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Extreme self-compression along with superbroad spectrum up-conversion of few-cycle
optical solitons in the ionization regime
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A regime of extreme self-compression of optical solitons to single-cycle duration with further shortening
along with superbroad spectrum up-shifting is revealed when the Kerr nonlinearity and ionization process are
independently controlled. This results in efficient optical-pulse compression as a whole towards extremely short
single-cycle pulses at essentially shorter wavelengths, which may open a new way to generate optical pulses with
durations of hundreds of attoseconds in the ultraviolet domain.
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I. INTRODUCTION

The concept of optical solitons have played an important
role in the recent development of nonlinear optics. Two re-
markable applications of soliton dynamics are supercontinuum
generation and laser-pulse self-compression down to single-
cycle duration [1–3]. Recently, the concept of conventional
optical solitons was extended to few-cycle pulses for which
the traditional envelope approach is not valid [4,5]. Of course,
there are earlier examples in optical physics where the wave
equation for the real laser field is treated in the context of
solitons or extremely short pulses, but most of them deal with
light propagation in two-level systems [6–8] or Raman-active
[9] media.

From a practical point of view, producing tunable few-
cycle pulses of high energies is still a formidable task in
contemporary laser physics. Whereas in the infrared range,
such pulses can be generated at particular wavelengths by
conventional solid-state systems, e.g., based on Ti:sapphire or
optical parametric chirped-pulse-amplification technologies.
No analogous techniques are available in the optical and
ultraviolet domains. Nevertheless, for high-energy pulses there
are a number of nonlinearities that can be employed for pulse
shortening; for instance, the relativistic nonlinearity or plasma
effects (see Refs. [10–12]). Here, we pay particular attention
to the ionization nonlinearity that has a strong impact on
pulse propagation dynamics. The fundamental issue of this
interaction follows from the fast ionization of atoms strongly
modifying the index of refraction, even on a timescale less
than the optical period. This leads to a number of interesting
nonlinear phenomena such as ionization instabilities [13,14],
frequency blueshifting [15,16], high-order harmonics, and ter-
ahertz generation [17,18]. It is also important to emphasize that
the ionization nonlinearity is able by itself to ensure essential
self-frequency up-shifting and pulse self-compression [19,20].
Based on these effects a new way of reaching petawatt-class
pulses of few-cycle duration was recently proposed [21]. With
the advent of gas-filled hollow-core photonic fibers (HC-PCF),
nonlinear fiber optics where the Kerr nonlinearity together with
the ionization nonlinearity can be self-consistently employed,
brings new opportunities for controlling the spectrum and
pulse evolution [22]. In particular, in Refs. [23–25] soliton
blueshifting as well as self-compression effects are discussed
based on the conventional compression scheme which allows

shortening pulses even to single-cycle duration. However, the
most intriguing question is the following: can we expect further
shortening of a single-cycle pulse as a whole?

In this paper we show that, in media with independent
control of the Kerr and ionization nonlinearities, such as
a mixture of two gases with noticeably differing ionization
potentials, there may occur extreme pulse compression.
Detailed analysis shows that this could open a new way to
generate pulses with durations of hundreds of attoseconds in
the ultraviolet domain having energy efficiency up to forty
percent, which is much higher than attainable with available
methods. The gas with a higher potential (and a higher
density) provides the Kerr nonlinearity and thus keeps the
soliton as a stable structure, whereas the second ionizing
gas provides frequency up-shifting. A waveguide system is
proposed to be used to control the wave velocity dispersion. In
this case, the soliton self-compression regime consists of two
qualitatively different consecutive stages. In the first stage, the
soliton pulse is compressed conventionally, when the process
evolves adiabatically matching the soliton relations (see, e.g.,
Ref. [26]). However, the extreme compression occurs in the
second stage, when a few-cycle soliton becomes actually a
single-cycle soliton with an ultrabroad spectrum. We show
that, in this stage, the process of further self-compression
is strongly accelerated along with superbroad spectrum up-
conversion, keeping the single-cycle soliton as a whole entity.

