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Entanglement between exciton and mechanical modes via dissipation-induced coupling
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We analyze the entanglement between two matter modes in a hybrid quantum system consisting of a
microcavity, a quantum well, and a mechanical oscillator. Although the exciton mode in the quantum well
and the mechanical oscillator are initially uncoupled, their interaction through the microcavity field results in an
indirect exciton-mode–mechanical-mode coupling. We show that this coupling is a Fano-Agarwal-type coupling
induced by the decay of the exciton and the mechanical modes caused by the leakage of photons through the
microcavity to the environment. Using experimental parameters and for slowly varying microcavity field, we
show that the generated coupling leads to an exciton-mode–mechanical-mode entanglement. The maximum
entanglement is achieved at the avoided level crossing frequency, where the hybridization of the two modes is
maximum. The entanglement is also robust against the phonon thermal bath temperature.
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I. INTRODUCTION

Hybrid quantum systems consisting of quantum mechanical
oscillators have become a platform for many interesting
applications of quantum mechanics. In addition to being
a tool to understand the quantum to classical transition,
e.g., by creating entanglement between mechanical modes,
mechanical oscillators have potential applications in quantum
information processing. In this regard, there has been a
growing effort in exploiting the mechanical degrees of freedom
to engineer devices such as a microwave-to-optical (or vice
versa) frequency converter [1,2] and quantum memory [3,4].
Moreover, the quantum mechanical oscillator has been used
as an interface to transfer a quantum state from an optical
cavity to a microwave cavity [5,6]. Interest in merging
optomechanical resonators with solid-state systems has been
growing [7]; examples include ultrastrong optomechanical
coupling in a GaAl vibrating disk resonator [8,9], cooling
of phonons in a semiconductor membrane [10], a strong
optomechanical coupling in a vertical-cavity resonator [11],
and a surface-emitting laser [12]. Coupling a mechanical
oscillator to a microcavity that consists of a quantum well has
been considered in the context of generating hybrid resonances
[13] among photons, excitons, and phonons and studying
the optical bistability [13,14]. The physics of photon-exciton
coupling has been studied extensively as presented in a recent
review [15].

In this work we analyze the entanglement between the
mechanical mode and the exciton mode in a quantum well
placed at the antinode of a microcavity that is formed
by distributed Bragg reflectors (Fig. 1). Even though the
exciton and mechanical modes are initially uncoupled, their
interaction with a common quantized microcavity field results
in an indirect coupling. We show that this coupling is a
Fano-Agarwal-type [16,17] coupling induced by the decay
of the exciton and mechanical modes caused by the leakage
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of photons through the microcavity to the environment
(Purcell effect [18,19]). We analyze the entanglement in the
adiabatic regime, where the damping rate of the microcavity
exceeds the cavity-exciton coupling strength. A significant
amount of entanglement between the exciton and mechanical
modes can be created at the exciton-mode–mechanical-mode
hybrid resonance frequencies. We find that the maximum
entanglement between the two modes is achieved when the
exciton-mode–mechanical-mode hybridization is maximum.
Surprisingly, the entanglement persists at high temperature of
the phonon thermal bath. Our entanglement analysis is based
on realistic parameters from a recent experiment [12].

II. HAMILTONIAN AND LANGEVIN EQUATIONS

We consider a microcavity formed by a set of distributed
Bragg reflector mirrors and a quantum well placed at the
antinode. The microcavity is coupled to the mechanical motion
of the mirror via radiation pressure force and to the exciton
mode in the quantum well. An exciton in the quantum well can
be considered as a quasiparticle resulting from the interaction
between one hole in the valence band and one electron in the
conduction band. When the exciton radius is much smaller than
the average distance between neighboring excitons (∼n

−1/2
ex ,

with nex the exciton concentration), we treat the exciton as a
composed boson. In general, in the weak-excitation regime,
where the density of the excitons is sufficiently low, the
interaction between the neighboring excitons due to Coulomb
interaction is weak and can be neglected. However, in the
moderate-driving regime, the interaction between neighboring
excitons becomes strong and nonlinear [20–25] and leads
to interesting properties such as squeezing and bistability
[26–30]. In this paper we will consider the exciton as a
composed boson.

