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Effects of Lorentz-symmetry violation on the spectra of rare-earth ions in a crystal field
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We demonstrate that experiments measuring the transition energies of rare-earth ions doped in crystalline
lattices are sensitive to violations of local Lorentz invariance and Einstein’s equivalence principle. Using the
crystal field of LaCl3 as an example, we calculate the frame-dependent energy shifts of the transition frequencies
between low-lying states of Ce3+, Nd3+, and Er3+ dopants in the context of the standard model extension, and
show that they have high sensitivity to electron anomalies that break rotational invariance.
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Most of our day-to-day experiences are mediated by light
and charged particles, and in particular its interaction with
electrons. To the best of our knowledge, the physics of a system
of photons and electrons is independent of the velocity and
orientation of that system in absolute space, nor is it locally
dependent upon where that system lies in a gravitational poten-
tial. These symmetries, respectively described as local Lorentz
invariance (LLI) and Einstein’s equivalence principle (EEP),
are fundamental to our modern understanding of the standard
model and general relativity. It is possible, however, that
these symmetries are not exact at experimentally accessible
energy scales, due to spontaneous symmetry breaking or other
physics at high-energy scales [1,2]. This possibility has driven
many experimental tests of LLI and EEP [3], and motivated
the development of phenomenological frameworks that can
quantitatively describe the effect of LLI and EEP violation on
known particles and fields. One such framework is provided
by the standard model extension (SME) [4,5], which has been
used to analyze a wide range of experiments [6]. The SME
augments the standard model Lagrangian with all combina-
tions of known particles and fields that are not invariant under
Lorentz transformations, but which preserve gauge invariance,
energy and translational invariance, and the invariance of the
total action [4,5]. These terms are parametrized by Lorentz
tensors that are collectively known as LLI- and EEP-violating
coefficients, and are further subdivided into “sectors” that
deal with terms involving a particular particle. In this Rapid
Communication, we focus on tests of the electron-sector
cμν tensor, which modifies the inertial energy of electrons
according to their direction of motion.

Spectroscopy of neutral dysprosium atoms has already led
to one of the world’s most sensitive tests of electronic LLI and
EEP [7]. More recently, a still more sensitive measurement
of the electron cμν coefficients was obtained by engineering
the quantum state of a pair of trapped Ca+ ions [8], extending
precision tests of electronic LLI past the electroweak (relative
to the Planck mass) scale. Both of these experiments operate at
or near the interrogation time-of-flight or atom (ion) shot-noise
limit. Here, we consider the possibility of using rare-earth ions
doped in a crystalline lattice to perform similar measurements
of the electronic cμν . Rare-earth ion-doped crystals offer
substantially larger ion-number densities than are available
in atomic gases, and interrogation times comparable and

potentially longer than are possible in ion traps. The relevant
4f orbitals are well screened from one another and from the
fluctuations of external fields, yielding the sharp, stable optical
transitions that rare-earth ion-doped materials are known for
at low temperatures. The strong crystal field produces optical-
frequency splitting of the otherwise degenerate free-ion |J,M〉
states. This splitting is far larger than could be produced by
an externally generated magnetic or electric field, and as a
result, is very stable with respect to external field fluctuations.
These properties make rare-earth ion-doped crystals extremely
advantageous for fundamental symmetry tests, complementing
recent tests focusing on the resonant modes of bulk crystals [9].
Our work raises the prospect of using solid-state systems

to test LLI with greater precision than can be achieved by
spectroscopy of free particles.

I. THEORY

In the SME, spin-independent violations of LLI for elec-
trons generate a linearized perturbation of the electron cμν

tensor to the Dirac Hamiltonian, which may be written in
natural units as [4,5,10,11]

δH = −(c00δjk + cjk)αjpk − (c0j + cj0)pj − c00mβ, (1)

where cμν is a symmetric, traceless, constant background
tensor, αj = γ 0γ j and β = γ 0 are the usual Dirac matrices,
and δik is the Kronecker symbol. In general, one can define
a coordinate transformation which maps the elements of cμν

to zero, at the cost of generating new LLI-violating terms
in the photon (and other matter) Hamiltonians. Such terms
can in turn be constrained by modern Michelson-Morley
experiments [12]. Since our choice of coordinates is arbitrary, it
follows that measurements of cμν are equivalent to Michelson-
Morley tests, as both are only sensitive to the differences in
LLI violation in the photon and matter sectors. At first order,
the last two terms of Eq. (1) do not contribute to shifts in the
transition energies between different electronic bound states,
and may be omitted. We can therefore write Eq. (1) in terms
of the spherical components of irreducible tensor operators as

