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Strongly driven nonlinear quantum optics in microring resonators
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We present a detailed analysis of strongly driven spontaneous four-wave mixing in a lossy integrated microring
resonator side coupled to a channel waveguide. A nonperturbative, analytic solution within the undepleted pump
approximation is developed for a cw pump input of arbitrary intensity. In the strongly driven regime self- and
cross-phase modulation, as well as multipair generation, lead to a rich variety of power-dependent effects;
the results are markedly different than in the low-power limit. The photon-pair generation rate, single-photon
spectrum, and joint spectral intensity (JSI) distribution are calculated. Splitting of the generated single-photon
spectrum into a doublet structure associated with both pump detuning and cross-phase modulation is predicted,
as well as substantial narrowing of the generated signal and idler bandwidths associated with the onset of optical
parametric oscillation at intermediate powers. Both the correlated and the uncorrelated contributions to the JSI
are calculated, and for sufficient powers the uncorrelated part of the JSI is found to form a quadruplet structure.
The pump detuning is found to play a crucial role in all of these phenomena, and a critical detuning is identified
which divides the system behavior into distinct regimes, as well as an optimal detuning strategy which preserves
many of the low-power characteristics of the generated photons for arbitrary input power.
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I. INTRODUCTION

Integrated optical microresonators continue to develop as a
promising platform for generating, controlling, and measuring
quantum states of light [1–10]. Advances in fabricating such
chip-based structures is enabling the construction of micron-
scale optical ring resonators with reported quality factors
Q of over 106 [4,11]. By exploiting the nonlinear optical
response of the ring medium, combined with the massive
enhancement of intraring pump intensity made possible by
the large Q values of the resonator, a wide variety of nonlinear
optical phenomena can be realized using relatively modest
input powers. Entangled photon-pair generation in silicon
microrings has been demonstrated using mere μW of pump
power [5,8], and optical parametric oscillation in a silicon
nitride microring has been observed using a pump power of
only 50 mW [12]. Arrays of coupled silicon microrings have
also been investigated as a potential source of heralded single
photons [13].

Such high-Q microrings are ideal for investigations of
strongly driven nonlinear optical effects. Depending on the
application, these effects can be undesirable or highly sought
after: Multipair production from an entangled photon pair
source contaminates the sought after energy correlation,
whereas optical parametric oscillation (OPO) arises only in
the strongly driven regime. Theoretical studies of quantum
nonlinear optics in integrated microresonators have typically
treated the nonlinearity perturbatively [14–21], which limits
calculations to quantities relating to a single generated photon
pair.

Recently we presented a general theoretical treatment of
photon-pair generation arising from spontaneous four-wave
mixing (SFWM) in microring resonators, fully accounting for
the quantum effects of scattering losses within the resonator
[14]. As our focus was on the effects of such losses, we limited
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ourselves to the low-power regime in which a perturbative
solution of the relevant equations of motion provides an
adequate description of the pair-generation process. In this
work we extend our analysis to a more strongly driven regime,
where perturbative strategies are inadequate and competing
nonlinear effects, including self-phase modulation (SPM) and
cross-phase modulation (XPM), become important. We restrict
ourselves to one of the most common pump states used in
experiment, that of a coherent, narrowband continuous-wave
pump beam, for which a nonperturbative, analytic solution to
the semiclassical equations of motion is achievable within the
undepleted pump approximation. This approximation limits
us to pump intensities below the onset of OPO, the threshold
for which is clearly indicated by our equations; OPO in such
structures will be the subject of a later communication. Even
below the OPO threshold, the subtle interplay between the
various nonlinear terms that couple the ring modes, as well
as the effects of multiple-photon-pair generation, give rise
to a rich variety of nonlinear optical phenomena that are
accessible by varying only two input parameters, namely the
pump intensity and detuning.

In Sec. II we begin by assembling the relevant Hamiltonian
and field operators for the ring-channel system. In Sec. III
a brief review and summary of our earlier [14] theoretical
framework is presented, wherein the system’s dynamics are
reduced to a set of coupled ordinary differential equations for
the ring operators alone. Steady-state solutions for the pump
mode, incorporating the effects of SPM and scattering losses,
are developed in Sec. IV, and the stability of those solutions
is studied. The equations of motion for the signal and idler
modes are then solved in Sec. V, enabling the calculation
of physical quantities including the photon-generation rate,
single-photon power spectrum, and joint spectral intensity
distribution. For each of these measurable quantities the
corresponding predictions at low and high pump powers are
compared, and we identify a set of experimental features, or
“smoking guns,” that distinguish the qualitative behavior at
high pump powers from that at low pump powers.
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FIG. 1. Integrated ring-channel system geometry with labeled
ring modes and incoming and outgoing outgoing channel fields.
Photons generated in the ring may exit to the physical channel or
be lost to the upper effective “phantom channel.”

II. HAMILTONIAN AND FIELDS

We consider an integrated microring resonator side coupled
to a channel waveguide, as illustrated in Fig. 1. We assume the
ring size and quality factor Q have been chosen such that the
ring accommodates individual resonant modes which are well
separated in frequency; that is, we are in the high-finesse limit.
While a simple generalization of our framework can be used
to treat arbitrarily many ring resonances, we restrict our model
for the time being to contain only three ring modes of interest.
The full system Hamiltonian can then be written [14] as

H = Hchannel + Hring + Hcoupling + Hbath, (1)

wherein Hchannel refers to the channel fields, Hring to the ring
modes, Hcoupling to the coupling between the channel and
ring, and Hbath to any modes into which ring photons may
be lost, as well the coupling of those modes to the ring modes.
Introducing channel fields ψJ (z), the channel Hamiltonian is

Hchannel =
∑

J

{
�ωJ

∫
dz ψ

†
J (z)ψJ (z)

+ i�vJ

2

∫
dz

[
dψ

†
J (z)

dz
ψJ (z) − H.c.

]}
, (2)

where the fields satisfy the usual commutation relations,

[ψJ (z),ψJ ′ (z′)] = 0,

[ψJ (z),ψ†
J ′ (z′)] = δ(z − z′)δJJ ′ . (3)

The index J ∈ {P,S,I } runs over three fields of interest,
respectively labeled P, S, and I for pump, signal, and idler,
with corresponding reference frequencies ωJ and propagation
speeds vJ . Each field ψJ contains frequency components
centered at ωJ , taken to be the resonant frequency of the
corresponding ring mode, and ranges over a bandwidth that
does not overlap with those of other fields ψJ ′ , but involving
excitation over sufficiently long distances that the Dirac δ

function in (3) is a good approximation [14]. By allowing

the fields to have different propagation speeds we include the
possibility of group velocity dispersion between the different
channel fields. The Hamiltonian (2) does assume that group
velocity dispersion within each channel field is negligible,
but it is straightforward to include arbitrary dispersion. The
spatial coordinate z ranges from z = −∞ to z = +∞ with
the coupling to the ring assumed to take place at a single point
z = 0. Within this point-coupling approximation the coupling
Hamiltonian becomes

Hcoupling =
∑

J

[�γJ b
†
J ψJ (0) + H.c.], (4)

in which we have introduced ring-channel coupling coeffi-
cients γJ , as well as discrete ring mode annihilation operators
bJ . In addition to the physical channel, to simulate scattering
losses in the ring we include an extra “phantom channel” into
which ring photons can be lost. The phantom channel similarly
accommodates three fields φJ (z) with respective propagation
speeds uJ and coupling coefficients μJ and is represented as
Hbath by a channel and coupling Hamiltonian identical to those
for the physical channel [14].