II. BASIC EQUATIONS AND FEW-CYCLE SOLITONS

For an adequate analysis of the extreme self-compression of
laser pulses in a waveguide filled with a mixture of two gases
with noticeably differing ionization potentials we should refer
directly to the description of the self-action dynamics of the
electromagnetic field in a medium within a wide spectral range
based on the wave equation

∂2
zzE − 1

c2
∂2
t tE = 4π

c2
∂2
t tP, (1)

where ∂i=z,t stands for the respective derivatives, c is the speed
of light, and P(E) is the polarization response of the medium.
In the case of a resonant interaction of the laser radiation
with matter, when the signal frequency is close to the resonant
transition frequency, the polarization response of the medium
P can be defined based on a two-level-system model [6–8].
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However, this model is inapplicable to the nonresonant case
we consider here, when the carrier frequency is much less
than the transition frequency. For the nonresonant interaction,
contributions from other atomic levels should be considered. It
is well known that generalizing to a three-level system leads to
a change in the sign of the Kerr nonlinearity (from defocusing
to focusing) [27]. The polarization response can be divided into
two components P = P lin + Pnl . Here P lin = 1

4π
[
∫ t

−∞ ε(t −
t ′)E(t ′)dt ′ − E] is responsible for the linear response of the
medium, and Pnl describes the nonlinear part of polarization
P . Where ε is the linear dielectric permittivity in the system
being considered, which in the optical domains can be written
as

ε(ω) = εo + aω2 − ω2
D

ω2
. (2)

Note that the dielectric permittivity ε(ω) is determined by,
in addition to the material dispersion of gases [28,29], the
waveguide dispersion as well. Besides, for the case of interest
the coefficient ωD is defined mainly by the diameter of the
waveguide.

In this case, the dispersion law for the wave E ∼
exp(iωτ − iκz), which propagates along z, has the form
κ = −ω2

D/ω + aω3. One can control the role of the dispersion
simply by changing the central frequency ω of the wide-band
radiation. Specifically, for radiation having the frequency
ωb = (ω2

D/3a)1/4, the group-velocity dispersion parameter
(GVD) k2 = ∂2κ/∂ω2 becomes equal to zero. Correspond-
ingly, for the wave fields having frequencies ω � ωb, the field
spectrum is concentrated in the region with normal group-
velocity dispersion k2 > 0, whereas for ω � ωb the dispersion
is anomalous (k2 < 0). Herein, we consider the case of
anomalous dispersion, when ω � ωb; therefore, the second
term in Eq. (2) is small. Note that this situation can be
implemented with sufficient ease by choosing the capillary
diameter and gas pressure (see, e.g., Eq. [26]), since under
typical conditions gas dispersion is low compared with
waveguide dispersion.

The term Pnl = P1 + P2 in Eq. (1) describes the non-
linear response of the mixture of gas with strongly different
ionization potentials, e.g., helium and argon. A gas with a
high ionization potential will ensure the Kerr-type inertia-free
nonlinearity P1 = χ (3)Na|E|2E , where χ (3) is the atomic
cubic nonlinear susceptibility (see, e.g., Refs. [30,31]), and
Na is the density of atoms with high ionization potential.
The inertia-free nonlinearity is justified by virtue of the
fact that the only physical mechanism which ensures the
nonlinearity of the refraction index at short laser radiation
duration and at such times is the nonlinearity of the polarization
response of bound electrons. The characteristic time of the
electron response delay is about the period of electron rotation
around the nucleus. Allowing for the fact that helium has
a high ionization potential (24 eV), this corresponds to a
nonlinearity response duration of about 70 as, which is short
compared with the durations considered in this work. To ensure
nonstationarity of the nonlinearity, which will result in an
increase in the carrier frequency of the laser pulse, we will use
the mechanism of field ionization [32] of the second sort of
gas with lower concentration. Correspondingly, the nonlinear
response can be written as follows: ∂2

t tP2 = (ω2
p/4π )E . Here

ω2
p,n = 4πe2Ne,n/m, ne is plasma density, n is the density of

ionizing atoms (n � Na).
In the present paper we consider one-dimensional self-

compression of a laser pulse in a waveguiding system. We
assume that the spatial structure of the field is determined by
the capillary mode. Structural modification of field distribution
in the capillary under the action of Kerr and ionization nonlin-
earities was addressed in the papers [33,34]. The limitations
were obtained on laser radiation power and plasma density at
which the single-mode self-action persists. The corresponding
conditions are fulfilled, for example, for a capillary 80 μm in
diameter and a laser pulse with a duration of 25 fs and energy
of several hundred microjoules.