δH = −C
(0)
0 T

(0)
0 −

2∑
q=−2

(−1)qC(2)
q T

(2)
−q . (2)
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In the spherical operator form used in this Rapid Communica-
tion, the elements of cμν are written as [13,14]

C
(0)
0 = c00 + 2

3
cjj − 2U

3c2
c00, C

(2)
0 = 1

6
(3czz − cjj ),

C
(2)
±1 = ±(czx ± iczy), C

(2)
±2 = 1

2
(cxx − cyy ± 2icxy),

where doubled roman indexes (aside from x, y or z) indicate
a sum over the spatial components of cμν , and U is the local
Newtonian gravitational potential.

The problem of a rare-earth ion in a crystal field has been
well studied [15–17]. The total Hamiltonian of a rare-earth ion
in a crystal field may be written as H = Hf + V , where Hf

is the free-ion Hamiltonian and V is the electrostatic potential
due to the crystal environment. The states of free ions are
spherically symmetric, and designated by their total angular
momentum J and its projection M . When the ions are inserted
into a crystal, the ambient crystal field V breaks spherical
symmetry, partially lifting the (2J + 1)-fold degeneracy of
the free ions’ energy levels [15,16]. The crystal potential V

can be written as

V =
∑

k

k∑
q=−k

Bk
qC(k)

q , (3)

where C(k)
q = √

4π/(2k + 1)Ykq are normalized spherical har-
monics, and Ykq are spherical tensor operators of rank k.
The summation over k is restricted to even numbers because
the contribution of V to leading-order energy shifts must come
from its even-parity components, and k � 6 due to the triangle
condition for spherical harmonic integrals (since l = 3 for
rare-earth ions with configuration 4f N ). The number of terms
in Eq. (3) may be further reduced using the discrete point
symmetry of the crystal. The Bk

q coefficients, also known as the
crystal-field parameters, depend on the structure of the crystal
and the electronic wave functions’ radial components, and are
determined by a least-squares fit to the experimental energy
levels of the ion in the crystal. The crystal-field potential is
assumed to act only on the electrons in an open shell, i.e., 4f N

for rare-earth ions.
We obtain the crystal-field-induced energy splitting from

the secular determinant |〈JM|V |J ′M ′〉 − λδJJ ′δMM ′ | = 0
acting on the free-ion states |JM〉. Diagonalization of V

separately within each J manifold yields the split eigenstates
|ψ〉, so that |ψ〉 = ∑

M aM |JM〉. Thus the nonzero matrix
elements of (2) are restricted to 〈JM|T 2

q |JM ′〉, with q =
M − M ′, and |q| � 2.

The LLI-violating correction δωnm = (δEn − δEm)/� to
the transition frequency ωnm between each pair of levels n

and m of the ion in the crystal field is a linear combination
of the spatial components of the cμν tensor, which is itself
a frame-dependent quantity. This energy shift also varies as
a function of the ion’s position in an external gravitational
field, although as we will see, this effect is smaller than the
frame-dependent phenomena for the transitions of interest.
To uniquely specify the value of cμν , we must also specify
the inertial frame in which it is defined. This frame is
typically taken to be approximated by the rest frame of the
Sun, specifically, the sun-centered celestial equatorial frame
(SCCEF), denoted by coordinates (T ,X,Y,Z), while the local

laboratory-frame coordinates are denoted as (t,x,y,z). For
a terrestrial laboratory, the laboratory-frame values of the
tensor’s dominant spatial components clab

jk depend upon the
orientation of the laboratory with respect to the SCCEF,
and thus modulate with characteristic frequency � � 2 ×
2π/(23 h 56 min), or twice every sidereal day. The value
of the anomalous tensor in the laboratory frame can be related
to that in the SCCEF via clab