The Hamiltonian for the ring modes can be written as

Hring =
∑

J

�ωJ b
†
J bJ + HNL, (5)

where HNL includes all the nonlinearity in the system. Since
the fields will be most intense within the ring resonator, we
neglect channel nonlinearities and take HNL to contain only
ring mode operators. In this work we consider effects arising
from the third-order nonlinear susceptibility in the ring, taking

HNL = (��bP bP b
†
Sb

†
I + H.c.) + �ηb

†
P b

†
P bP bP

+ �ζ (b†Sb
†
P bSbP + b

†
I b

†
P bI bP ). (6)

The first term is responsible for SFWM, in which two pump
photons are converted to a signal and idler photon pair. The
second leads to SPM of the pump, while the latter two are
responsible for XPM between the pump and signal and idler
modes. It is safe to neglect SPM and XPM terms that involve
only the signal and idler modes, since the power in those modes
will be small compared to that in the pump mode. While we
focus in this work on SFWM involving a single pump mode,
it is straightforward to incorporate multiple pump modes into
our model. The nonlinear coupling coefficients �, η, and ζ

are not independent, as they arise from the same nonlinear
susceptibility, but we formally leave them arbitrary for the
time being so that the effects of each term in HNL can more
easily be identified. Obtaining expressions for these constants
depends on the approximations used to derive the nonlinear
sector of the ring Hamiltonian. We present our derivation of
this Hamiltonian and the associated constants �, η, and ζ in
Appendix A, arriving at an estimate of

� ≈ �ω2
P cn2

n2Vring
, (7)

with η = �/2 and ζ = 2�. In this expression n2 refers to the
nonlinear refractive index of the ring material, n to the linear
refractive index, and Vring to the volume of the ring mode.
For the silicon nitride rings used in typical experiments [12],
with n2 ≈ 2.4 × 10−19 m2/W [22] this yields � ∼ 10 Hz. For
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typical silicon rings [5], with n2 ≈ 2.7 × 10−18 m2/W [23]
this calculation predicts � ∼ 103 Hz.

III. EQUATIONS OF MOTION

The Heisenberg equations of motion for the field operators
ψJ (z,t) and φJ (z,t) and the ring operators bJ (t) follow from
the Hamiltonian (1), and can be simplified by the introduction
of auxiliary quantities [14]; here we summarize the results.

The equations of motion for the channel fields are(
∂

∂t
+ vJ

∂

∂z
+ iωJ

)
ψJ (z,t) = −iγJ bJ (t)δ(z), (8)

with similar expressions obeyed by the phantom channel fields
φJ (z,t). Note that the solutions to these equations contain a
discontinuity at z = 0, which is a consequence of our point-
coupling assumption. To avoid explicitly dealing with this
discontinuity, it is helpful to introduce formal channel fields
which we identify as those fields which are incoming and
outgoing with respect to the coupling point. We define the
incoming field ψJ<(z,t) by

ψJ<(z,t) = ψJ (z,t) for z < 0, (9)

and extend it to z � 0 by requiring everywhere that it satisfy
the homogeneous version of (8),(

∂

∂t
+ vJ

∂

∂z
+ iωJ

)
ψJ<(z,t) = 0. (10)

This confers a false future on ψJ<(z,t), corresponding to the
free evolution of the incoming field without any coupling to
the ring. We similarly define the outgoing field ψJ>(z,t) by
taking

ψJ>(0,t) = ψJ (z,t) for z > 0, (11)

and demanding that, for all z,(
∂

∂t
+ vJ

∂

∂z
+ iωJ

)
ψJ>(z,t) = 0, (12)

giving ψJ>(z,t) a false past to the left of the coupling point.
By an identical procedure we may define the incoming and
outgoing phantom channel fields φJ<(z,t) and φJ>(z,t). Since
we will primarily be concerned with the properties of the
photons generated in the ring, which exit to one of the channels
and propagate to positive z, all calculations involving the ring’s
output will be carried out on the outgoing fields ψJ>(z,t). Our
goal is therefore to construct an explicit solution for these
fields in terms of the incoming fields ψJ<(z,t). Indeed, since
these fields freely propagate, the field at large positive z (where
any measurements on the generated photons would occur) is
entirely determined by the outgoing field at z = 0,

ψJ (z,t) = e−iωJ z/vJ ψJ>(0,t − z/vJ ) for z > 0. (13)

It therefore suffices to construct a solution for ψJ>(0,t), which
can be very simply related to the incoming field ψJ<(0,t) and
the corresponding ring operator bJ (t) [14] via

ψJ>(0,t) = ψJ<(0,t) − iγJ

vJ

bJ (t). (14)

For each operator OJ (t) it will be convenient to define the
corresponding slowly varying barred operator OJ (t),

OJ (t) = eiωJ tOJ (t). (15)

In terms of these quantities and the incoming and outgoing
fields, the equations for the ring mode annihilation operators
bJ (t) are found to satisfy

[
d

dt
+ �P + 2iηb

†
P (t)bP (t)

]
bP (t) = −iγ ∗

P ψP<(0,t) − iμ∗
P φP<(0,t) − 2i�∗b

†
P (t)bS(t)bI (t)e−i�ringt , (16a)[

d

dt
+ �S + iζb

†
P (t)bP (t)

]
bS(t) = −iγ ∗

S ψS<(0,t) − iμ∗
SφS<(0,t) − i�bP (t)bP (t)b

†
I (t)ei�ringt , (16b)[

d

dt
+ �I + iζb

†
P (t)bP (t)

]
bI (t) = −iγ ∗

I ψI<(0,t) − iμ∗
I φI<(0,t) − i�bP (t)bP (t)b

†
S(t)ei�ringt , (16c)

where we have introduced the ring mode detuning

�ring = ωS + ωI − 2ωP , (17)

as well as the total effective linewidths �J ,

�J = �J + MJ , (18)

where �J and MJ denote the damping rates associated
with the physical channel and phantom channel couplings,
respectively:

�J = |γJ |2
2vJ

, MJ = |μJ |2
2uJ

. (19)

These total damping rates can be simply related to the quality
factors QJ of the resonator modes; for example, for the pump

resonance

QP = ωP

�P

, (20)

which yields QP ∼ 106 for a ring with �P = 1 GHz given
a pump with wavelength λ = 1550 nm. The coupled set
of driven, damped ordinary differential equations (16) fully
describes the nonlinear dynamics of the ring-channel system.
Combined with the channel transformation (14), a solution
to this system of equations permits the calculation of any
measurable quantities on the outgoing photons in the channel.