To get an insight into the physics and propose a regular
method of extreme soliton conversion, we first consider
few-cycle solitons for which analytical treatment is necessary.
To do so, we employ the well-proven slowly evolving wave
approach (SEWA) [31] and use a one-way propagation wave
equation, which is closed by the rate equation with the tunnel
ionization as a main mechanism of plasma production [32].
Then the system of equations reads [5]

2c
∂2U

∂z∂t
+ ω2

DU + ω2
pU + ∂2

∂t2
(|U |2U ) = 0, (3a)

∂ω2
p

∂t
= (

ω2
n − ω2

p

)
W (|U |). (3b)

Here, U = Ex + iEy , Ex and Ey are the corresponding com-
ponents of the electric field in units of (2πχ (3)Na)1/2, t −
z
√

εo/c → t is the retarding time, and W (|U |) is the tunnel
ionization rate [32]. Note that Eqs. (3) describe the case of
anomalous group-velocity dispersion and they are similar to
the case of HC-PCFs considered in Ref. [26]. We only neglect
the quantum absorptions connected with the atomic potential
needed to ionize atoms, since Eqs. (3) comprise absorption
corresponding to the fact that the newly born electrons acquire
laser oscillation energy which in the tunnel regime for circular
polarization exceeds the potential [19,35]. These energy losses
can be minimized for linearly polarized light. However, we
pay particular attention to the case of circularly polarized
light for which soliton solutions can be found in explicit form
and this greatly helps us to propose a way for extreme pulse
compression.

In pure Kerr media (ωp = 0), there exists a class of few-
cycle solitons [5]. In the dimensionless variables (τ = ωot , z̃ =
ω2

Dcz/2ωo, ωo is the input carrier frequency), these solutions
can be represented as follows:

U = ωD

ωo

γ 1/2a(ξ ) exp [i(τ + γ z̃) + iφ(ξ )], (4)

where ξ = (τ − γ z̃), and γ −1 is the group velocity of the
soliton in the (τ,z̃) plane. The soliton envelope a(ξ ) and
nonlinear phase φ(ξ ) obey the ordinary differential equations

aξ = ±a

(1 − 3a2)

[
δ2 − 3

2
(δ2 + 1)a2 + (4 − 5a2)a2

4(1 − a2)2

]1/2

, (5a)

φξ = a2(3 − 2a2)

2(1 − a2)2
, (5b)
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where δ2 = γ −1 − 1. One can see that Eqs. (5) are directly
integrated and their solutions depend only on the parameter δ

varying in the interval 0 � δ2 � 1/8. It is useful to note that, in
the limit δ → 0 corresponding to long pulses comprising many
optical cycles, soliton solutions of the nonlinear Schrödinger
equation have a sech form without phase modulation [30]:

a(ξ ) = as =
√

2δ

cosh (δξ )
, φ 	 0. (6)

For simplicity, we further refer to these solutions as the
Schrödinger solitons. However, at higher δ, i.e., for few-cycle
solitons, their envelope can still be described by sech-form
with high accuracy (maximum deviation less than 3%) but
with strong phase modulation given by Eq. (5b)

U (ξ ) = ωD

ωo

√
γ as exp

[
i

(
τ + γ z̃ +

∫ ξ

−∞

a2
s

(
3 − 2a2

s

)
2
(
1 − a2

s

)2 dξ

)]
.

(7)

This gives an ultrabroad spectrum which plays a very important
role in ionization-induced pulse compression, especially tak-
ing into account that the highest frequencies of the spectrum
are located in the central part of the pulse where ionization
occurs. Next, we study the dynamics of soliton-like pulses in
the ionization regime.