The coupled exciton-optomechanical system is described
by the Hamiltonian

H = ωaa
†a + ωexb

†b + ωmc†c + iεp(a†e−iωpt − aeiωpt )

− g0a
†a(c + c†) + ig(a†b − ab†) + αb†b†bb. (1)
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FIG. 1. (Color online) Schematic of a microcavity made of two
sets of distributed Bragg reflector (DBR) mirrors containing a
quantum well (QW) and coupled to a mechanical motion x of the
mirror. The quantum well is placed at the antinode of the microcavity
so that the exciton-mode–cavity-mode coupling will be maximum.
The black and the orange stripes corresponding to GaAs and AlAs
layers, respectively. The microcavity is driven by a pump laser of
normalized amplitude εp and has a damping rate κ . The DBRs are
shifted from the equilibrium position due to the radiation pressure
force.

Here the operators a, b, and c are annihilation operators for
a photon in the microcavity, an exciton in the quantum well,
and a phonon in the mechanical oscillator, respectively. The
microcavity is driven by a strong drive with frequency ωp;
ωa and ωex are the bare microcavity and exciton frequencies,
respectively. For the mechanical oscillator, the resonance
frequency is ωm and g0 is the single-photon optomechanical
coupling; g is the linear exciton-mode–cavity-mode coupling,
and 2α = 6e2aex/εA [20] is the nonlinear coefficient describ-
ing the exciton-exciton scattering due to Coulomb interaction
with e, aex, ε, and A being the electron charge, the exciton Bohr
radius, the dielectric constant of the quantum well, and the
quantization area, respectively. The strong drive of amplitude
εp = √

κP/�ωp, with P and κ being the drive laser power
and the microcavity damping rate, respectively, leads to a large
steady-state optical field in the microcavity, which increases
the occupation numbers in each mode and the optomechanical
coupling. The resulting steady-state intracavity amplitude in
turn shifts the equilibrium position of the mechanical oscillator
through radiation pressure force.

In the Hamiltonian (1), the first three terms in the first line
represent the free energy of the system while the last term
describes the coupling of laser drive with the microcavity. In
the second line, the first term describes the photon-phonon
coupling, the second term represents the linear exciton-
photon interaction, and the last term describes the exciton-
exciton scattering due to the Coulomb interaction. In a
frame rotating with the drive frequency ωp, the interaction
Hamiltonian (1) has the form

V = − �aa
†a − �exb

†b + ωmc†c − g0a
†a(c + c†)

+ ig(a†b − ab†) + αb†b†bb + iεp(a† − a), (2)

where �a = ωp − ωa and �ex = ωp − ωex. Using the inter-
action Hamiltonian (2), we derive coupled equations for the
macroscopic fields ā, b̄, and c̄. These equations are obtained
by replacing the operators with classical amplitudes in the

Heisenberg equations

˙̄a = −κ

2
ā + i�aā + gb̄ + ig0ā(c̄ + c̄∗) + εp, (3)

˙̄b = −γ

2
b̄ + i�exb̄ − gā − 2iα|b̄|2b̄, (4)

˙̄c = −γm

2
c̄ − iωmc̄ + ig0|ā|2, (5)

where γ is the exciton spontaneous emission rate and γm is
the damping rate of the mechanical oscillator. The steady-state
solution to the above equations reads

c̄s = ig0|ās |2
γm/2 + iωm

, (6)

ās = −γ /2 + i(�ex + 2αIb)

g
b̄s, (7)

b̄s = − gεp

κγ /4 + g2 − �̃a�̃ex + i(κ�̃ex/2 + γ �̃a/2)
,

�̃a(Ib) = �a − 2g2
0ωm

ω2
m + (γm/2)2

(γ /2)2 + �̃2
ex

g2
I 2
b ,

�̃ex(Ib) = �ex + 2αIb, (8)

where Ib = |b̄s |2 is the steady-state exciton number in the
quantum well. Note that Eq. (8) yields a nonlinear equation
for Ib in the form

Ib

g2

[(
κγ

4
+ g2 − �̃a�̃ex

)2

+
(

κ

2
�̃ex + γ

2
�̃a

)2]
= |εp|2.

(9)

The nonlinear equation for Ib is a signature that the exciton
number can exhibit bistability [13,14] behavior for a certain
parameter regime. In the following, we discuss exciton-
mode–mechanical-mode entanglement in the regime where
the system is stable.