It is important to note at this stage that our treatment
neglects the effect of ring heating due to the large circulating
pump power present in the ring. Such thermal effects are
routinely observed in experimental investigations of microring
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systems and typically manifest as an effective power-
dependent drift in the resonant frequencies of the ring as it
undergoes thermal expansion [12]. For slowly varying and
cw pumps a simple way to account for this is through the
addition of a pump photon number-dependent correction to
each resonance. Our model already incorporates a similar
effect: SPM and XPM of each mode are represented by
precisely such terms. The inclusion of thermal resonance drift
can therefore be modeled by altering the coefficients η and ζ

in Eqs. (16), which would be replaced by effective constants
ηeff and ζeff ,

ηeff = η + ηthermal,

ζeff = ζ + ζthermal. (21)

While η and ζ are both positive, ηthermal and ζthermal would be
negative, since as the ring expands the resonant frequencies are
typically lowered [24]. Depending on the relative magnitude of
the thermal drift coefficients compared to the SPM and XPM
strengths, in some circumstances ηeff and ζeff may become
negative. While for the remainder of this work we neglect
thermal drift of the ring resonances, so that ηthermal = ζthermal =
0, we emphasize that our conclusions do not depend sensitively
on this assumption unless otherwise stated.

IV. STEADY-STATE PUMP SOLUTION

The set of coupled equations (16) treats both the pump and
signal and idler modes quantum mechanically, retaining the
operator nature of bJ (t) for each J . While this is necessary
if one wishes to fully account for the nonclassical properties
of the pump mode, in typical experiments [5,6] the system is
pumped by a coherent laser beam or pulse. In such situations
the initial pump state is described by setting each incoming
pump mode to a coherent state. The pump field can then
be well approximated by its expectation value, which is a
classical function of time. To implement this semiclassical
approximation we take

bP (t) → βP (t) = 〈bP (t)〉. (22)

In addition to treating the pump classically, we also implement
the undepleted pump approximation. In the equation for the

ring pump mode (16a) the term involving b
†
P bSbI accounts for

the effect on the pump mode when a signal-idler photon pair
is produced. Neglecting such effects, we drop this term and
instead take the semiclassical pump amplitude βP (t) to satisfy[

d

dt
+ �P + 2iη|βP (t)|2

]
βP (t) = −iγ ∗

P 〈ψP<(0,t)〉, (23)

in which we have assumed 〈φP<(0,t)〉 = 0, so that there is
no incoming pump energy in the phantom channel. Note
that while this approximation amounts to neglecting pump
depletion due to photon-pair generation, linear pump losses are
still accounted for in our model, as evidenced by the presence
of the damping term �P in Eq. (23).

In this work we consider the case of a continuous-wave
(cw) pump beam injected in to the channel, so that

〈ψP<(0,t)〉 = p

γ ∗
P

e−i�P t , (24)

where �P is the detuning of the injected pump from the ring
pump resonance, and p is a constant related to the input pump
power Pin in the channel at the coupling point via

p =
√

2�P Pin

�ωP

. (25)

In steady state, after the ring pump mode has come to
equilibrium with the channels, we expect there to be a constant
average number of pump photons NP in the ring, where

NP = lim
t→∞ |βP (t)|2. (26)

Defining β̃P (t) = ei�P tβP (t), from Eq. (23) we have{
d

dt
+ �P + i[2η|βP (t)|2 − �P ]

}
β̃P (t) = −ip. (27)

It is not difficult to show that NP will be constant only when
β̃P (t) has both constant amplitude and constant phase, so that
dβ̃P (t)/dt = 0. Setting this time derivative to zero in the above
equation and taking the modulus squared of the result, we find
that in steady state NP must be a root of the cubic equation

CP (NP ) = 0, (28)

where

CP (NP ) ≡ 4η2N3
P − 4η�P N2

P

+ (
�

2
P + �2

P

)
NP − |p|2. (29)

In the absence of SPM (when η → 0, or when the input power
is very small), NP is related to the incoming power by a simple
linear function,

NP = |p|2
�

2
P + �2

P

. (30)

The presence of SPM, however, complicates the task of
determining NP as a function of |p|2 for a given detuning �P

and nonlinearity η. The cubic equation (28) has, in general,
as many as three real, positive roots. Furthermore, only some
of these may correspond to stable solutions of (23). Before
solving for the roots of CP (NP ), we first derive a set of criteria
to assess the stability of any such solution.

To determine whether a given root of (29) is stable, we
conduct an analysis similar to that of Hoff, Nielsen, and
Andersen [25]. For a given constant solution β̃

(0)
P to (27), we

define the fluctuation amplitude δβP (t) via

β̃P (t) = β̃
(0)
P + δβP (t). (31)

Keeping terms up to first order in δβP , the equations of motion
satisfied by δβP (t) and δβ∗

P (t) can be written as

d

dt

(
δβP (t)

δβ∗
P (t)

)
= F

(
δβP (t)

δβ∗
P (t)

)
, (32)

where F is the 2 × 2 matrix given by

F =
(

−�P − i(4ηNP − �P ) −2iη
[
β̃

(0)
P

]2

2iη
[
β̃

(0)∗
P

]2 −�P + i(4ηNP − �P )

)
.

(33)
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For a given solution to be stable, we require the real part of
both eigenvalues of F to be negative, so that the fluctuation
term δβP (t) will decay with time. These eigenvalues are

f± = −�P ±
√

4η2N2
P − (4ηNP − �P )2. (34)

Now, Re(f−) < 0 automatically; demanding that Re(f+) < 0
yields the condition

4η2N2
P − (4ηNP − �P )2 < �

2
P . (35)

Solving this inequality, we find that any solution NP for
Eq. (28) corresponds to a stable solution of Eq. (27) if |�P | is
below a “critical detuning,” |�P | < �critical, where

�critical =
√

3 �P . (36)

When |�P | > �critical, a solution NP of (28) corresponds to a
stable solution of (27) if and only if NP lies outside a certain
interval, NP /∈ (N−,N+), where

N± = 1

3η

(
�P ± 1

2

√
�2

P − �2
critical

)
. (37)

Having established the stability criteria for a given NP ,
we return to the task of finding real, positive roots of (28).
While analytic expressions for the roots exist, it is more
instructive to use indirect arguments to study their nature.
Taking the derivative of CP with respect to NP , we find that
dCP /dNP = 0 at NP = N±. Thus, for subcritical detunings
(|�P | < �critical), where the N± are not purely real, there are
no local extrema; it is easy to show that a graph of CP (NP ) is
monotonically increasing and intersects the NP axis only once,
leading to a single real, positive root NP which corresponds to
a stable solution. On the other hand, for supercritical detunings
(|�P | > �critical), the function CP (NP ) goes through a local
maximum at N− and minimum at N+. The number of times
CP (NP ) intersects the NP axis is then determined by the power
parameter |p|2; varying it translates the graph of CP (NP )
vertically. If CP (N−) > 0 and CP (N+) < 0, the graph of the
function intersects the NP axis three times, indicating the
existence of three real, positive values of NP . The outer two
correspond to stable solutions, while the inner root is unstable.
These multiple cases are illustrated in Fig. 2, in which NP is
plotted as a function of input power for various detunings.
For values of |�P | above the critical detuning of