III. SOLITON SELF-COMPRESSION

We model pulse propagation in Eqs. (3) specifying initial
distribution in the form of exact soliton solutions given
by Eqs. (5). Figure 1 shows the dynamics of the pulse
intensity |Ũ | = (ωo/ωD)|U | at β ≡ ω2

n/ω
2
D = 0.01 and δ =

0.1 corresponding to the input soliton comprising four optical
cycles. In what follows, the coordinate z is normalized to
the dispersion length zD , along which the pulse duration τp

increases by
√

2 times in the linear case. One can see that the

FIG. 1. (Color online) Dynamics of a laser pulse with initial
profile given by Eqs. (5) at δ = 0.1 and β = 0.01. Intensity of the
pulse is normalized to the maximum value and z is in units of the
linear dispersion length zD . The insets show field distributions and
ionization-degree profiles at z = 0 (right) and z = 55zD (left).

pulse is continuously shortening, reaching a minimum duration
at the length z = 55zD; at this point it has been compressed
by 40 times, which corresponds to a duration of 250 as for
the Ti:Sapphire laser (λ = 0.8 μm, 10 fs input pulse). It is
important to note, as we see in Fig. 1, that in the process of
shortening, the time structure of the envelope does not change,
i.e., it corresponds to adiabatic decrease in the duration and
increase in the carrier frequency. Thus, we conclude that, in
this case, adiabatic soliton self-compression takes place up
to the point z = 55zD . Moreover, the soliton pulse reaching
even single-cycle duration proceeds to compress by up-shifting
the carrier frequency (to be more exact, by increasing the
frequencies of the central part of the single-cycle soliton). To
confirm our speculation that we deal with the soliton structure
at each point, we performed an additional modeling: we chose
the initial distribution as the field distribution formed at z =
55zD [see Fig. 1(a)] and modeled pulse propagation at β = 0
(i.e., ionization free). In this case, for such a field structure,
the envelope distribution does not change in the process of
propagation up to several hundreds of the compressed-pulse
dispersion length (z < 250zD). It is important to emphasize
that, actually, the frequencies of the central part of the pulse lie
in the violet range. Thus, the main question is how it happened.
It should be also noted that we failed to get such extreme
compression by using gas with one sort of atoms. This is easy
to understand from the insets in Fig. 1: if, at the initial stage
of propagation, the degree of ionization can be small (right
inset) and the pulse compresses in the Schrödinger soliton
manner, then due to the increase of the soliton amplitude
full gas ionization occurs (left inset) which may cancel the
Kerr nonlinearity and stop compression. This situation can
be avoided by using a mixture of two gases with noticeably
differing ionization potentials: gas with high potential (e.g.,
helium) provides the Kerr nonlinearity, and the other one with
lower potential (e.g., argon) is ionized.

IV. SCHRÖDINGER SOLITON VS FEW-CYCLE SOLITON

For better understanding we first consider the difference
of pulse compression between Schrödinger and few-cycle
solitons.

Using the envelope approximation in the form U (z,t) =
A(z,t)eiϕ(z,t) we substitute it into Eq. (3a) and subject ω = ϕt ,
κ = −ϕz to the linear dispersion equation

2cωκ + ω2
D + ω2

p = 0. (8)

Then, by using the new retarding time τ = t − ω2
D

2c

∫
dz

ω2(z) and
differentiating Eq. (8), for a slowly evolving envelope
A(z,τ ), Eqs. (3) can be reduced to

2ic

[
∂A
∂z

+ ωz

2ω
A

]
+ ω2

D

ω3

∂2A
∂τ 2

+ ω|A|2A = 0, (9a)

∂ω2

∂z
= 1

c

∂ω2
p

∂τ
, (9b)

∂ω2
p

∂τ
= (

ω2
n − ω2

p

)
W (|A|). (9c)

Here we assumed that the group-velocity dispersion is mainly
defined by the waveguide, i.e., ωD � ωp, and the gas
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dispersion is negligible. Note that, for amplitudes when the
ionization is insignificant, Eq. (9a) is the nonlinear Schrödinger
equation. It has a fundamental soliton solution:

|A| = WA

ω2

ωD

1

cosh
(

WAω4τ

ω2
D

) , (10)

where WA = ∫ ∞
−∞ |A|2dτ = const. is the soliton energy. For

higher amplitudes when ionization comes into play, the carrier
frequency ω is slowly up-shifting due to plasma production,
in conformity with Eqs. (9b) and (9c). The system of equa-
tions (9) is self-consistent; the most important issues are (i) the
frequency up-shift may be significant, depending on the pro-
pagation distance, and (ii) the second term describes the
energy losses due to ionization. Although Eqs. (9) are still
complex, they are quite transparent from the physical point of
view, especially in respect to solitons. In particular, assuming
that the solitonic structure of the wave packet is preserved, i.e.,
the carrier frequency slowly changes on the scale of soliton
formation, we can present a soliton-like solution in the form

