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The influence of Raman scattering and higher order dispersions on solitons and frequency comb generation in
silica microring resonators is investigated. The Raman effect introduces a threshold value in the resonator quality
factor above which the frequency-locked solitons cannot exist, and instead, a rich dynamics characterized by
generation of self-frequency-shifting solitons and dispersive waves is observed. A mechanism for broadening the
Cherenkov radiation through Hopf instability of the frequency-locked solitons is also reported.
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I. INTRODUCTION

Generation of broad frequency combs in microring res-
onators provides an attractive tool for many practical applica-
tions, where a miniature source of broadband, regularly spaced
spectral lines is required [1]. Typical experiments on microres-
onator combs have been performed with silicon nitride and
silica glass rings and spheres [2–4]. Four-wave mixing and
soliton formation are the most important building blocks of
microresonator combs, which can obviously be linked to the
supercontinuum generation widely studied in photonic crystal
fibers [5,6]. Comb generation has been optimized, e.g., by
engineering the group velocity dispersion (GVD) in order
to tune the modulational instability (MI) gain [3,7,8] and by
pumping close to the zero GVD points to benefit from efficient
Cherenkov radiation by solitons [4,9–12]. Note that a key
ingredient of supercontinuum generation in silica glass fibers
is the interplay between the self-frequency-shifting Raman
(SFSR) solitons and dispersive waves [6]. The Raman effect
in microresonator comb generation has received relatively little
theoretical attention so far [13,14]. Raman scattering in silica-
based microcavities has been exploited to obtain Raman lasing
(see, e.g., [15] and [16]). However, detailed understanding
of its role appears to be important from a fundamental
point of view and also to promote the use of promising
silica-based microresonators in ongoing research [17–19].
We also note that mode-locking in active laser oscillators
with Raman nonlinearity has been recently studied using
generalized nonlinear Ginzburg-Landau equations [20,21].

In this work we focus on comb generation through soliton
formation and analyze the existence and stability of cavity
solitons in the presence of the broadband Raman gain and
higher order dispersion effects. Whereas in optical fibers a cw
pump in the anomalous GVD range (and close to the zero
GVD point) automatically yields supercontinuum generation
driven by soliton dynamics [5,6], the role of solitons in
microresonator combs is more subtle, since soliton existence
and stability in resonators are not universal and critically
depend on the parameters. Trains of solitons associated with
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microresonator combs have been studied previously without
the Raman effect [9,22–24]. However, even in this case the
impact of soliton bifurcations on the comb regimes still has
not been explored fully. Below we demonstrate that comb
formation in silica microresonators with quality factors Q of
the order of 106 is strongly affected by a type of Raman solitons
whose frequency is locked to a specific value due to strict
balance between Raman gain and cavity loss. We term these
solitons frequency-locked Raman (FLR) solitons. However,
in silica microresonators with Q ∼ 108 and above [17–19],
the low cavity loss is not able to balance Raman gain and no
exact soliton solution has been found, while comb formation is
dominated by SFSR quasisolitons, similar to those observed in
free propagation experiments in optical fibers [6]. Both types
of solitons can emit resonant radiation (RR) contributing to
the shaping of frequency combs.

II. LUGIATO-LEFEVER EQUATION AND RAMAN
EFFECT IN MICRORING RESONATORS

To describe light dynamics in silica microrings, we use the
equation for the envelope E of the intracavity field Eeiβ0z +
c.c., where β0 = β(ω0),

i∂tE − D(−i∂z)E

+(i� − ω0 + 2gω0[(1 − μ)|E|2 + χ ])E + rAe−iωpt = 0,

(1)

D(−i∂z) =
M∑

m=1

ω(m)

m!
(−i∂z)

m,

(2)
∂2
t χ + γR∂tχ + �2

R(χ − μ|E|2) = 0.