√
3 �P

there exists a region of optical bistability, in which two stable
equilibrium average pump photon numbers for a given input
power are permitted, a phenomenon that has been observed
experimentally in microring systems [24]. In this region the
two stable solutions are separated by an unstable (and therefore
physically inaccessible) range of NP . Also plotted in this figure
is the case of “optimal detuning,” �P = �

opt
P (NP ), in which

�P is not taken to be fixed, but chosen to exactly cancel the
effect of SPM as Pin is increased,

�P = �
opt
P (NP ) = 2ηNP , (38)

which restores the simple linear relationship between NP and
|p|2,

NP = |p|2
�

2
P

. (39)

FIG. 2. (Color online) Steady-state average photon number in the
ring pump mode as a function of channel input power with �P =
1 GHz, η = 1 Hz for (a) zero detuning, (b) subcritical detuning, (c)
supercritical detuning. Thin (red and blue) curves indicate stable
solutions, and the thick (green) curve indicates unstable ones. The
dashed line represents choice of optimal detuning to maximize NP at
each input power [�P = �

opt
P (NP ) = 2ηNP ].

This behavior is indicated by the dashed line in Fig. 2, which
corresponds to a stable pump solution for all input powers,
always lies on or above the fixed-detuning curves, and at
each input power corresponds to the choice of detuning that
maximizes NP .

V. SIGNAL AND IDLER DYNAMICS

Having developed the steady-state pump solution, we return
to the signal and idler equations of motion. We first develop
an exact solution to these equations, valid for a cw pump of
arbitrary intensity, and then use this solution to calculate the
photon-pair-generation rate, as well as the one- and two-photon
spectra of the generated photons.
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A. Exact solution

We begin by writing Eqs. (16b) and (16c) for the signal and
idler ring operators in the presence of a classically described
cw pump that leads to a ring pump amplitude of the form
βP (t) = βP e−i�P t , where βP is a constant. Letting b̃x(t) =
ei�P tbx(t) for x = S,I we obtain

d

dt

(
b̃S(t)

b̃
†
I (t)

)
= M

(
b̃S(t)

b̃
†
I (t)

)
+ D(t), (40)

where M is the 2 × 2 coupling matrix defined by

M =
(

−�S − i(ζ |βP |2 − �P ) −i�β
2
P

i�β
∗2
P −�I + i(ζ |βP |2 − �P )

)
,

(41)

and D(t) the driving term responsible for quantum fluctuations
from the physical and phantom channels,

D(t) =
(−iei�P t [γ ∗

S ψS<(0,t) + μ∗
SφS<(0,t)]

ie−i�P t [γIψ
†
I<(0,t) + μIφ

†
I<(0,t)]

)
. (42)

In obtaining M we have assumed that the ring resonances
are equally spaced, so that �ring = ωS + ωI − 2ωP = 0; the
pump detuning, however, is left arbitrary. Previously [14] we
employed a perturbative approach in the frequency domain to
solve these equations, while ignoring the effects of SPM and
XPM. While this provides an adequate description of the pair-
generation process for low pump powers, a nonperturbative
strategy is needed to treat the strongly driven case. In the
cw regime, where M is time independent, this coupled set of
linear ordinary differential equations can be solved exactly in
the time domain for arbitrary pump intensities by taking(

b̃S(t)

b̃
†
I (t)

)
=

∫ t

−∞
dt ′G(t,t ′)D(t ′), (43)

where the 2 × 2 matrix Green’s function G(t,t ′) is given by

G(t,t ′) = e
∫ t

t ′ Mdt ′′ = eM·(t−t ′) =
(

gD(t,t ′) gA(t,t ′)
g∗

A(t,t ′) g∗
D(t,t ′)

)
. (44)

For simplicity, we henceforth assume the ring-channel cou-
pling constants and propagation speeds for each mode are the
same, γJ = γ, vJ = uJ = v, and μJ = μ so �J = � for each
J . The matrix elements gD and gA are then given by

gD(t,t ′) = e−�(t−t ′)

×
{

cosh[ρ(t − t ′)] − i
ζNP −�P

ρ
sinh[ρ(t−t ′)]

}
(45)

and

gA(t,t ′) = −i�β
2
P

ρ
sinh[ρ(t − t ′)], (46)

in which we have introduced the dynamical parameter ρ,

ρ =
√

�2N2
P − (ζNP − �P )2. (47)

Depending on the pump photon number NP and detuning
�P , ρ may be either purely real, purely imaginary, or exactly

zero. Indeed, as becomes clear in the following sections, ρ

serves as an important parameter in characterizing the system’s
behavior.

With explicit solutions written for the ring operators b̃J (t),
we can make use of the incoming-outgoing channel field
relation (14) to determine ψJ>(0,t). We find for the signal

ψS>(0,t) =
∫

dt ′[qSS(t,t ′)ψS<(0,t ′) + pSS(t,t ′)φS<(0,t ′)

+ qSI (t,t ′)ψ
†
I<(0,t ′) + pSI (t,t ′)φ

†
I<(0,t ′)],

(48)

where we have introduced the temporal response functions
qxx ′ (t,t ′) for the physical channel and pxx ′ (t,t ′) for the phantom
channel,

qSS(t,t ′) = δ(t − t ′) − |γ |2
v

θ (t − t ′)e−(�+i�P )(t−t ′)

×
[

cosh[ρ(t − t ′)] − i
ζ |βP |2 − �P

ρ
sinh[ρ(t − t ′)]

]
,

(49)

and

qSI (t,t ′)

= −γ 2�β
2
P

vρ
θ (t − t ′)e−i�P (t+t ′)e−�(t−t ′) sinh[ρ(t − t ′)].

(50)

The phantom channel response functions are related to these
via

pSS(t,t ′) = μ∗

γ ∗ [qSS(t,t ′) − δ(t − t ′)] (51)

and

pSI (t,t ′) = μ

γ
qSI (t,t ′). (52)

Similar response functions pIx(t,t ′) and qIx(t,t ′) can be
introduced for the idler fields, which, due to our assumption
of equal coupling coefficients and propagation speeds for the
signal and idler fields, are identical to those for the signal:
pIS = pSI , pII = pSS, qIS = qSI , and qII = qSS .

B. Photon-generation rate

Armed with explicit expressions for the outgoing fields ψS>

and ψI>, we can calculate any measurable quantity related
to the generated signal and idler photon pairs. Of particular
interest is the photon-pair-generation rate, one of the primary
figures of merit used in assessing the practical utility of the
ring-channel system. The steady-state outgoing flux of signal
photons JS into the physical channel can be calculated via

JS = lim
t→∞ v〈ψ†

S>(0,t)ψS>(0,t)〉 = lim
t→∞

2�

�

∫
dt ′|qSI (t,t ′)|2.