|A| = Ao

ω

ωo

1

cosh
(Aoω3τ

ωDωo

) , (11)

where Ao is the amplitude at the input. It is seen that the
pulse-compression factor is τo/τp = (ω/ωo)3 (τo is the input
pulse duration) increasing with frequency up-shifting over
the propagation path. It is also important that, despite energy
losses, the amplitude of the soliton-like pulse increases in
proportion to the frequency. This results in an exponentially
accelerating process of pulse compression, since the ionization
rate W (|A|) is an exponentially growing function.

Then, we evaluate the law of variation of duration τp =
τo(ωo/ω)3 of the quasisoliton solution (11) with respect to the
evolution variable z for the case when the gas ionization degree
is low, ω2

n � ω2
p. To assess the medium length zc over which

the wave packet duration may turn to zero [τp(zc) = 0] we
approximate the ionization probability W (A) in power form:

W (|A|) = μm|A|2m, m > 1. (12)

In the case considered of circularly polarized radiation, the
ionization rate does not depend on the field phase, even for
pulses with a duration of several field oscillations [36]. Note
that, in this case, laser-radiation dissipation typical of tunnel
ionization is retained and described by the second term in
equation (9a). Allowing for Eqs. (9b), (9c), and (12), we obtain
the final solution for τp at m > 1:

τp(z) = τo

[
1 − z

mω2
nμmαmA2m

o

2c

] 3
2m

, (13)

where

αm =
∫ +∞

−∞

dx

cosh2(m+1) x

is a number. One can see from Eq. (13) that the soliton duration
will become equal to zero at the finite length zc of the nonlinear
medium:

zc = 2c

mω2
nμmαmA2m

o

. (14)

FIG. 2. (Color online) The dependence of pulse duration τp on
the propagation distance (red dash-dotted line) and average frequency
(blue dash-dotted line) for different δ: (a) δ = 0.1 and (b) δ = 0.2.
Also, black and magenta curves are the corresponding approxima-
tions. The green solid curve in panel (a) is the same dependence τp(z)
but calculated using Eqs. (9b) and (9c).

In what follows we compare the results of numerical simulation
with the above-considered qualitative analysis.

Figure 2(a) presents the pulse duration τp as a function of
z (red dash-dotted curve) together with the same dependence
(green solid curve) but calculated for the soliton by using
Eqs. (9b) and (9c). In this figure we also plotted by a blue dash-
dotted curve the pulse duration as a function of average fre-
quency (upper axis) and compared it with the dependence
from Eq. (11) (τp ∝ ω−3). One can see that, when the pulse
is long enough, the curves fit each other well, thus confirming
the Schrödinger soliton compression stage. At this stage, the
pulse is shortened by a factor of eight, whereas the frequency
increases only twice. However, further along the propagation
distance z/zD ∼ 50, when the pulse becomes actually a single-
cycle pulse, the process of shortening is drastically accelerated
but with slowly changing average frequency. As an illustration,
we present in Fig. 2(b) the single-cycle soliton compression
stage as a result of modeling for a soliton comprising two
optical cycles (δ = 0.2). The peculiarity of few-cycle solitons
is that they are strongly phase modulated as follows from
Eq. (5b) and this makes a strong impact on the process of the
ionization-induced shortening.

Next, we evaluate the law of diminishing duration of the
wave packet with respect to the carrier frequency for this case.
Note that, as the wave packet spectrum width �ω increases
further in the process of shortening of the laser pulse duration
or the initial duration of the wave packet, which is fed to
the input of the nonlinear medium, Eq. (9a) will provide an

033856-4



EXTREME SELF-COMPRESSION ALONG WITH . . . PHYSICAL REVIEW A 92, 033856 (2015)

incorrect description of the wave packet dynamics, since this
equation is valid at �ω/ω � 1. To ensure adequate qualitative
description of the field in the wave packet for the case of
�ω/ω � 1, one should allow for an additional term, which is
responsible for the dependence of the group velocity of the
pulse on the field amplitude:

2ic

[
∂A
∂z

+ ωz

2ω
A

]
+ ω2

D

ω3

∂2A
∂τ 2

+ ω|A|2A − 2i|A|2 ∂A
∂τ

= 0.