The nonlinear quantum Langevin equations can be lin-
earized by writing the operators as the sum of the steady-
state classical mean value plus a fluctuating quantum part
a = ās + δa, b = b̄s + δb, and c = c̄s + δc. The linearized
Langevin equations of the fluctuation operators then read

δȧ = −κ

2
δa + i�̃aδa + gδb + G(δc + δc†) + √

κain, (10)

δḃ = −γ

2
δb + i�̃exδb − gδa − 2iαb̄2

s δb
† + √

γ bin, (11)

δċ = −γm

2
δc + iωmδc + G(δa† − δa) + √

γmcin, (12)

where G = g0
√

n̄s is the many-photon optomechanical cou-
pling with n̄s = |ās |2 the steady-state mean photon number in
the microcavity. For simplicity, we have chosen the phase of the
coherent drive such that ās = −i|ās |. Here ain, bin, and cin are
the Langevin noise operators for the microcavity, exciton, and
the mechanical modes, respectively. All noise operators have
zero mean 〈ain(ω)〉 = 〈bin(ω)〉 = 〈cin(ω)〉 = 0. We assume
that the microcavity and the quantum well are coupled to
a vacuum reservoir and thus the noise operator are δ cor-
related: 〈ain(ω)a†

in(ω′)〉 = 2πδ(ω + ω′) and 〈bin(ω)b†in(ω′)〉 =
2πδ(ω + ω′). However, the mechanical oscillator is coupled
to a thermal bath and the noise operators have the following
nonvanishing correlation properties in the frequency domain:
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〈cin(ω)c†in(ω′)〉 = 2π (nth + 1)δ(ω + ω′) and 〈c†in(ω)cin(ω′)〉 =
2πnthδ(ω + ω′), where nth = [exp(�ωm/kBT ) − 1]−1 is the
mean number of thermal phonons with kB the Boltzmann
constant and T the bath temperature.

III. EXCITON-MODE–MECHANICAL-MODE
ENTANGLEMENT

We next study the entanglement between the exciton and
mechanical modes in the adiabatic regime, where the micro-
cavity damping rate is larger than the exciton-cavity coupling
κ � g and the cavity dynamics reaches a quasistationary
state. We then adiabatically eliminate the cavity-mode degrees
of freedom by setting δȧ = 0 in Eq. (10). Substituting the
resulting equation into Eqs. (11) and (12), we obtain coupled
equations for δb and δc that describe the dynamics of the
exciton- and mechanical-mode evolutions

δḃ = −�b

2
δb + i(�̃ex − δωex)δb − 2iαb̄2

s δb
†

− 1

2
Gbc(δc + δc†) − λbain + √

γ bin, (13)

δċ = −γm

2
δc − i(ωm + δωm)δc − iδωmδc† − 1

2
Gbcδb

+ 1

2
G∗

bcδb
† + λ∗

ca
†
in − λcain + √

γmcin, (14)

where �b = γ + γb with γb = 4g2/κ[1 + (2�̃a/κ)2] the ef-
fective relaxation rate of the exciton due to the damping of
photons through the microcavity to the environment, also
known as the Purcell effect [18,19]. Note that the relaxation
rate of the exciton is increased by γb as result of interaction with
the cavity mode; γc = 4G2/κ[1 + (2�̃a/κ)2] is the effective
damping rate of the mechanical mode. In contrast to the
exciton-mode evolution, the cavity-induced relation does not
affect the decay term in the Langevin equation for δc; it
does however appear in the noise terms as manifested in
Eq. (14). Note also that the cavity-exciton coupling shifts
the exciton frequency by δωex = γb�̃a/κ . Similarly, the
cavity-mode–mechanical-mode coupling gives rise to a shift
δωm = 2γc�̃a/κ in the mechanical-mode frequency; λb(c) =√

γb(c)(1 + 2i�̃a/κ)[1 + (2�̃a/κ)2]−1/2 is the contribution of
the cavity-induced dissipation to the noise operator of the
exciton (mechanical) mode and finally

Gbc = √
γbγc(1 + 2i�̃a/κ) (15)

is the effective exciton-mode–mechanical-mode cross cou-
pling. Notice that the cross coupling depends on the effective
decay rates γb and γc induced by the photon leakage through
the microcavity, which is similar to the Fano-Agarwal effect
[16,17]. Dissipation-induced coupling has extensively been
explored in quantum optics in creating coherence in three-level
atomic systems [31–33]. Here we exploit the dissipation-
induced coupling to entangle two matter modes: the exciton
and mechanical modes.