Here ω(n) = ∂n
βω = (∂nω/∂βn)ω=ω0 , β is the propagation

constant of the waveguide the resonator is made from, ω0

is the reference cavity resonance, and the other resonances are
given by ωq = ω0 + 1

1!R ω′q + 1
2!R2 ω

′′q2 + 1
3!R3 ω

′′′q3 + . . . ,
where q is the modal number and q = 0, ± 1, ± 2, ± 3, . . .

counted relative to the pump at q = 0. ω′ = c/ng , ω′′ =
−(c3/n3

g)∂ω(ng/c), where ng is the group index at ω0 and c is
the vacuum speed of light. � is the rate of photon loss from the
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cavity and A is the dimensionless amplitude of the pump field,
r is the pump coupling rate, and ωp = 2πc/λp is the pump
frequency, which is detuned from ω0 roughly within half of the
cavity free spectral range. |E|2 is the dimensionless intracavity
intensity and g is the dimensionless nonlinear parameter (see
[25] and [26] for scaling). t is time and z is the coordinate
along the cavity, varying from 0 to 2πR, where R is the
radius, E(z = 0) = E(z = 2πR). χ is the Raman part of the
nonlinear susceptibility with the standard parameters used for
silica glass: μ = 0.18, γR = (16 fs)−1, �R ≡ [γ 2

R/4 + ω2
R]1/2,

and ωR = (12.2 fs)−1.
Equation (1) has been derived in detail in [26] in the

context of ring microresonators. In [26] it was pointed out that
this equation can be straightforwardly generalized to include
other physical effects, in particular, the Raman effect. We
have followed the approach in Ref. [26], the only difference
being that the nonlinear polarization includes, in our case, the
Raman term obeying the standard Raman oscillator equation
[27]. Indeed, the Raman part of the material susceptibility in
the classical approximation is well known to be described by
the oscillator equation driven by the intensity of the applied
field [27,28], which is our Eq. (2). A solution to Eq. (2) can
be expressed in an integral form and this has been a preferred
method of describing the Raman effect in supercontinuum
generation in optical fibers ([6]; cf. [28]). A model similar
to ours in a multimode coherently pumped Raman laser has
been reported in [29], where, however, the Raman effect was
treated quantum mechanically using a three-level model and
dispersion of the cavity modes was assumed to be linear.

Note here that there are two approaches widely used in
the literature to describe optical-field evolution in resonators.
One uses time as an evolution variable and relies on the
approximation of the modal dispersion through the expansion
of the frequency into series in the modal number (propagation
constant), and the other uses the distance along the cavity
length as an evolution variable and hence relies on the
expansion of the modal number as a function of the frequency.
Recently the first approach was used by Chembo and coauthors
[25,26], by Kippenberg and coauthors [12,22], and by us
[11], while the second approach is most often associated
with a series of papers by Haelterman and coauthors and by
many others [7,9,10,14,23,30–32]. In the latter case, periodic
boundary conditions still have to be applied in the spatial
coordinate, which, however, enters the model through the first
derivative. A significant advantage of the approach adopted
here is that it allows a straightforward theoretical study of
instabilities, since the instability develops in time and periodic
boundary conditions in space are easily implemented. On the
contrary, an attempt to study how instability develops along
the cavity length, which is a periodic coordinate, though not
impossible, runs into unnecessary mathematical difficulties
[32]. Also note that we avoid using here the terminology ”slow
time” (which is the distance along the cavity scaled to the group
velocity) and ”fast time” (which is the physical time) [31].

Introducing the normalization E = 1√
gω0τ

�e−iωpt , χ =
1

gω0τ
W , t = T τ , with τ = [2πR]/[c/ng] (so that the group

velocity coefficient becomes unity), and distance z = ZL

with L = 2πR (R is the resonator radius), we get a handier
form of the dimensionless generalized Lugiato-Lefever [33]

equation,

i∂T � −
M∑

m=1

Bm(−i∂Z)m�

+ (iγ − δ + 2[(1 − μ)|�|2 + W ])� + h = 0, (3)

1

τ 2�2
R

∂2
T W + γR

τ�2
R

∂T W + (W − μ|�|2) = 0, (4)

where Bm = ω(m)τ/(2πR)m/m! (B1 ≡ 1), γ = �τ , δ =
(ω0 − ωp)τ , h = rτ

√
gω0τA. Note that periodic boundary

conditions along the resonator circumference make it natural
to use a model with time, not space, being an evolution
coordinate and to treat Raman polarization through the
separate equation, Eq. (4), and not the convolution integral as
in fiber propagation problems. For a silica microresonator with
R = 400 μm and the waveguide diameter 1.2 μm considered
below and pumping at λp = 1.47 μm, we have the following:
the free spectral range (FSR) is c/(ngR) = 480 GHz or, in
dimensionless units, δFSR = 2π , the round-trip time τ = 13.12
ps, and the quality factor Q = τ (2πc/λp/γ ), which we vary
from 106 up to 108.