μν = � α
μ � β

ν cSCCEF
αβ , where � α

μ is
the standard Lorentz boost plus rotation from the SCCEF to
the laboratory frame [7,10,18]. Owing to the Earth’s orbital
velocity, the boost � α

μ mixes the time and spatial components
of cSCCEF

αβ into the spatial components of clab
μν . This gives a

measurement that searches for yearly modulations of δH

access to the parity-odd cSCCEF
T J and the isotropic cSCCEF

T T

components of the anomalous tensor, albeit with a sensitivity
that is suppressed by one and two factors of the Earth’s
orbital boost velocity β⊕ � 1 × 10−4. In what follows, we
will focus on the laboratory-frame values of cμν and the
corresponding spherical operator elements C

(0)
0 and C(2)

q , and
drop the frame-identifying superscript.

II. RESULTS AND DISCUSSION

A. One valence electron: Ce3+ ion in LaCl3

Given the available eigenstates of the rare-earth ions in the
crystal field, we can easily calculate the perturbation δωnm

due to Eq. (2). For trivalent rare-earth ions (R3+) in the LaCl3
lattice (see, e.g., Ref. [16], p. 149), the crystal field has the
point symmetry C3h, and is determined by four crystal-field
parameters Bk

q :

V = B2
0C

(2)
0 + B4

0C
(4)
0 + B6

0C
(6)
0 + B6

6

(
C(6)

6 + C(6)
−6

)
. (4)

The simplest rare-earth ion to which Eq. (4) applies is Ce3+,
with configuration 4f 1. Following the labeling and methods of
Ref. [17], the eigenstates and corresponding energies of Ce3+

are presented in Table I. In the first column of the table, labels
of the states are taken from the Ref. [17]. The eigenstates are
also distinguished by their crystal quantum number μ.

The states of the single valence electron 4f 1 of Ce3+ are
a linear combination of Dirac spinors with mixing of free-ion
states with angular momenta J = 7/2 and J = 5/2. These
levels’ LLI-violating energy shifts (2) follow from the Wigner-
Eckart theorem and the reduced matrix element of the tensor
C(2)

q . In terms of the expansion coefficients and radial integrals
I (κ ′,κ) given in the Appendix, the states’ shifts are linear
combinations of radial integrals I (3,3) = −50.0, I (−4,−4) =
−49.33, and I (−4,3) = −49.58 in atomic units (a.u.). Here,
the radial integrals can be obtained from the formulas I5 and
I1 in the Appendix, and are taken over Hartree-Fock (HF)
wave functions. The total shift of each state is presented in the
rightmost column of Table I. The largest relative energy shift is
that between the ground |I 〉 state and the low-lying |II 〉 state,
with δωI,II = (2π )C(2)

0 (2.76 × 1016 Hz). A similarly large
LLI-violating energy shift is observed for the |I 〉 to |b〉 transi-
tion. Details of this calculation are presented in the Appendix.

In contrast to the case of neutral dysprosium, the con-
tribution of the scalar T

(0)
0 component of the LLI-violating

perturbation in Eq. (2) to the ions’ transition energies is smaller
than that of the tensor operator T (2)

q [7]. This occurs because
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TABLE I. Experimental crystal-field splittings, calculated wave functions, and LLI-violating energy shifts δE for Ce3+ (4f 1) ions in LaCl3.
Data from Ref. [17]. B2

0 = 129, B4
0 = −329, B6

0 = −997, and B6
6 = 403 in cm−1 are used in calculating Eq. (4). Note that the eigenstates are

doubly degenerate in nonmagnetic crystals.

Config. State μ Wave functions |ψμ〉 E (cm−1) δE (C(2)
0 × 106 cm−1)

2
F7/2 |d〉 ±3/2 0.99924|7/2, ∓ 3/2〉 ± 0.03905|5/2, ∓ 3/2〉 2399.5 1.54

|c〉 ±1/2 ±0.82174|7/2, ± 7/2〉 ± 0.56692|7/2, ∓ 5/2〉 + 0.05785|5/2, ∓ 5/2〉 2282.6 −2.52
|b〉 ±5/2 ∓0.99446|7/2, ∓ 1/2〉 + 0.10511|5/2, ∓ 1/2〉 2208.6 2.47
|a〉 ±1/2 ±0.56659|7/2, ± 7/2〉 ∓ 0.82356|7/2, ∓ 5/2〉 + 0.02709|5/2, ∓ 5/2〉 2166.0 −1.56