(15)

In the framework of this equation, the soliton equation exists
in the absence of ionization nonlinearity (ωp = 0) [37]. Let us
use this solution to evaluate the variation in the wave packet
duration in the case of smooth variation in the pulse carrier
frequency in the process of gas ionization on the scales of the
dispersion and nonlinear lengths. Allowing for the energy loss
connected with gas ionization, we represent the solution of
Eq. (15) in the following form:

A = Bs√
ω

exp (iφ + ihz), (16a)

dφ

dτ
= ω2

2ω2
D

B2
s , (16b)

B2
s = 8hc

1 +
√

1 + 4κ/ω2 cosh(2
√

κτ )
, (16c)

where h = B2
m

4c
(1 + B2

mω

2ω2
D

), Bm is the maximum soliton ampli-

tude, and κ = 2cω3h/ω2
D . This solution form allows for the

decrease in the wave packet amplitude, which is due to the
ionization loss. As follows from the formula for the phase
[Eq. (16b)], a distinctive feature of the solution A by contrast
with the nonlinear Schrödinger equation (NSE) solitons is a
significantly strong frequency modulation in the laser pulse.
Note that in terms of its structure, this frequency modulation
[Eq. (16b)] is similar to the frequency modulation, which
precise soliton solution (7) of the wave equation contains.
One can see from Eq. (16c) that the duration of the soliton-like
solution can be determined in terms of the dimensionless wave
number κ . The decrease in the soliton duration is accompanied
by a monotone increase in the carrier frequency ω and the
maximum amplitude Bm of the wave packet. Therefore, we

express κ in terms of the frequency and the value of the
parameter WB = ∫ +∞

−∞ B2
s dτ , which is retained in the process

of self-compression of the wave packet:

τp(ω) = 1√
κ

	 1

ω tan
(

WBω2

4ω2
D

) . (17)

The black line in Fig. 2(b) represents the obtained dependence
τp(ω), which agrees well with the results of numerical
simulation based on the system of equations (3), which one can
see in the figure. Note that, in this frequency range, the soliton
duration (17) can be approximated by the law τp ∝ ω−3.5.
In fact, due to the rapid dependence of the ionization rate
on the field intensity, the gas is essentially ionized within
the hump of the pulse where the highest frequencies of the
few-cycle soliton spectrum are located. This obviously enables
efficient extreme compression of the central part of the pulse
by slowly increasing the average frequency. This means that
the ionization losses are less essential compared with the case
of Fig. 2(b) at z/zD � 35. This stems from the fact that, due
to higher amplitudes, for few-cycle solitons ionization occurs
only in a small central part, even when reaching full ionization
degree as seen in Fig. 1(a), thus less affecting the other larger
part of the soliton. This effect is more pronounced on a second
short stage of extreme compression at z/zD ∼ 36 to 40 where
an actual single-cycle soliton further shortens by increasing
frequencies in a narrow central part only, as is seen in the left
inset of Fig. 1. At this stage, an average frequency should vary
slowly, as we see in the frequency dependence of the pulse
duration in Fig. 2(b): τp ∝ ω−6.

V. OPTIMIZATION OF PULSE SHORTENING

To avoid complex high-order soliton dynamics [25] and
thus to get the highest compression efficiency, the soliton
order should be less than two. We have scanned the high-order
soliton parameter N and present in Figs. 3(a) and 3(b)
the characteristic dependence of the pulse duration on z at
different N = 1, 1.2, 1.3, and 1.4 for β = 0.01 and 0.04. It is
seen from the figures that, with increasing β and N , the rate of
the the laser-pulse shortening increases. At N � 1.4, soliton
formation is observed in the process of insignificant radiation
into the continuous spectrum. Consequently, the duration of

FIG. 3. (Color online) (a), (b) Pulse duration as a function of z for different values of N and two different β: (a) β = 0.01 and (b) β = 0.04.
(c) Dependence of pulse-compression length on N and β.
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(c)