III. FREQUENCY-LOCKED AND
SELF-FREQUENCY-SHIFTING RAMAN SOLITONS

Exact soliton solutions of Eqs. (3) and (4) are sought in
the form �(T ,Z) = ψ(x), W (T ,Z) = w(x), where x = Z −
(v + 1)T and ψ , w obey

−iv∂xψ + B2∂
2
xψ − iB3∂

3
xψ

+ (iγ − δ + 2[(1 − μ)|ψ |2 + w])ψ + h = 0, (5)

(v + 1)2

τ 2�2
R

∂2
xw − (1 + v)γR

τ�2
R

∂xw + w = μ|ψ |2, (6)

where, for the sake of simplicity, we restrict ourselves to
the third-order dispersion (TOD). In what follows we rely
on numerical solutions of Eqs. (5) and (6) for the soliton
profiles found by a modified Newton method and on the
numerical stability analysis based on finding eigenvalues and
eigenvectors of the Jacobian derived from the linearization of
Eqs. (5) and (6) around the soliton solution.

The amplitude of the single-mode state (flat solution) at the
pump frequency, found from (iγ − δ + 2|ψ0|2)ψ0 + h = 0, is
multivalued (bistable) in the soliton existence range and the
solitons are nested in the background given by the root with
the smallest value of |ψ0| [see Figs. 1(a) and 1(b)]. Figure
1(a) shows bistability and soliton branches found with μ = 0
(upper) and μ = 0.18 (lower) and for γ = 0.02, δ = 0.1, B3 =
0. These solitons exist for some special values of v fixed by the
choice of the other parameters and found self-consistently with
the soliton profile, i.e., they are codimension 1 structures in
bifurcation theory terminology. Physically, different v’s imply
different carrier frequencies of the solitons and hence we term
such solitons FLR solitons. A transition between stable and
unstable regimes for FLR solitons is shown in Fig. 1(d). The
instability is the oscillatory (Hopf) one, as is well known in
the cavity soliton context (see [34] and references therein).
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FIG. 1. (Color online) (a) Soliton branches (B3 = 0), with and without the Raman effect, and bistability for δ = 0.1, γ = 0.02 (Q =
8.5 × 105), and B2 = 2.38 × 10−7. Thick traces denote soliton stability. (b) Spatial and (c) spectral representation of solitons with h = 0.0045
(gray) and h = 0.0089 (black). Inset in (c): Several cavity modes around the pump wavelength. (d) Hopf instability growth rate for the solitons
in (a). Inset: Raman soliton and Hopf mode spectra (linear scale) for h = 0.0089. (e, f) Spatial soliton propagation for h = 0.0045 (stable) and
h = 0.0089 (unstable), respectively. Dashed lines show soliton velocities calculated with the Newton method, demonstrating exact coincidence.

Figures 1(b) and 1(c) show spatial and spectral profiles of FLR
solitons. The Raman effect predictably induces a red-shift of
the carrier frequency corresponding to v < 0 [cf. Fig. 1(c)].
Propagation dynamics in space-time is shown in Figs. 1(e)
and 1(f) for solitons with h = 0.0045 (stable) and h = 0.0089
(Hopf unstable). Persistent oscillations of solitons are also
universally observed closer to the Hopf threshold [30,35,36];
see below.

FLR solitons can be found only when losses are present
(γ > 0) and exceed some critical level (see Fig. 2), while for
μ = 0 solitons in the Lugiato-Lefever model exist all the way
down to γ = 0 [11,37]. This can be seen from the momentum,
M ≡ i

2

∫ L

0 {ψ∂xψ
∗ − c.c}dx, balance equation, which for the

time-independent traveling wave-forms reads as

γMs = −
∫ L

0
w∂x |ψs |2dx. (7)

Thus localized solutions with w �= 0 give a finite right-hand
side and hence can only exist above some threshold in γ .
Figure 2 shows single- and double-peak soliton branches in the
M,γ plane in the presence of the Raman effect and without
higher order dispersions, for h = 0.003, δ = 0.1. While the
single-hump branches together with the double-hump ones
A and B2 form a well-known snaking bifurcation diagram,
the double-hump branch B1 is likely to be a part of a more
complicated “snakes-and-ladders” structure (see, e.g., [38]).