2
F5/2 |III 〉 ±3/2 0.03905|7/2, ∓ 3/2〉 ∓ 0.99924|5/2, ∓ 3/2〉 110.0 0.62

|II 〉 ±5/2 ±0.10511|7/2, ∓ 1/2〉 + 0.99446|5/2, ∓ 1/2〉 37.5 2.61
|I 〉 ±1/2 ∓0.06298|7/2, ± 7/2〉 ∓ 0.01072|7/2, ∓ 5/2〉 + 0.99796|5/2, ∓ 5/2〉 0.0 −3.16

the low-lying ion excitations are largely between states with
the same quantum number n and total angular momentum
J . In the nonrelativistic limit, the scalar operator T

(0)
0 is

proportional to the sum of the bound electrons’ kinetic energy∑
i p2

i /2m. Using the virial theorem in a Coulomb potential,
the electrons’ binding energy is approximately equal to their
kinetic energy. The LLI-violating change in the transition
energy between bound states with the same n and different J is
therefore expected to scale as δωnm � C

(0)
0 (6 × 1013 Hz). This,

combined with the comparatively small range of variation
in U/c2 accessible to a terrestrial laboratory (∼10−10 in the
Sun’s potential over a year), implies this ion could serve as a
stable reference standard to compare against a more sensitive
transition (such as those offered by dysprosium [7]) in a
null-redshift test of EEP.

B. Several valence electrons: Nd3+ and Er3+ ions in LaCl3

We can perform a similar calculation for rare-earth ions with
several valence electrons in LaCl3. Using the energy levels
and approximate wave functions for Nd3+ and Er3+ available
in the literature [19], we find that these ions have respective
ground-state configurations (4f 3, 4

I9/2) and (4f 11, 4
I15/2). In

this case, the relevant electronic wave functions are linear
combinations of Slater determinants of HF orbitals. As before,
the fine-structure manifolds of these ions are split by a crystal
field with point symmetry C3h, and as before, the contribution

of the C
(0)
0 anomaly to the observed transition frequencies

is much smaller than that of C
(2)
0 . Repeating the analysis of

Sec. II A, we may write

δE(J,μ) = −C
(2)
0 〈μJ ‖ T (2) ‖ μJ 〉

× 3
∑

M a2
MM2 − J (J + 1)√

(2J + 3)(J + 1)(2J + 1)J (2J − 1)
, (5)

where aM are the coefficients for the wave functions pre-
sented in Table II. Inspection of Table II reveals that the
maximal change in the ions’ transition frequencies due to
LLI violation is δωb,c = 2πC

(2)
0 (5.6 × 1016 Hz) for Nd3+ and

δωc,e = 2πC
(2)
0 (11 × 1016 Hz) for Er3+. As in the case of

Ce3+, the scalar shift proportional to C
(0)
0 is expected to be

comparatively negligible.
A dedicated experiment measuring the THz-scale energy

splitting between the |c〉 and |e〉 states of Er3+ at the level
of 1 mHz would be sensitive to C

(2)
0 as small as 10−20. To

estimate the reach of existing experimental measurements of
Er3+ transitions, we have also considered optical transitions
in Er3+:Y2SiO5 [20]. Because of the lower symmetry C6

2h of
the crystal Y2SiO5 field, each J manifold is split into J + 1/2
doubly degenerate states [21]. We focus specifically on the
Z1 → Y1 transition between the lowest-energy levels in the
ground 4

I15/2 and excited 4
I13/2 manifolds [20]. Using Eq. (5),

the LLI-violating perturbation proportional from C
(2)
0 to this

TABLE II. Experimental crystal-field splittings, calculated wave functions, and LLI-violating energy shifts δE for the ground levels Nd3+

(4f 3, 4
I9/2) and Er3+ (4f 11, 4

I15/2) in LaCl3. Data from Ref. [19], in terms of crystal quantum numbers μ from Ref. [21].