To study the entanglement between the exciton and mechan-
ical modes, it is more convenient to use the quadrature opera-
tors defined by δxb = (δb† + δb)/

√
2, δyb = i(δb† − δb)/

√
2,

δxc = (δc† + δc)/
√

2, and δyc = i(δc† − δc)/
√

2 and similar

definitions for fluctuation operators xj,in,yj,in (j = a,b). The
equations for these quadrature operators in matrix form read

u̇ = Ru + η, (16)

where u = (δxb,δyb,δxc,δyc)T is vector of quadrature
operators and η = (Fb

x,in,F
b
y,in,F

c
x,in,F

c
y,in) with

Fb
x,in = −Re(λb)xa,in + Im(λb)ya,in + √

γ xb,in, Fb
y,in =

−Re(λb)ya,in − Im(λb)xa,in + √
γ yb,in, Fc

x,in = √
γmxc,in,

and Fc
y,in = −2 Re(λc)ya,in − 2 Im(λc)xa,in + √

γmyc,in. The
diffusion matrix R is given by

R =

⎛
⎜⎜⎜⎜⎝

−�−
b

2 −�+
ex Re(Gbc) 0

�−
ex −�+

b

2 −Im(Gbc) 0

0 0 − γm

2 ωm

−Im(Gbc) −Re(Gbc) −(ωm + 2δωm) − γm

2

⎞
⎟⎟⎟⎟⎠,

where �±
b = �b ± 4α Im(b̄2

s ) and �̃±
ex = �̃ex − γb�̃a/κ ±

2α Re(b̄2
s ).

We focus on the steady-state entanglement between the
exciton and mechanical modes. For this, one needs to find a
stable solution for Eq. (16) so that it reaches a unique steady
state independent of the initial conditions. Since we have as-
sumed ain, bin, and cin to be zero-mean Gaussian noises and the
corresponding equations for fluctuations δxj,in and δyj,in are
linearized, the quantum steady state for fluctuations is simply
a zero-mean Gaussian state, which is fully characterized by a
correlation matrix Vij = [〈ui(∞)uj (∞) + uj (∞)ui(∞)〉]/2.
The solution to Eq. (16) is stable and reaches the steady state
when all of the eigenvalues of R have negative real parts.
For all results presented in this work, the stability has been
checked using the nonlinear equation mentioned earlier. When
the system is stable the correlation matrix satisfies Lyapunov
equation RV + V RT = −D, where

D =

⎛
⎜⎜⎝

�b

2 0 0 0
0 �b

2 0
√

γbγc

0 0 γm

2 (2nth + 1) 0
0

√
γbγc 0 2γc + γm

2 (2nth + 1)

⎞
⎟⎟⎠

and the elements of the drift matrix D are obtained using
the correlations of the noise operators [34] defined earlier.
Note that the cavity-induced dissipation terms contribute to
the drift matrix. Notably, the off-diagonal element

√
γbγc =

Re(Gbc) contributes to the correlation between the exciton and
the mechanical modes.

In order to quantify the bipartite entanglement, we employ
the logarithmic negativity EN , a measure of bipartite entan-
glement [35,36]. For continuous variables, EN is defined as

EN = max[0, − ln 2χ ], (17)

where χ = 2−1/2[σ − √
σ 2 − 4 detV ]1/2 is the lowest simplis-

tic eigenvalue of the partial transpose of the 4 × 4 correlation
matrix V with σ = det VA + det VB − 2 det VAB [37]. Here
VA and VB represent the exciton and mechanical modes,
respectively, while VAB describes the correlation between the
two modes. These matrices are elements of the 2 × 2 block

form of the correlation matrix V ≡ ( VA VAB

V T
AB VB

). The exciton

and mechanical modes are entangled when the logarithmic
negativity EN is positive.
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FIG. 2. (Color online) Logarithmic negativity EN as a function
of the detuning � = �ex = �a normalized by the bare mechanical
resonance frequency ωm for the input laser power P = 24 μW and
for various values of the thermal phonon number: nth = 70 (red solid
curve), 100 (blue dashed curve), 130 (green dot-dashed curve), and
160 (magenta dotted curve). Here we use the experimental parameters
from a recent experiment [12] κ = 1/(5 ps), γ = 1/(0.5 ns), γm =
1/(60 ns), g0/2π = 220 MHz, g/2π = 2.4 GHz, ωm/2π = 20 GHz,
and α = 10−9 g.