Figures 3(a)–3(d) show propagation dynamics seeded by a
pulse for three values of loss corresponding to a stable FLR
soliton [Fig. 3(a)], a Hopf-unstable FLR soliton [Fig. 3(b)],
and the low-loss (high-Q) range, where FLR solitons do not
exist [Figs. 3(c) and 3(d), respectively]. The first two cases
demonstrate convergence of the input pulse to either a stable

soliton [Fig. 3(a)] or a Hopf-unstable one [Fig. 3(b)], leaving
the cavity in the single-mode state. Exciting the cavity with
Q > Qth = 5.2 × 107 [Figs. 3(c) and 3(d)] creates a very
different dynamics. In this case we have observed cascaded
generation of localized pulses experiencing continuous fre-
quency shifts away from the pump field and towards longer
wavelengths. Thus, in the high-Q regime, instead of FLR
solitons, with v = const., we have SFSR quasisolitons, which
are essentially solitons of the nonlinear Schrödinger equations
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FIG. 2. (Color online) Soliton momentum branches vs loss with
μ = 0.18, B3 = B4 = · · · = 0 for single-peak (black line) and
double-peak [medium-gray (orange) line] solutions. Thick solid lines
show stability regions and ”H” marks the onset of Hopf instability.
The dashed vertical line at low γ marks the threshold quality factor
separating the unstable existence [see Fig. 3(b)] and nonexistence
[Figs. 3(c) and 3(d)] regions. T’s indicate turning points (local minima
of γ ) that are not further explored in this work. Inset: Real (dashed
lines) and imaginary (solid lines) spatial profiles of solitons around
the double turning point: A → B1,B2.
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FIG. 3. (Color online) Intracavity field after seeding with a pulse plus background: μ = 0.18, h = 0.003, δ = 0.1, B2 = 2.38 × 10−7,
higher order dispersion = 0. (a–c) Space-time evolution for γ = 0.012, γ = 0.005, and γ = 0.0001 (or Q = 1.4 × 106, Q = 3.3 × 106,
and Q = 1.7 × 108), corresponding to the excitation of stable FLR solitons, Hopf-unstable FLR solitons and SFSR solitons, respectively. (d)
Spectral representation of (c). (i–iv) Spatial profiles corresponding to dashed lines in (c), illustrating the growth of the nonlinear-Schrödinger-like
accelerating solitons. The field modulus, |ψ | (black line), and its imaginary part, Im(ψ) [gray (red) line], are plotted. Positive [dark-gray (blue)
area] and negative (light-gray) values of Im(ψ) illustrate where localized amplification and absorption are possible, respectively.

with complex dynamics due to interaction with the pump and
other dispersive waves. Qualitatively, it is not surprising that
FLR solitons cease to exist in the limit of low loss, pump,
and detuning, i.e., as Eqs. (1) and (2) become the nonlinear
Schrödinger equation, which has SFSR soliton solutions [6].

It is, however, not just when the propagation is close to that
in fibers that accelerating solitons appear. As discussed above
[and in agreement with our results; see, e.g., Figs. 3(c) and
3(d)], for γ → 0 no FLR solitons can exist, regardless of the
strength of the pump or the magnitude of the detuning.