Species State μ Wave functions |ψn〉 E (cm−1) δE (C(2)
0 × 106 cm−1)

Nd3+ |e〉 ∓3/2 0.558| ± 9/2〉 − 0.830| ∓ 3/2〉 249.4 0.05
|d〉 ±5/2 0.936| ± 5/2〉 − 0.351| ∓ 7/2〉 244.4 0.16
|c〉 ∓3/2 0.830| ± 9/2〉 + 0.558| ∓ 3/2〉 123.2 −0.83
|b〉 ±1/2 | ± 1/2〉 115.4 1.03
|a〉 ±5/2 0.351| ± 5/2〉 + 0.936| ∓ 7/2〉 0.0 −0.42

Er3+ |h〉 ±1/2 0.905| ± 13/2〉 + 0.356| ± 1/2〉 + 0.232| ∓ 11/2〉 229.31 1.31
|g〉 ∓1/2 0.820| ± 11/2〉 + 0.429| ∓ 1/2〉 − 0.379| ∓ 13/2〉 181.04 0.45
|f 〉 ±3/2 0.116| ± 15/2〉 + 0.764| ± 3/2〉 + 0.635| ∓ 9/2〉 141.61 −0.96
|e〉 ∓5/2 0.662| ± 7/2〉 + 0.750| ∓ 5/2〉 113.7 −1.08
|d〉 ±1/2 0.192| ± 13/2〉 − 0.830| ± 1/2〉 + 0.523| ∓ 11/2〉 96.52 −0.26
|c〉 ±3/2 0.925 ± 15/2〉 + 0.150| ± 3/2〉 − 0.349| ∓ 9/2〉 64.27 2.58
|b〉 ±3/2 0.362| ± 15/2〉 − 0.628| ± 3/2〉 + 0.689| ∓ 9/2〉 37.91 −0.29
|a〉 ∓5/2 0.750| ± 7/2〉 − 0.662| ∓ 5/2〉 0.0 −1.02
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transition’s energy can be obtained from the reduced matrix
elements: 〈μJ ‖ T (2) ‖ μJ 〉 = −67.097 a.u. for J = 15/2
and −56.188 a.u. for J = 13/2. As for the case of the
lowest level of Er3+:LaCl3, we have taken the weighted sum∑

M a2
MM2 ≈ 10 for both levels Z1 and Y1 (see Table II). This

yields the frequency shift δωZ1Y1 = C
(2)
0 (1.03 × 1016 Hz).

Though not considered here, we note the C
(2)
±2 component of

the LLI-violating tensor might also contribute to δωZ1Y1 .

C. Magnetic field effect

Stray magnetic fields can produce major systematic errors
in Lorentz-symmetry tests. We have therefore estimated the
effects of magnetic fields on such tests which use Ce3+ and
Nd3+ in LaCl3 crystals. Detailed studies of the Zeeman effect
in Ce3+ ions may be found in Ref. [22], wherein the first-
order Zeeman splitting of doubly degenerate states may be
found. Though the ground-state degeneracy is lifted by the
2.1μB (where μB = 0.467 cm−1/T is the Bohr magneton),
the magnetic interaction between states in different doublets is
restricted due to the crystal symmetry and the selection rules
for M1 transitions. For Ce3+, the quadratic shift has been
estimated using the dominant components of the ground state
|I 〉 and the low-lying state |III 〉 at 110 cm−1 (see Table I).
Since the magnetic quantum numbers differ for these states,
transitions are only possible by way of the x and y components
of the magnetic moment operator. Contributions from other
levels corresponding to the 2

F7/2 term are suppressed due
to the larger energy splittings. Thus we estimate the second-
order shift to be 0.918/(110 cm−1)μ2

B. This corresponds to a
quadratic shift of 5.46 × 107 Hz/T2 for the ground state. The
same calculation can be done for the |II 〉 state, for which we
obtain 13.2 × 107 Hz/T2.

The Nd3+ ion has three valence electrons in the f shell, and
so we limit ourselves to a rough estimate, which may also be
applied to other rare-earth ions. The total angular momentum
J = 9/2 is bigger than the total spin S = 3/2, so the magnetic
moment of the ion is dominated by the angular momentum
operator J. Hence the matrix elements for transitions within a
given multiplet are easily obtained. As a result, the quadratic
shifts are expected to be ∼30 × 107 Hz/T2 for the ground level
|a〉 and ∼18 × 108 Hz/T2 for the first excited doublet |b〉 (see
Table II).