(53)
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FIG. 3. (Color online) Real and imaginary parts of ρ as a function
of NP for zero, subcritical, and supercritical detunings, indicating
that ρ is always either purely real or purely imaginary. The horizontal
(red) line indicates ρ = �. The transition between ρ being purely
imaginary and purely real occurs at the points NP = �P /3� and
NP = �P /�, respectively. For supercritical detunings, there exist
points where ρ = � (represented on the plot by red diamonds),
indicating the onset of OPO behavior. The nonlinear parameter �

is taken as � = 10 Hz.

Computing the integral, we find

JS = 2��2N2
P

�
2 − ρ2

. (54)

The nature of the scaling of JS with pump photon number
NP depends intimately on the character of ρ, the behavior
of which as a function of NP for various detunings is
illustrated in Fig. 3. Recalling (47), we find that ρ is real when
NP ∈ [�P /3�,�P /�], with ρ = 0 at the end points of this
interval, and imaginary otherwise. For low enough NP , when
ρ ≈ i|�P |, JS scales quadratically with the number of pump
photons NP . Since in this regime NP is directly proportional to
the channel input power Pin, the overall scaling of JS with Pin

remains quadratic, in agreement with experiment [5]. As the
pump power increases, however, the scaling of JS is affected
by several separate power-dependent processes.

First, for a fixed-detuning �P , the SPM-induced drift of
the pump resonance slows the scaling of NP with channel
input power Pin, as demonstrated in Fig. 2. Second, XPM
between the pump, signal, and idler modes effectively shifts the
resonance lines of the signal and idler modes, compromising
the resonance enhancement of the pair generation process.
Finally, for supercritical detunings |�P | > �critical, ρ → �

when NP → N±, where N± are the same two photon numbers
that define the stability of the pump solution (37). In that
limit the photon flux JS formally diverges. This unphysical
prediction corresponds to the onset of OPO [11,12]. As this
threshold is approached, stimulated emission leads to photon
pairs being generated faster than the rate at which they are
removed from the ring, preventing the system from reaching a
steady state within our model. We are prevented from treating

this case by our assumption of an undepleted pump. Our
results are expected to be valid when the intraring conversion
efficiency Ering is much less than unity; this efficiency, defined
as the ratio between the steady-state signal (or idler) and pump
photon numbers, can be expressed as

Ering = JS

2�NP

= �2NP

�
2 − ρ2

. (55)

While in future work we intend to investigate the OPO regime
and the associated effects of pump depletion, for the time
being we restrict ourselves to regimes where Ering  1; in all
examples presented below this inequality is satisfied.

Perhaps most remarkable is the special regime of optimal
detuning, wherein �P is chosen to maximize NP at each
channel input power, �P = �

opt
P (NP ), as defined in Eq. (38).

For this choice ρ = 0 identically for all NP ,

ρ =
√

�2N2
P − (ζNP − �P )2

=
√

�2N2
P −

(
2�NP − 2

�

2
NP

)2

= 0. (56)

The photon-pair flux then maintains its quadratic scaling with
both NP and channel input power Pin over its entire domain:

JS = 8�3�2

(�ωP )2�
6 P 2

in. (57)

This cancellation between the effects arising from photon-pair
generation, XPM, and the SPM-dependent detuning strategy
�

opt
P (NP ) arises from the simple fixed relationship between the

associated nonlinear coupling strengths �, η, and ζ . Crucial
for this phenomenon is that the strength of the photon-pair-
generation process scale quadratically with the pump photon
number NP . This cancellation effect would therefore not be
possible using, for example, spontaneous parametric downcon-
version, the strength of which would scale linearly with NP .
The presence of thermal resonance drift would not compromise
the existence of an NP -dependent detuning strategy that yields
ρ = 0 over all NP , though such a strategy would no longer
correspond to that which also linearizes and maximizes the
relationship between NP and channel input power.

The photon-pair-generation rate as a function of channel
input power is plotted in Fig. 4 for various values of �P

alongside this optimal detuning case. For lower powers, when
SPM and XPM are negligible, a pump beam with �P = 0 gives
the best scaling of JS . For intermediate powers the detuning
may be tweaked to combat SPM and XPM in order to maximize
JS , while for high powers the optimal detuning strategy of
�P = �

opt
P (NP ) beats any fixed subcritical detuning. The

behavior of these curves suggests a simple experiment to
identify the presence of nonperturbative, strongly driven
effects: One could simply measure the outgoing signal or
idler power as a function of pump input power for a set of
fixed, subcritical pump detunings. For fixed nonzero detunings
�P < �critical, strongly driven effects are indicated by the
presence of a global maximum of generated signal power at
intermediate pump input power, followed by decreasing signal

033840-7



Z. VERNON AND J. E. SIPE PHYSICAL REVIEW A 92, 033840 (2015)

FIG. 4. (Color online) Photon-pair-generation rate as a function
of channel input power for various detunings. The dashed curve
indicates the optimal detuning case. System parameters for this plot
are η = 1 Hz, � = 1 GHz.

power approaching an asymptotic value of

�ωS lim
NP →∞

JS(NP ) = �ωS

2�

3
. (58)

For critically coupled ring systems � ≈ �/2 [14], so the
asymptotic signal power can be related to the total effective
ring linewidth � as simply �ωS�/3. If thermal detuning of
the ring resonances is included, this asymptotic power will be
different; however, the qualitative behavior of the signal power
as a function of pump power will be unchanged.

C. Single-photon spectrum

Another physical quantity of interest is the spectral line
shape of signal and idler photons that are emitted from the
ring. For low-power cw pumps these single-photon spectra
typically exhibit a Lorentzian line shape [5,6,14] with a char-
acteristic width determined by the total effective linewidths
of the microring cavity resonances. As we now demonstrate,
these spectral characteristics are significantly different in the
strongly pumped regime. We develop results for the signal
field spectrum; the idler field will have identical properties.

We define the power spectrum [27] for the signal channel
field as

νS(ωs ; t) = lim
T →∞

1

T

∫ t+T/2

t−T/2
dt

∫
dτ√
2π

g(1)(t,t + τ )eiωsτ ,

(59)

where the first-order temporal coherence function g(1)(t1,t2) is
defined by

g(1)(t1,t2) = v〈ψ†
S>(0,t1)ψS>(0,t2)〉

= �

�

∫
dt ′q∗

SI (t1,t
′)qSI (t2,t

′). (60)

In writing (59) we have introduced the relative frequency
coordinate ωs , which corresponds to a frequency offset from

the ring reference ωS . The physical frequency ωs associated
with ωs is therefore

ωs = ωS + ωs. (61)

In the remaining sections we adopt this notation of lowercase
subscripts for frequency offsets: ωs for the signal, ωp for the
pump, and ωi for the idler.