FIG. 4. (Color online) FLR soliton profiles in spatial (a–c) and (d–f) spectral domains for μ = 0.18, γ = 0.02, δ = 0.1, h = 0.007. (a,d)
For the positive TOD, B3 = 2.48 × 10−10, giving the quiescent soliton. (b,e) For the negative TOD B3 = −2.48 × 10−10. Insets in (a,b) show
the Raman oscillator field, w. Solid lines in (d) and (e) correspond to spectra without the Raman effect. RR1(2) label the resonant radiation (RR)
roots. FWM peaks resulting from the interaction of pump and RR1 are also labeled. (c,f) B3 = 0.5 × 10−10, corresponding to the oscillatory
soliton in Fig. 6 at T = 920. Solid vertical lines represent the predicted resonances; dashed vertical line, the zero GVD. Numbers in (f)
correspond to m in Eq. (9).
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While dissipative solitons have been observed in silica
fiber loops [39,40], the influence of the Raman effect on
them has not been reported so far, which could be due to
picosecond pulse durations and low quality factors resulting
in frequency-locked propagation with negligible frequency
offsets. Note here that frequency-locked soliton states in
the SiN ring resonator were recently modeled numerically
[14] using an approach where the first derivative in the
generalized Lugiato-Lefever [33] equation is taken as the
propagation coordinate. The Raman effect was also included
there, however, its impact on the soliton dynamics was found
to be only quantitative and did not receive attention beyond a
brief comment. This is likely due to the fact that the Raman
line in SiN is very narrow compared to the silica one, so that
its impact on the soliton spectrum and dynamics is minimal.

Note that the cascaded SFSR soliton generation in Fig. 3(c)
is accompanied by an increase in the power integral, P =∫ L

0 |ψ |2dx, whose evolution is given by

1

2
∂T P = −γP + h

∫ L

0
Im(ψ)dx. (8)

Figures 3(i)–3(iv) show spatial field profiles at the distances
labeled (i)–(iv) in Fig. 3(c). Generation of pulses that are seen
to detach from the input one [see Figs. 3(i) and 3(ii)] is accom-
panied by growth of the power integral, which is possible only

if, at least locally,
∫

Im(ψ)dx > γP/h. The latter condition
is well satisfied for the growing pulses, whose imaginary parts
are shown in Figs. 3(iii) and 3(iv). These maintain the ∼ π/2
phase difference with the pump (exhibiting a pronounced
imaginary part) sustaining the growth condition. Note here that
frequency-locked combs have been demonstrated in high-Q
fused silica microrings in, e.g., [41–43]; however, their relation
to solitons was not investigated in those papers and additional
experimental and theoretical studies are required.

IV. RESONANT RADIATION OF STABLE
AND HOPF-UNSTABLE FLR SOLITONS

TOD gives rise to cavity solitons with radiation tails, which
have recently been reported numerically [9–11,44,45] and
observed experimentally [12,46]. RR is expected in general
for any localized nonlinear wave, including bright and dark
solitons and shock waves [6,47,48]. Emission of the RR is
known to induce the spectral recoil on the soliton core shifting
the soliton carrier frequency away from the zero GVD point
[6,49]. Figure 4 shows typical spatial and spectral soliton
profiles with μ,B3 �= 0. The two RR peaks are in agreement
with the expression for the resonance conditions derived in
[11]. Other spectral features occurring because of the nonlinear
four-wave mixing (FWM), e.g., between the radiation and the
pump, are labeled ”FWM.” A comparison of the soliton spectra
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FIG. 6. (Color online) (a) Oscillations in time T of the spectral maximum of a Hopf-unstable FLR soliton. (b) Fourier spectrum of the
oscillations shown in (a), revealing multiple frequency components separated by the Hopf frequency �H . (c) Periodic temporal dynamics
of the spectrum of the Hopf-unstable FLR soliton core and of its radiation tails. The dashed vertical line shows the zero-GVD wavelength.
(d) Spectrum of the radiation tail showing the formation of a frequency comb. Vertical lines show the prediction of new resonances from simple
theoretical considerations [see. Eq. (9)]. B3 = 5 × 10−11, δ = 0.1, γ = 0.02, h = 0.007, μ = 0.18.
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(see Figs. 8–10). Numerical simulations presented below use the full
dispersion profiles in (b).

with (red area) and without [solid (blue) curve] the Raman
effect does not reveal significant changes in the solitons, apart
from a slight tuning of the radiation frequency and amplitude
due to the red-shift of the core. The Raman effect enhances
the radiation tail for B3 > 0 (β3 < 0) since in this case the
spectral maximum of the FLR soliton is shifted closer to the
zero-GVD wavelength [see Figs. 4(a) and 4(d)]. The opposite
occurs for B3 < 0 (β3 > 0), similarly to what is known in fiber
propagation [6]. An interesting feature of the FLR solitons
is the existence of a quiescent soliton, v = 0, for B3 > 0
[see Fig. 5(a)]. This manifests an exact balance between the
radiation-induced spectral recoil and the Raman effect.