Using these estimates, we may determine the extent to
which magnetic fields must be controlled to suppress their
effects to below that of an LLI-violating C

(2)
0 with order 10−20.

For Ce3+ ions, the magnetic field must be stabilized to be
below 4.7 × 10−6 T, or 47 mG, while for Nd3+ ions, a field of
no more than 15 mG should be sufficient. We further note that
larger magnetic field fluctuations, and larger dc fields, are in
principle tolerable for a test of LLI, as long as they fluctuate on
time scales that are sufficiently different from the modulation
periods of the laboratory’s orientation and boost relative to a
fixed inertial frame (e.g., as the SCCEF approximates).

III. CONCLUSION

We have demonstrated that solid-state systems, and par-
ticularly the ground-state spectrum of rare-earth ions doped
in a crystalline host, can be used to perform sensitive tests

of LLI. We have taken advantage of existing work on the
spectrum of Ce3+ [17], Nd3+, and Er3+ [23,24] to perform
an explicit calculation of these ions’ energy shifts in response
to LLI violation when doped in LaCl3. The energy levels and
sensitivities of Ce3+, Nd3+, and Er3+ ions are expected to be
similar when doped in different crystalline media. Er3+ is a
particularly interesting case, as the optical coherence of the
J = 15/2 → J = 13/2 transition is particularly long lived at
4.4 ms for 0.001% doping concentration Er3+:Y2SiO5 [25]. An
experiment that is sensitive to a 1 mHz orientation-dependent
modulation of the Z1 → Y1 optical transition in Er3+:Y2SiO5

could measure spatial components of the electronic cμν

tensor as small as 10−19, improving upon existing limits
by an order of magnitude [7,8]. An experiment measuring
orientation-dependent modulations of the THz-scale energy
difference between the |c〉 and |e〉 states (see Table II) at the
mHz would be more sensitive still, probing the LLI-violating
cμν tensor at the level of 10−20. We note that dynamic
decoupling techniques [26], which switch between states with
quantum numbers of equal magnitude and opposite sign,
do not suppress the LLI-violating signal proportional to the
quadrupole component of C

(2)
0 of cμν . Other rare-earth ion-

doped materials may also prove to be useful for testing this and
other aspects of LLI, and are a promising area for future work.
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APPENDIX

In what follows, we restrict the crystal quantum number to
−μ because both degenerate states get the same shift from the
LLI-violating perturbation. The eigenstates |I 〉, |a〉, and |c〉
are presented in Ref. [17],

|ψ−μ〉 = ξ |7/2, − 7/2〉 + η|7/2,5/2〉 + ζ |5/2,5/2〉, (A1)

with expansion coefficients ξ , η, and ζ . Similarly, the remain-
ing eigenstates |II 〉, |III 〉, |b〉, and |d〉 are

|ψ−μ〉 = ξ |7/2,m〉 + ζ |5/2,m〉, (A2)

where m = 1/2 or 3/2. These basis states are approximated
by the relativistic, four-component spinor Hartree-Fock (HF)
orbitals of the free Ce3+ ion,

ψnκm(r) = 1

r

(
fnκ (r)�κm(θ,φ)

iαgnκ (r)�−κm(θ,φ)

)
, (A3)

where the nonrelativistic two-component spinor is defined by

�κm(θ,φ) =

⎛
⎜⎝±

√
κ+1/2−m

2κ+1 Yl,m−1/2(θ,φ)√
κ+1/2+m

2κ+1 Yl,m+1/2(θ,φ)

⎞
⎟⎠, (A4)
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and κ = ∓(j + 1/2) (for j = l ± 1/2) is the unified quantum
number denoting angular momentum and parity.