Evaluating (60) and setting t1 = t,t2 = t + τ we obtain

g(1)(t,t + τ )

= ��2N2
P

ρ
ei�τ e−�|τ | ρ cosh[ρ|τ |]+� sinh[ρ|τ |]

�
2 − ρ2

, (62)

which is independent of t , depending only on the relative time
difference τ , as would be expected for a cw pump. Taking the
Fourier transform, we arrive at an expression for the line shape,

νS(ωs)

= 4���2N2
P√

2π |� − ρ + i(ωs − �P )|2|� + ρ + i(ωs − �P )|2 ,

(63)

with an identical equation for the idler line shape νI (ωi). This
expression takes the form of a product of two Lorentzians.
We consider first subcritical detunings. When ρ is imaginary,
these Lorentzians have identical characteristic widths δω = �

and are centered on ωs = �P ± |ρ|. For low powers, when
ρ ≈ i|�P | the spectrum is therefore peaked at ωs = 0 and
ωs = 2�P , in agreement with the perturbative calculation
[14]. This splitting is easily understood as a consequence
of the trade-off between energy conservation and resonance
enhancement of the pair generation process. As illustrated in
Fig. 5, when a photon pair is produced with a detuned pump,
either the signal photon or idler photon in a pair, but not both,
can be generated within a ring resonance; energy conservation
then requires the other to be generated with a frequency that
lies away from its corresponding resonance. This is seen in
the NP → 0 limit of Fig. 6(b). At sufficient pump photon
number NP a similar splitting can arise from the effective
XPM-induced detuning of the signal and idler ring resonances
even for a pump with �P = 0, as seen in Fig. 6(a) for large
NP . When �P = 0 the line shape begins as a singly peaked
Lorentzian, eventually splitting to a doublet structure when ρ

becomes imaginary as a consequence of XPM.
For nonzero �P , as NP increases, XPM effectively

counters the pump detuning and the extent of this splitting
is reduced as |ρ| decreases, eventually vanishing when
NP = �P /3�. If NP is increased further, ρ becomes real
and ceases to contribute to spectral splitting, resulting instead
in an effective correction to the linewidth. The line shape
then takes the form of a product of two Lorentzians, both
centered on ωs = �P , with respective widths δω± = � ± ρ.
As ρ becomes comparable to �, the smaller of these two
widths becomes dominant, leading to a line shape with overall
effective width δω ≈ � − ρ. For subcritical detunings, as
demonstrated at large NP in Fig. 6(b), the spectral splitting is
then resumed as ρ once again becomes imaginary.

For supercritical detunings, as the threshold for OPO is
approached ρ → � and the bandwidth of the emitted signal
and idler photons becomes arbitrarily narrow, as seen in
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FIG. 5. (Color online) Origin of splitting in the signal and idler
line shapes. Center (green), right (blue), and left (red) curves indicate
pump, signal, and idler resonances, respectively, and could represent
the enhancement factor [26] that would characterize the ratio of the
intensity in the ring to the incident channel intensity in a linear
experiment. The dashed vertical (green) line indicates a pump detuned
by �P , which leads to a generated pair having either its signal or its
idler photon detuned by ∼2�P from the corresponding resonance, as
indicated by the signal and idler pairs connected by dashed black lines.
The presence of pairs from both cases leads to a doublet structure for
both the signal and idler line shapes.

Fig. 6(c). This follows from our idealization of the pump as an
indefinitely coherent cw beam; in actual experiments the band-
width of the generated photons will become comparable to that
of the pump, a phenomenon that has been observed in strongly
pumped experiments on silicon nitride microrings [12].

Finally, as shown in Fig. 6(d), in the special case of optimal
detuning when �P = �

opt
P (NP ), so that ρ = 0, the line shape

remains peaked at a single NP -dependent frequency for each
NP , with unchanging characteristic width δω = �, precisely
mimicking the low-power result at zero detuning.

Experimentally, measuring the signal or idler line shape as
a function of input power for a nonzero, subcritical detuning
as in Fig. 6(b) would reveal the richness of the strongly driven
regime, and illustrate the behavior of the ρ parameter, which
incorporates the effects of both XPM and pair generation.

D. Joint spectral intensity

To assess the degree of spectral correlation between the
signal and idler modes, it is instructive to study the joint
spectral intensity distribution of the generated photon pairs.
While it is straightforward to define this quantity for a system
driven by a train of weak pump pulses, in which multipair
generation can be neglected, it is a more subtle task to craft
a sensible measure of spectral correlation in the strongly

FIG. 6. (Color online) Spectral line shape νS(ωs) scaled to unit maximum vs ring pump photon number NP . For each plot we take
� = 1 GHz and � = 10 Hz. (a) �P = 0, (b) �P = 0.8�critical ≈ 1.4 GHz, (c) �P = 1.5�critical ≈ 2.6 GHz, and (d) �P = �

opt
P (NP ) = 2ηNP .

The origin of the frequency axis corresponds to the ring resonance at ωS .
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driven cw regime. In particular, there is no single function
that characterizes a joint probability amplitude of signal and
idler photons, since, in general, there will be far more than two
photons in the quantum state of the signal and idler modes.
Furthermore, even for weak cw pumps, if one introduces
outgoing channel annihilation operators cJ (ωj ) via

ψJ>(0,t) =
∫

dωj√
2π

cJ (ωj )e−iωj t (64)

and naively calculates expectation values of the form
〈c†S(ωs)c

†
I (ωi)cS(ωs)cI (ωi)〉, the idealization of a zero-

bandwidth cw pump leads to ill-defined expressions involving
the square of Dirac δ distributions.

To resolve these difficulties, in Appendix B we develop a
model of a typical experiment used to characterize the JSI for
weakly driven systems, in which the coincidence count rate of
signal and idler photons at respective frequencies ωs and ωi is
measured. We the extend the definition of the JSI to strongly
driven systems by defining the JSI to equal the calculated
outcome of such an experiment for arbitrary input power. This
definition reduces to the usual result for single-pair output
states and serves as a sensible measure of spectral correlation
between the signal and the idler fields. This coincidence rate
can be written as

Icorr(ωs,ωi) = v2δt

(2π )2

∫
dt1 · · ·

∫
dt4[eiωs (t3−t1)eiωi (t4−t2)T (t1)T (t2)T (t3)T (t4)〈ψ†

S>(t1)ψ
†
I>(t2)ψS>(t3)ψI>(t4)〉], (65)

where T (t) is the Fourier transform of a transmission function T̂ (ω) that resolves the frequencies of the signal and idler photons
prior to detection,

T (t) =
∫

dω√
2π

T̂ (ω)e−iωt , (66)

and δt is the temporal resolution of the coincidence counter. In this expression the spatial dependence of the field operators
ψJ>(z,t) has been suppressed; the signal and idler arms of the JSI measurement are assumed to occur at balanced distances from
the ring-channel coupling point.