Figure 5(b) compares the growth rate of the Hopf instability
in the presence and in the absence of the Raman effect as a
function of B3 and for FLR solitons that are either stable
(h = 0.0055) or Hopf unstable (h = 0.007) when B3 = 0. For
μ = 0.18, i.e., due to the Raman effect, the growth rate is
not symmetric with respect to B3. We also note that large
values of TOD have unambiguous stabilizing influence on the
solitons. Sufficiently close to the Hopf instability threshold the

cavity solitons with and without the Raman effect form stable
breathing structures oscillating at the Hopf frequency �H [see
Figs. 4(c), 4(f), and 6]. A notable feature here is that the RR
of the breather is a set of peaks forming a Cherenkov comb or
an RR comb [see Figs. 6(c) and 6(d)]. The Cherenkov comb is
much broader than the single Cherenkov peak, thus transition
from stable to Hopf-unstable solitons significantly enhances
the wing of the overall resonator comb shaped by the dispersive
wave effects [see Fig. 6(c) and cf. Figs 4(d) and 4(f)]. These
transformations of the Cherenkov spectrum from a single line
into a comb [cf. Figs. 4(a) and 4(d) and Figs. 4(c) and 4(f)]
are also shown in Fig. 8(b) in Ref. [11]. The time-domain
spectrum of the oscillating FLR soliton [see Fig. 6(b)] shows
a number of well-defined spectral components separated by
�H . Each of these components serves now as a source of
Cherenkov radiation, so that the radiation phase-matching
condition derived in [11] [see Eq. (6) there] for the carrier
frequency of a stable cavity soliton has to be generalized
to the multifrequency structure, corresponding to the soliton
breather. The dimensionless form of this generalization is
readily expressed as

0 = m�H − vQm + B3Q
3
m

±
√

[δ + B2Q2
m − 4|�0|2]2 − 4|�0|4, (9)

m = 0, ± 1, ± 2, . . .

Here m�H are the frequencies of the soliton breather compo-
nents and Qm is the modal number corresponding to the RR;
the associated resonance frequencies in physical units can be
computed as ω0 + Qm[v + 1]c/[2πRng] [11]. An identical
generalization of the resonant condition for the multisoliton
breathers in optical fibers (nonlinear Schrödinger equation)
has been introduced in [50]. Figure 5(c) shows a graphical
solution of Eq. (10), and Figs. 4(f) and 6(d) map the predicted
resonances onto the numerically observed ones. We note
that new resonances appear not only around the Cherenkov
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frequency, but also across the spectrum of the soliton core
[cf. Figs. 5(c) and 4(f)]. Considering the complexity of the
dynamics impacting the instantaneous shape of the soliton
spectrum, the matching of the resonances found from Eq. (9)
with the numerical data can be transformed from qualitative to
quantitative if a fitting parameter controlling shift of the central
frequency is introduced in Eq. (9). A related, but notably
different in its realization and spectral manifestation, phe-
nomenon of multiple dispersive wave resonances in fibers with
dispersion modulation was recently explored in [51] and [52].

V. CW EXCITATION OF FREQUENCY COMBS

Observation of microring solitons was originally reported
by simply tuning the pump frequency across the bistability
range of the resonator [22]. Following this approach, we show
in Fig. 7(a) a bistability diagram for the single-mode state
and the families of the FLR solitons traced as a function of
the cavity detuning δ. Soliton stability intervals, shown by
the thick lines, shrink when B3 is changing from positive to
negative, due to interplay with the Raman effect, consistent
with Fig. 5(b). Though the Raman effect does not impact
the range of existence in the pump, it significantly narrows
it in δ [cf. Figs. 1(a) and 7(a)]. Excitation of the resonator
with a cw pump results in a variety of regimes, ranging from
spatiotemporal chaos to stable soliton propagation, observed
for various values of δ [9,22]. In order to investigate how these
regimes can be altered by the Raman effect we have computed
dispersion profiles [see Fig. 7(b)] for two microring resonators
made of silica strands with two different diameters, 4 and
1.2 μm, and a ring radius R = 400 μm. The 4-μm-diameter
resonator is pumped at 1 μm, close to its only zero-GVD
wavelength, when TOD is negative, so that towards the longer
wavelength from the pump the GVD is always anomalous. The
1.2-μm resonator is pumped close to 1.5 μm, where TOD is
positive and the zero-GVD point and normal GVD range are
towards the longer wavelengths.