We numerically studied the exciton-mode–mechanical-
mode entanglement by exploiting the indirect coupling me-
diated by the cavity field. Using realistic parameters from
a recent microcavity experiment [12], we plot in Fig. 2 the
logarithmic negativity EN as a function of the normalized
detuning �/ωm and for different values of the thermal phonon
occupation number nth. Here we assumed that the exciton-drive
and microcavity-laser detuning are the same, �a = �ex = �.
Figure 2 reveals that the exciton and mechanical modes are
strongly entangled, a demonstration of entanglement between
two matter modes. The maximum entanglement is achieved at
a frequency where maximum hybridization between the two
modes occurs. The entanglement expectedly decreases when
the thermal phonon number is increased; however, it persists
up to the thermal bath phonon number nth � 200.

In order to study the dependence of the generated entangle-
ment on the applied input laser power, we plot in Fig. 3 the
logarithmic negativity versus power for different values of the
cavity-laser detuning. As can be seen from this figure, to obtain
a maximum entanglement for a given cavity-laser detuning one
has to apply a certain laser power strength. Naively, one would
expect that an increase in the coupling strength (due to an
increase in power) to increase the entanglement. We however
find that there exists an optimum amount of power that is
needed to obtain the maximum entanglement for the realistic
set of parameters [12]. These peaks of the entanglement at
different values of the laser power strength and detuning can
be explained in terms of the exciton-mode–mechanical-mode
hybrid resonances. The peaks appear at laser powers where
the maximum repulsion between the eigenstates of the two
modes occur [see, e.g., Fig. 3(b)], indicating that the maximum
entanglement is achieved at the maximum of hybridization.

The optimized entanglement over the input power as a
function of detuning and for different values of the thermal
phonon number is shown in Fig. 4. The values of the cavity-
laser detuning for which the peaks of the entanglement occur
shifts when the thermal phonon numbers are varied. This is

(a)

(b)

FIG. 3. (Color online) (a) Logarithmic negativity as a function of
the drive laser power P and for different values of the normalized
detuning �/ωm = 1.05 (red solid curve), 1.10 (blue dashed curve),
1.15 (green dot-dashed curve), and 1.20 (magenta dotted curve). Here
we used the thermal photon number nth = 100. (b) Avoided level
crossing between the eigenstates of the exciton-mode–mechanical-
mode coupled system for nth = 100 and �/ωm = 1.20. Notice that
the maximum entanglement for �/ωm = 1.20 in (a) appears at the
power (P ≈ 17.8 μW), where the maximum hybridization between
the two modes occurs. All the other parameters are as in Fig. 2.

because the effective coupling [see Eq. (15)] between the
exciton and mechanical modes depends on the cavity-induced
damping rates. These damping rates rely on the number of

FIG. 4. (Color online) Logarithmic negativity as a function of the
normalized detuning �/ωm optimized over the input laser power
P range 1–50 μW and for different values of the thermal phonon
number: nth = 70 (red solid curve), 100 (blue dashed curve), and 130
(magenta dotted curve).
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phonons, thus changing the resonance frequency at which
maximum hybridization occurs.

We note that the exciton-mode–mechanical-mode entan-
glement can be detected by measuring the optomechanical
entanglement [38–40] and the photon-exciton entanglement.
Regarding application, the generated entangled state has
potential in one-way continuous-variable (CV) quantum com-
putation [41]. By forming a cluster of entangling gates, it is
possible to implement CV quantum computation using our
system. The exciton-mode–mechanical-mode entanglement
might have advantages over that obtained between optical
modes [41] due to the robustness of the entanglement as well as
the availability of semiconductor and microelectromechanical
technologies (MEMS). The exciton-mode–mechanical-mode
entanglement also means entanglement with mechanical os-
cillator or MEMS, significant progress towards entanglement
of macroscopic objects. Achieving entanglement in excitons
against its large decoherence is an important step forward as
it opens up new possibilities of merging quantum information
with existing matured and ubiquitous technologies of semi-
conducting devices.

IV. CONCLUSION

In conclusion, we have analyzed the entanglement between
two matter modes (exciton and mechanical modes) in a hybrid
quantum system consisting of a microcavity, a quantum well,

and a quantum mechanical oscillator. We have shown that
although the exciton and mechanical modes are initially
uncoupled, their interaction with the common microcavity
field results in dissipation-induced indirect coupling. This
indirect coupling is responsible for the entanglement between
the exciton and mechanical modes. Maximum entanglement
is achieved in the adiabatic regime where the microcavity
damping rate is larger than the coupling strengths and when the
two modes form a complete hybridization. Recent successful
experiments [9,10,12] in coupling mechanical systems with
microcavity pave the way for the realization of the proposed
entanglement generation between exciton and mechanical
modes via dissipation-induced coupling.
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