For transitions between states with the same quantum num-
ber n and total angular momentum J , the main contribution
of the LLI-violating perturbation comes from the tensor T (2)

q

operator. Its matrix elements may be written as

〈n′κ ′m′|T (2)
q |nκm〉 = (−1)j

′−m′
(

j ′

−m′
2

q

j

m

)

×〈κ ′ ‖ C(2)
q ‖ κ〉I (κ ′,κ), (A5)

where I (κ ′,κ) represents a radial integral [27]. The reduced
matrix element of the tensor C(2)

q is

〈κ ′ ‖ C(k)
q ‖ κ〉 = (−1)j

′+ 1
2

√
[j ′,j ]

(
j ′

− 1
2

j
1
2

k

0

)
, (A6)

where [j ′,j ] ≡ (2j ′ + 1)(2j + 1). The energy shifts due to
LLI violation can be calculated using Eqs. (A5) and (A6). In
terms of the expansion coefficients and radial integrals I (κ ′,κ),
the shifts of the states |I 〉, |a〉, and |c〉 in Eq. (A1) are

δE = C
(2)
0

21
[(7ξ 2 + η2)I (−4, − 4)

+6ζ 2I (3,3) + 2
√

6ζηI (−4,3)]. (A7)

Two other states |II 〉 and |b〉 have the shifts

δE = −C
(2)
0

21

[
5ξ 2I (−4, − 4) + 24

5
ζ 2I (3,3)

−4
√

6

5
ζ ξI (−4,3)

]
, (A8)

with m = 1/2 in Eq. (A2), while the states |III 〉 and |d〉 have
the energy shifts of the levels

δE = −C
(2)
0

21

[
3ξ 2I (−4, − 4) + 6

5
ζ 2I (3,3)

−6
√

2√
5

ζ ξI (−4,3)

]
. (A9)

Here, the radial integrals can be obtained from the formulas I5

and I1 below, and are taken over HF wave functions.
The radial integrals included in Eqs. (A7)–(A9) are from

Ref. [7], and are summarized in this Appendix for convenience.
According to the quantum numbers κ ′ and κ , the radial

integrals take one of the following forms:

I1 = cα�

∫ ∞

0
dr

(
(2κ − 1)gn′κ ′

∂fnκ

∂r
+ (2κ + 3)fn′κ ′

∂gnκ

∂r

− (2κ − 1)(κ + 1)

r
gn′κ ′fnκ − (2κ + 3)κ

r
fn′κ ′gnκ

)

for κ ′ = −κ − 1,

I2 = cα�

∫ ∞

0
dr

(
(2κ − 3)gn′κ ′

∂fnκ

∂r
+ (2κ + 1)fn′κ ′

∂gnκ

∂r

+ (2κ − 3)κ

r
gn′κ ′fnκ + (2κ + 1)(κ − 1)

r
fn′κ ′gnκ

)

for κ ′ = −κ + 1,

I3 = 4cα�

∫ ∞

0
dr

(
fn′κ ′

∂gnκ

∂r
+ κ − 1

r
fn′κ ′gnκ

)

for κ ′ = κ − 2,

I4 = −4cα�

∫ ∞

0
dr

(
gn′κ ′

∂fnκ

∂r
− κ + 1

r
gn′κ ′fnκ

)

for κ ′ = κ + 2, and

I5 = −2cα�

∫ ∞

0
dr

(
gn′κ ′

∂fnκ

∂r
− fn′κ ′

∂gnκ

∂r

+κ

r
gn′κ ′fnκ + κ

r
fn′κ ′gnκ

)

for κ ′ = κ . In the nonrelativistic limit the matrix element
〈φ|cαjpk|φ〉 becomes 〈φ|pjpk/m|φ〉. This changes the radial
integrals in Eq. (9). Only the radial integrals differ between
the relativistic and the nonrelativistic limits, while the angular
parts of the matrix elements are the same. In the nonrelativistic
limit, I1 and I5 reduce to

I1 = �
2
∫ ∞

0
dr

(
∂fn′κ ′

∂r

∂fnκ

∂r
+ κ(κ + 1)

r2
fn′κ ′fnκ

)
,

I2 and I3 become

I2 = �
2
∫ ∞

0
dr

(
∂fn′κ ′

∂r

∂fnκ

∂r
− 2κ − 1

r
fn′κ ′

∂fnκ

∂r

−κ(κ − 2)

r2
fn′κ ′fnκ

)
,

and I4 takes the form of

I3 = �
2
∫ ∞

0
dr

(
∂fn′κ ′

∂r

∂fnκ

∂r
+ 2κ + 3

r
fn′κ ′

∂fnκ

∂r

− (κ + 3)(κ + 1)

r2
fn′κ ′fnκ

)
.
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