The four-time expectation value 〈ψ†
S>(t1)ψ

†
I>(t2)ψS>(t3)ψI>(t4)〉 is found to naturally split into two parts,

v2〈ψ†
S>(t1)ψ

†
I>(t2)ψS>(t3)ψI>(t4)〉 = A∗(t1,t2)A(t3,t4) + g(1)(t1,t3)g(1)(t2,t4), (67)

where

A(t1,t2) =
∫

dt ′[qSI (t1,t
′)qII (t2,t

′) + pSI (t1,t
′)pII (t2,t

′)]. (68)

The function g(1) is precisely the first-order coherence function defined in Eq. (60) used to calculate the single-photon spectrum,

g(1)(t1,t3) = ��2N2
P

ρ
ei�P (t3−t1)e−�|t3−t1| ρ cosh[ρ|t3 − t1|] + � sinh[ρ|t3 − t1|]

�
2 − ρ2

. (69)

The A(t1,t2) term, after computing the integrals, is given by

A(t1,t2) = γ 2�β
2
P

2v
e−�|t2−t1|e−i�P (t1+t2) a1 sinh[ρ|t2 − t1|] + a2 cosh[ρ|t2 − t1|]

�
2 − ρ2

, (70)

where the constants a1 and a2 are defined by

a1 = ρ − i
ζNP − �P

ρ
�, a2 = � − i(ζNP − �P ). (71)

The JSI can therefore be expressed as the sum of correlated and uncorrelated terms,

I (ωs,ωi) = Icorr(ωs,ωi) + Iuncorr(ωs,ωi), (72)

where

Icorr(ωs,ωi) = δt

(2π )2

∣∣∣∣ ∫ dν1

∫
dν2Â(ν1,ν2)T̂ (ωs − ν1)T̂ (ωi − ν2)

∣∣∣∣2

(73)

and

Iuncorr(ωs,ωi) = δt

(2π )2

∫
dν1

∫
dν2[ĝ(1)(ν1, − ν2)T̂ (ωs − ν1)T̂ (ωs − ν2)]

∫
dν ′

1

∫
dν ′

2[ĝ(1)(ν ′
1, − ν ′

2)T̂ (ωi − ν ′
1)T̂ (ωi − ν ′

2)].

(74)
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As indicated by their labels, Iuncorr can be expressed as a separable product of functions of ωs and ωi , while Icorr cannot. Each is
expressed as a convolution of the Fourier transforms Â(ν1,ν2) and ĝ(1)(ν1,ν2) of the A(t1,t2) and g(1)(t1,t2) functions,

Â(t1,t2) =
∫

dt1√
2π

∫
dt2√
2π

A(t1,t2)eiν1t1eiν2t2 , (75)

and similarly for g(1)(ν1,ν2), with the transmission filter function T̂ (ν1)T̂ (ν2). The A and g(1) functions are determined by the
dynamics of the signal and idler modes in the ring, while their convolution with the T functions reflects the frequency averaging
that arises from the finite resolution of a realistic JSI measurement.

Computing the Fourier transform, we find for Â

Â(ν1,ν2) = �2�2N2
P δ(ν1 + ν2 − 2�P )

[
1 − i

ζNP −�P

ρ

(i�ν − � + ρ)(−i�ν − � + ρ)
+

1 + i
ζNP −�P

ρ

(i�ν − � − ρ)(−i�ν − � − ρ)

]
, (76)

with �ν = (ν1 − ν2)/2. The term in parentheses multiplying the δ function varies on the scale of �. Assuming that the
measurement frequency resolution δωtrans is much narrower than this, the slowly varying term can be pulled out of the integrals
in (73), leaving

Icorr(ωs,ωi) ≈ δt�2�2N2
P [D(ωs − �P ,ωi − �P )]2

×
∣∣∣∣ 1 − i

ζNP −�P

ρ

[i(ωi − �P ) − � + ρ][−i(ωi − �P ) − � + ρ]
+

1 + i
ζNP −�P

ρ

[i(ωi − �P ) − � − ρ][−i(ωi − �P ) − � − ρ]

∣∣∣∣2

, (77)

where

D(ωs,ωi) = 1

2π

∫
dν1

∫
dν2δ(ν1 + ν2)T̂ (ωs − ν1)T̂ (ωi − ν2). (78)

The function D(ωs,ωi) can be interpreted as the “smoothed” version of the Dirac δ(ωs + ωi) distribution and arises from the finite
bandwidth of the JSI measurement scheme; D(ωs − �P ,ωi − �P ) is sharply peaked and uniform along the energy-conserving
antidiagonal line ωs + ωi − 2�P = 0, with characteristic width δωtrans (the measurement resolution) in the direction orthogonal
to that line.

Finally, taking the Fourier transform of g(1)(t1,t3), we find

ĝ(1)(ν1,−ν2) = δ(ν1 − ν2)
4���2N2

P

|� − ρ + i(ν1 − �P )|2|� + ρ + i(ν1 − �P )|2 . (79)

As with Â, apart from the δ function this is slowly varying compared to the measurement resolution; the term multiplying the δ

function can be pulled out of the integral in Eq. (74). The uncorrelated contribution to the JSI Iuncorr is therefore well approximated
by

Iuncorr(ωs,ωi) ≈ δt

2π

∣∣∣∣ ∫ dω|T̂ (ω)|2
∣∣∣∣2

νS(ωs)νI (ωi), (80)

where νS(ωs) and νI (ωi) are precisely the single-photon line-shape functions given by Eq. (63), as derived in the previous section.
The uncorrelated part of the JSI is therefore proportional to the simple product of the signal and idler line shapes.

For low-power cw pumps, wherein multipair generation is
insignificant, the uncorrelated part of the JSI Iuncorr is negligible
and Icorr dominates. The JSI then takes the form of a narrow
antidiagonal line corresponding to the energy-conserving
condition ωs + ωi − 2�P = 0. For �P = 0, the line is singly
peaked, as illustrated in Fig. 7(a). For nonzero �P the line is
distributed among two peaks separated by 2�P , as evident in
Fig. 7(b), consistent with the single-photon spectrum derived
in the previous section. At higher powers, such as in Fig. 7(c),
this splitting can also arise from XPM-induced signal and idler
detuning even for a pump with �P = 0. When the splitting is
due to XPM-induced signal and idler detuning, the JSI remains
centered on the unperturbed ring resonances. On the other
hand, when pump detuning is responsible for the splitting, the
JSI is translated by �P along both frequency axes.