For relatively low quality factors (Q ∼ 106) the dynamics
in both cavities is similar. For detunings outside the soliton
existence range in the interval labeled ”chaos” in Fig. 7(a)
and within the FLR soliton existence interval, but close to
its left boundary, the development of MI leads to chaotic
spatiotemporal patterns shown in Figs. 8(a), 8(c), 8(e), and
8(g). As the detuning is increased and FLR solitons become
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FIG. 9. (Color online) Comb generation in the microresonator
with a high quality factor (Q = 2.3 × 108) and silica strand diameter
d = 4 μm: λp = 1000 nm, δ = 0.1, μ = 0.18, γ = 10−4, h = 10−4.
(a) Spatial intensity distribution and (b) spectrum evolution.
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FIG. 10. (Color online) Comb generation in the microresonator
with a high quality factor (Q = 1.7 × 108) and silica strand diameter
d = 1.2 μm; λp = 1470 nm, h = γ = 10−4, μ = 0.18, δ = 0.1.
(a) Spatial intensity distribution and (b) spectrum evolution.

more stable, the MI of the cw pump leads to the formation
of sparsely separated solitons, which form a nice frequency
comb. FLR solitons emit dispersive waves, which broaden and
reshape the combs. All radiation peaks in the exact soliton
spectra shown in Fig. 4 can be traced in Fig. 8 as well and are
even more pronounced due to the large number of radiating
solitons. Note that the broad MI spectrum in Fig. 8(c) masks
the strong Cherenkov peak (RR1) at 1600 nm.

Figures 9 and 10 show comb generation with the same
cavity geometries and for the same pump wavelengths, but
when the FLR solitons do not exist since we have increased
the quality factor by two orders of magnitude, to Q ∼ 108.
Now cw MI generates SFSR quasisolitons, which are able to
reach large frequency detunings in the anomalous GVD range
in the 4-μm resonator without been appreciably attenuated
and, at the same time, to generate a significant amount of
dispersive radiation into the normal GVD range [see Figs. 9(a)
and 9(b)]. Increasing the pump levels leads to the formation of
shorter and more intense solitons and hence to stronger SFSR
solitons and broader combs. The frequency shift of the solitons
in the 1.2-μm resonator is, however, quickly arrested by the
normal GVD range extending towards longer wavelengths
and antagonistic with existence of solitons (Fig. 10). In fact,
RR in this case increases to very high amplitudes, so that
after some time, T > 300, it wipes out the solitons from the
resonator (see Fig. 10). Thus, when FLR solitons are replaced
by SFSR solitons due to an increase in the resonator Q the
sign of the TOD plays a crucial role in shaping the frequency
combs.

VI. CONCLUSIONS

In conclusion, we have studied the role of the Raman effect
in frequency comb generation in silica microresonators. We
have identified two different regimes of comb formation asso-
ciated with two different types of solitons. One type is the FLR
solitons existing in resonators with Q ∼ 106, and the other
is the SFSR quasisolitons dominating comb formation when
Q ∼ 108. In the former case the comb is formed by the static
soliton spectrum and the RR tails, while in the latter situation
the comb is dynamic and expands in time, similarly to the ex-
pansion of supercontinuum spectra generated in optical fibers
[6]. Factors limiting this expansion in microresonators require
further investigation. We also report significant broadening of
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the Cherenkov radiation spectrum through the formation of the
RR comb, when FLR solitons become Hopf unstable. Further
investigation of various aspects of the effects reported above is
warranted.

Finally, we acknowledge very recent investigations of
microring Raman solitons which are of particular relevance
for the current work. The soliton red-shift has been measured
experimentally in amorphous SiN in Ref. [53], which has a
broadband Raman gain, similar to silica, albeit with a different
natural frequency, �R , and damping, γR .
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