FIG. 4. (Color online) Dynamics of laser pulse at δ = 0.03, N = 2.1 for two cases: (a) for β = 0 (no ionization) and (b) β = 0.02. The
left-hand inset in panel (b) shows pulse distributions at z = 0 (blue line) and z = 4.3zdiss (red line). The right-hand inset in panel (b) shows
the dependence of the normalized pulse duration of the wave τp/τo on z (zD = 360). (c) Distributions of the power spectrum for the input and
compressed pulses at N = 2.1, δ = 0.03, and β = 0.02. The blue curve corresponds to the initial spectrum, and the red dashed curve to the
spectrum of the compressed pulse. The inset shows the spectra on logarithmic axes. The green lines show the approximation of the right-hand
spectrum of the compressed pulse using the power law S(ω) ∝ 1/ω3.5.

the soliton decreases monotonically [see Figs. 3(a) and 3(b)].
However, at N ∼ 1.4, oscillations appear depending on the
pulse duration τp(z). In Fig. 3(c) we presented the dependence
on the parameters β and N of the compression length zC

at which the duration of the wave packet is compressed to
250 as. It is seen that by choosing the parameters β and N
one can decrease the compression length zC significantly.
For example, if one specifies a pulse with the parameters
δ = 0.1 and N = 1 at β = 0.01 at the input to the medium,
then the compression length is zC = 83zD . For a pulse
with the parameters δ = 0.1 and N = 1.4 at β = 0.04, the
compression length decreases by a factor of 5.5 (zC = 15zD).

Note that, for longer pulses, the compression length in-
creases considerably. In this case, we can use initial conditions
as U (τ ) = √

2N δexp(iτ )/cosh(δτ ), which in the absence of
ionization (β = 0) disintegrates into a sequence of solitons
with parameters δn = (2n − 1)δ, where n = 1, . . . ,[N ] is a
sequence of integers [5]. Figure 4(a) presents the results of
numerical modeling for δ = 0.03 and N = 2.1. We see that,
at z = 0.89zdiss, the pulse is compressed with the highest
efficiency, and then it splits into two solitons with δ1 = 0.03
and δ2 = 0.09. Thus, the duration of the second soliton is three
times as short as that of the initial distribution. Note that the
second soliton lags behind the first one, as the soliton velo-
city γ decreases with increasing δ. We can expect higher
efficiency of pulse compression in the ionization regime.
Figure 4(b) shows the dynamics of a pulse with the same pa-
rameters, but with the ionization allowed for, as for β = 0.02.
At the initial stage (z < zD), when the ionization is absent (due
to the smallness of the amplitude in the pulse), the dynamics
of the laser field is close to the case of β = 0. As a result of the

splitting of the initial distribution, the high-intensity soliton
(4) is excited, which starts ionizing the gas additionally. As a
result, the intensive pulse starts compressing fast and outstrips
the second pulse, since the group velocity of the wave packet
grows with increasing carrier frequency. The left-hand inset in
Fig. 4(b) shows pulse distributions at z = 0 and z = 4.3zD , and
the right-hand inset shows the dependence of the normalized
duration τp of the wave packet on z, wherefrom it is seen that
the pulse is compressed by 100 times. In dimensional units, the
initial duration corresponds to 25 fs, and the duration of the
compressed pulse is equal to 250 as. The compressed pulse
contains 50% of the initial energy.

Figure 4(c) shows the normalized distributions of the power
spectra ∣∣∣∣S(ω) =

∫ +∞

−∞
Re[U (τ )]eiωτ dτ

∣∣∣∣
2

for the initial and compressed wave packets (the blue and red
dashed curves, respectively). It follows from this figure that the
spectrum of the output pulse becomes significantly wider and
drops smoothly towards the short-wave region. Specifically,
the average carrier frequency increases by 2.5 times (〈ωout〉 	
2.5〈ωin〉), and the average spectrum width increases by 60
times (〈�ωout〉 	 60〈�ωin〉). For finding the law of spectrum
drop, we plot the spectra on logarithmic axes. The green dots
show the approximation of the compressed-pulse spectrum.
The analysis shows that the short-wave part of the compressed-
pulse spectrum is described well by the law SFit ∝ 1/ω3.5. The
power-law behavior of the spectrum is connected with the fact
that effective energy transfer occurs from the main part of the

033856-6



EXTREME SELF-COMPRESSION ALONG WITH . . . PHYSICAL REVIEW A 92, 033856 (2015)

pulse to the short-wave part of the spectrum, as there is almost
no dispersion at high frequencies. This is an indication that the
formed field discontinuity is somewhat weaker compared than
that caused by a shock wave.

