoretical tool to follow the electron dynamics; yet, the
conclusions we draw from it will apply to any observable
related to the electronic density.

We have first simulated electron dynamics at the equi-
librium geometries of the neutral species [optimized at the
CASSCF(6,6)/6-31G∗ level of theory for paraxylene and
B3LYP/6-31G∗ for PLN]. In Fig. 3, there are snapshots
of the spin densities as a function of time during the first
half oscillation. In paraxylene, the spin density swings from
one side of the phenyl ring to the other in approximately
T/2 = 5.2 fs; in PLN, the spin density initially localized on
the right double bond migrates to the left one in approximately
T/2 = 7.6 fs. Such spin densities can be used as points along a
“scale of electron dynamics”: We chose the state 1√

2
(ψ0 + ψ1)

(a) 

(b) 

t = 0 fs t = 2.6 fs t = 5.2 fs

t = 0 fs

t = 3.8 fs

t = 7.6 fs

FIG. 3. (Color online) Snapshots of the electronic spin densities
after ionization of the π system in (a) paraxylene and (b) PLN at
t = 0, t = T

4 , and t = T

2 .

to define the spin density +1, 1√
2
(ψ0 + iψ1) to define the spin

density 0, and 1√
2
(ψ0 − ψ1) to define the spin density −1.

The electron dynamics is represented along that scale
as a function of time in Fig. 4: We see perfect sinusoidal
oscillations. The larger energy gap in the paraxylene cation
compared to the one in the PLN cation explains the faster
electron dynamics [Table I and Eq. (6)]. Using a nonequally
weighted superposition (dashed curve) does not affect the
period of oscillations but decreases the amplitude of the
oscillations as expected.

We have also simulated in the paraxylene cation electron
dynamics with the nuclei allowed to move according to the
Ehrenfest method [37–39]. The spin-density oscillation with
nuclei moving (solid thin curve) is identical to the one with
fixed nuclei (solid thick curve) up to 4 fs; then, the oscillation
speeds up [30]. The key point is that, in the paraxylene cation,

TABLE I. Energy gap at the equilibrium geometry and averaged
energy gap (standard deviation) for the distribution of geometries,
calculated at the CASSCF/6-31G∗ level.

Energy gap at Averaged energy gap
Molecule equilibrium (eV) (standard deviation) (eV)

Paraxylene 0.39 0.51 (0.25)
PLN 0.27 0.36 (0.12)
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FIG. 4. Electron dynamics following ionization of the π system
of (a) paraxylene and (b) PLN. The simulation is initiated at the
equilibrium geometry of the neutral species with fixed nuclei (thick
curve) or nuclei moving (thin curve). The initial electronic wave
function is a 50:50 (solid curve) or 60:40 (dashed curve) superposition
of ψ0 and ψ1.

the electron dynamics is modified but not destroyed by the
nuclear motion within the Ehrenfest approximation.

To assess the validity of the single-geometry approxi-
mation, these oscillations must be compared to those in
the case of an ensemble of fixed geometries (distributed
around the equilibrium geometries). For each system, 500
nuclear geometries were sampled from the Wigner distribution
functions using the NEWTON-X package [40]. Use of the Wigner
distribution enables us to mimic the quantum distributions of
the vibrational ground states (in the harmonic approximation).
As the results depend on the number of sampled geometries
considered, one must make sure convergence has been reached.
The resulting averaged energy gaps and standard deviations are
indicated in Table I. Note that the averaged energy gap is not
equal to the energy gap at the equilibrium geometry because
of the asymmetry of the cationic potential-energy surfaces.

In the paraxylene cation, Fig. 5(a) shows the electron
dynamics—as in Fig. 4(a)—for the ensemble of nuclear
geometries, simulated independently. A close look allows
one to distinguish the individual oscillations (with different
periods) that dephase with time. The average oscillation
amplitudes are shown as white lines. We see a half oscillation
reaching its turning point at about 3 fs, and then it goes to
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FIG. 5. (Color online) Electron dynamics in (a) paraxylene and
(b) PLN as in Fig. 4 for the ensemble of nuclear geometries.
The nuclear distribution (500 sampled geometries) reproduces the
vibrational ground state before ionization. The white lines represent
the averaged electron dynamics for the 50:50 (solid lines) and 60:40
(dashed lines) superpositions of ψ0 and ψ1.

zero: The coherent electron dynamics quickly disappears. By
fitting the averaged oscillation amplitude to Eq. (8) over the
first 10 fs, a coherence half-life is extracted: t1/2 ≈ 4 fs. The
dephasing is so fast that there is not even a single oscillation
in the electronic spin density. Note that the same conclusion
holds with a nonequally weighted superposition (dashed line),
showing the robustness of these results with respect to the
initial conditions.

In PLN, the energy-gap distribution is about twice as narrow
as in paraxylene (Table I). This is partly due to the topology
of the cationic potential-energy surfaces (parameter d in our
model system). In paraxylene, the equilibrium geometry of the
neutral species is in the vicinity of a peaked conical intersection
in the cation [30]: The difference in gradients d is thus rather
large. In PLN, the neutral geometry corresponds to an avoided
crossing in the cation [34]: On both surfaces, the gradient
is small leading to a small difference in gradients d. As a
result, the oscillation in the spin density survives longer despite
their damped amplitudes [Fig. 5(b)]. A coherence half-life of
t1/2 ≈ 10 fs was extracted.

We conclude that the simple picture of long-lived electron
dynamics at a well-defined frequency predicted by the single-
geometry approximation cannot survive the natural width of
the nuclear wave packet. Using a combination of an analytical
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model and numerical simulations of electron dynamics in real
molecules, we show that electronic oscillations will dephase
due to the spatial delocalization of the nuclei. Our simple
analytical model provides the general conditions for long-lived
electron dynamics and enables the definition of molecular
targets in which this can be observed. With our method of using
a Wigner distribution of geometries to represent the nuclear
wave packet, we give a more realistic description of electron
dynamics that goes far beyond what has been done before.

The decoherence effect of electron dynamics is general and
will be common to all molecular systems. We demonstrate
the role of the topology of the potential-energy surfaces in
the time scale of decoherence with the two molecules studied
here exhibiting different coherence half-lives. A key result
is that the effect on electron dynamics of the nuclear-wave-
packet width can be larger than the effect of the nuclear
motion as shown here in paraxylene (within the Ehrenfest
approximation).

Our results will have significant implications for the
interpretation of attosecond spectroscopy experiments since

one no longer expects long-lived oscillations. At present,
most experiments that aimed at observing ultrafast dynamics
have used a strong infrared field [3,15]; this may actually
perturb and be driving the observed dynamics rather than
allowing an observation of the dynamics intrinsic to the
molecule (a complication that has motivated the development
of the attosecond pump—attosecond probe experiments [41]).
Several measurements have already been suggested to ob-
serve electron dynamics: time-resolved Auger spectra [42],
photoelectron angular distributions [43], or x-ray absorption
spectra [44,45]—the electronic transition probability being
proportional to the time-dependent electronic density in each
case. Such experiments would allow the observation of the
decoherence of electron dynamics that we predict.

This work was supported by UK-EPSRC Grant No.
EP/I032517/1. All calculations were run using the Imperial
College High Performance Computing service. The authors
thank C. Fare, J. Malhado, F. McGrath, P. G. Hawkins, V.
Averbukh, and J. P. Marangos for helpful discussions.
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