An additional investigation of the influence of the small
asymmetry of the soliton-type profile upon shortening the
laser-pulse duration was performed. The results of the nu-
merical simulations for the initial distributions,

U (τ ) =
√

2N δ(1 + ατ ) exp (iτ )

cosh (δτ )
, (18)

with different parameters α = 10−2, . . . ,10−1 (N = 2.1, δ =
0.03) demonstrate that the self-compression regime is stable.
The self-compression length increases only slightly due
to transformation of the initial distribution to the soliton
one.

VI. CONCLUSION

In conclusion, we have proposed and studied a method
of extreme pulse compression when the Kerr and ionization
nonlinearities are independently controlled by using a mixture
of gases with significantly different ionization potentials. In
this case, the system dispersion is controlled entirely by
varying the waveguide diameter because, under the usual
conditions, the gas dispersion is low compared with the
dispersion of the waveguide system. This allows the generation
of single-cycle pulses in the visible and ultraviolet domain. To
perform qualitative analysis of self-compression of soliton-like
laser pulses, we obtained a simplified system of equations,
which allows us to study the dynamics of the wave packet
in the case when the carrier frequency of the laser pulse can
vary significantly in the process of ionization of the gas with a

lower ionization potential. The field evolution is described by
a self-consistent system of two equations: (i) the equation for
the slow field envelope, and (ii) the equation of spatiotemporal
geometric optics, which describes the variation in the spectral
composition of the laser pulse in the process of gas ionization.
It is shown in the framework of this approximate system of
equations that the duration of the wave packet becomes equal to
zero at the finite length of the nonlinear medium. The duration
of the NSE solitons is shown to decrease with an increase in the
carrier frequency in the process of gas ionization obeying the
law τp ∝ ω−3, whereas for solitons of the derivative nonlinear
Schrödinger equation, the duration decreases obeying the
law τp ∝ ω−3.5. Good agreement of the results of numerical
simulation with the qualitative analysis is demonstrated.

Finally, we present estimates for experimental realization.
For a 25 fs, 0.2 mJ laser pulse (wavelength λ = 0.8 μm)
propagating in a capillary of 40 μm in diameter filled with
He under a pressure of 1 bar and Ar at a pressure of 2 torr, the
numerical simulations show that the pulse can be compressed
down to 250 as with pulse energy of 0.1 mJ. To obtain
higher-energy pulses, it is reasonable to consider laser pulses
at a wavelength of λ = 4 μm. Similar estimates for the same
value of the dispersion can be obtained by considering a
capillary with a wider diameter. If one employs a capillary
with a diameter of 90 μm, one can compress a 90 fs pulse with
an energy of 3.6 mJ down to a 0.9 fs, 1.8 mJ pulse.

ACKNOWLEDGMENTS

This paper was partially supported by the RFBR (Projects
No. 13-02-00755, No. 14-02-01180, No. 15-32-20641, and
No. 14-22-02076) and by the Ministry of Education and
Science (Agreement No. 02.B.49.21.0003).

[1] A. Nazarkin and G. Korn, Phys. Rev. Lett. 83, 4748 (1999).
[2] A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901

(2001).
[3] J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135

(2006).
[4] A. Sakovich and S. Sakovich, J. Phys. A: Math. Gen. 39, L361

(2006).
[5] S. A. Skobelev, D. V. Kartashov, and A. V. Kim, Phys. Rev. Lett.

99, 203902 (2007).
[6] R. K. Bullough and F. Ahmad, Phys. Rev. Lett. 27, 330 (1971);

J. C. Eilbeck et al., J. Phys. A 6, 1337 (1973).
[7] E. M. Belenov, P. G. Kryukov, A. V. Nazarkin, A. N. Oraevskii,

and A. V. Uskov, JETP Lett. 47, 523 (1988).
[8] A. E. Kaplan and P. L. Shkolnikov, Phys. Rev. Lett. 75, 2316

(1995).
[9] A. E. Kaplan, Phys. Rev. Lett. 73, 1243 (1994).

[10] D. F. Gordon, B. Hafizi, R. F. Hubbard, J. R. Peñano, P. Sprangle,
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