In Fig. 8 the uncorrelated contribution Iuncorr to the JSI is
plotted for the same pump parameters as in Fig. 7. The weight

of the uncorrelated contribution is extremely small compared
to the correlated contribution at low powers, as indicated by the
scales in Figs. 7 and 8, but grows to an appreciable level at high
powers. For �P = 0, as in Fig. 8(a), at low NP the uncorrelated
part of the JSI displays a single peak centered at the origin.
In the regimes that give rise to split line shapes, as illustrated
in Figs. 8(b) and 8(c), the uncorrelated contribution takes the
form of four distinct peaks, symmetrically placed about the
center of the overall distribution. Two of these peaks lie on
the antidiagonal, overlapping with the correlated contribution.
The remaining two lie on the diagonal and would therefore
appear to violate energy conservation if assumed to correspond
to signal and idler photons that originated from the same pair.
It is therefore natural to interpret these peaks as corresponding
to signal and idler photons that are detected from separate
pairs. As these uncorrelated, “non-energy-conserving” peaks
are well separated from the correlated part of the JSI, they
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FIG. 7. (Color online) Correlated part Icorr of joint spectral inten-
sity distribution, scaled to unit maximum, of signal and idler photon
pairs for a pump with (a) �P = 0, NP = 10, (b) �P = 3�, NP =
10, and (c) �P = 0, NP = 2 × 108. Ring parameters are taken as
� = 1 GHz and � = 10 Hz. The splitting evident in (b) arises from
the pump detuning, whereas in (c) the XPM-induced detuning of the
signal and idler ring modes is responsible.

are uncontaminated by the correlated contribution to the JSI.
The properties of photon pairs detected in these peaks would
therefore be expected to differ from those detected in the

FIG. 8. (Color online) Uncorrelated part Iuncorr of joint spectral
intensity distribution, scaled to unit maximum, of signal and idler
photon pairs. Pump parameters are (a) �P = 0, NP = 10; (b) �P =
3�, NP = 10; and (c) �P = 0, NP = 2 × 108. Ring parameters are
taken as � = 1 GHz and � = 10 Hz.

antidiagonal peaks. We intend to investigate such properties in
future work.

The form of the JSI depends qualitatively on whether
ρ is imaginary or real, a behavior we saw earlier in the
single-photon spectrum. When ρ is imaginary, and thus
contributes to the frequency terms in the denominators of
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FIG. 9. (Color online) Joint spectral intensity distribution, scaled
to unit maximum, of signal and idler photon pairs for (a) �P =
1.5�critical with NP = 9.8 × 107 (90% of OPO threshold) and (b)
�P = 1.5�critical with NP = 1 × 108 (95% of OPO threshold). Ring
parameters are taken as � = 1 GHz and � = 10 Hz.

Eqs. (77) and (79), a splitting in the JSI appears. When ρ

is real and acts as an effective correction to the linewidth �,
the JSI is localized to a single line arising from the overlap
of Icorr with a single peak in Iuncorr. For sufficiently detuned
pumps, in the regime of real ρ the uncorrelated contribution
can be large enough to be visible on the JSI plot without
exaggeration or scaling. Indeed, for supercritical detunings
|�P | > �critical, as the OPO threshold is approached and
ρ → � the uncorrelated contribution vastly dominates over the
correlated contribution, as seen in Fig. 9. This is an expected
consequence of the rapid growth in the photon-pair-generation
rate in this regime; multiple photon pairs are generated in
sufficiently large quantities that joint detection of a signal and
idler photon originating from the same energy-conserving pair
is unlikely relative to the probability of detecting a signal
and idler photon which originated from separate pairs and
thus obey no relationship in energy. Another effect seen as
ρ → � is the narrowing of the entire JSI distribution to a
small pointlike peak centered on (ωs,ωi) = (�P ,�P ). Within
our idealization of a zero-bandwidth cw pump the area of this

point would be limited only by the frequency resolution of the
JSI measurement scheme, though in actual experiments the
finite pump bandwidth would serve as a fundamental lower
bound for the overall extent of the JSI.

Perhaps the most definitive experimental indication of
strongly driven effects lies in the top-right and bottom-left
uncorrelated peaks of the JSI distribution for a detuned pump
as in Fig. 8(b). For sufficient detunings these peaks are well
separated from the antidiagonal and thus easily distinguished
from the correlated part of the JSI. For low powers, wherein
only one photon pair is generated in the ring at any given
time, they would be entirely absent from the measured JSI. As
the power increases, any nonspurious coincidence detection
of photons in these regions indicates multipair generation,
as photons generated in those peaks do not conserve energy
and therefore must be associated with separate, independently
produced pairs.

VI. CONCLUSION

We have investigated the strongly driven regime of SFWM
in microring resonators for a cw pump input. A nonperturba-
tive, exact analytic solution to the semiclassical equations of
motion within the undepleted pump approximation was devel-
oped, which permits the calculation of any physical quantity
related to the outgoing signal and idler fields while fully taking
into account intraring scattering losses. The effects of SPM and
XPM, as well as multipair generation, were found to drastically
alter the nature of the photon-pair-generation process at high
powers. A critical pump detuning of �critical = √

3 �, where
� is the total effective linewidth of the ring resonances, was
found to divide the behavior of the system into two regimes. For
supercritically detuned pumps, a region of optical bistability
of the pump mode is predicted, and a threshold emerges for
OPO of the signal and idler modes. Pump power-dependent
splitting of the generated signal and idler photon spectra was
uncovered, arising from both pump detuning and XPM. In
certain intermediate-power regimes, dramatic narrowing of
the spectral linewidth of generated signal and idler photons
associated with the approach to OPO was found. The joint
spectral intensity (JSI) distribution was analyzed and found to
consist of separate uncorrelated and correlated contributions.
The correlated contribution is negligible at low powers, but
becomes significant as multipair generation becomes appre-
ciable at higher powers. In the regime of spectral splitting, the
uncorrelated part of the JSI displays an intriguing quadruplet
of peaks, two of which are well separated from the correlated
part. An optimal detuning strategy was derived in which the
pump detuning is chosen to exactly cancel the effect of SPM at
each input power, maximizing the intraring pump intensity. By
detuning the pump in this manner the effects of both spectral
splitting and bandwidth reduction are eliminated, and the
photon-pair-generation rate continues to scale quadratically
with the pump input even for arbitrarily high powers.

Three simple experimental tests of our predictions in the
strongly driven regime were proposed.

(1) For fixed subcritical nonzero detunings the photon-
pair-generation rate as a function of input pump power is
predicted to have a local maximum at intermediate powers,
followed by a decreasing approach to an asymptotic level at
high powers.
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(2) The single-photon spectra of the outgoing signal and
idler fields are predicted to show spectral splitting proportional
to the pump detuning at low powers, followed by a regime
of a singly peaked spectrum with pump power-dependent
narrowing of bandwidth at intermediate powers, and finally
resuming a doublet structure at high powers.

(3) The presence of two non-energy-conserving peaks
lying on the diagonal of the JSI distribution, which are a
consequence of multipair generation, is predicted to occur for
sufficiently large pump powers.
Our analysis was restricted to cw pump inputs; studying how
these strongly driven phenomena are altered for short pulses
requires a numerical approach. Additionally, a slightly more
sophisticated solution is required to fully study the regime
of OPO, in which the undepleted pump approximation breaks
down. We intend to extend our techniques to treat these regimes
in future publications.

ACKNOWLEDGMENT

This work was financially supported by the Natural Sci-
ences and Engineering Research Council of Canada.

APPENDIX A: CALCULATION OF NONLINEAR
COUPLING CONSTANTS

To estimate the nonlinear coupling constants �, η, and ζ ,
we present in this section a derivation of the nonlinear sector
HNL of the ring Hamiltonian. For the moment we imagine
that the ring has been decoupled from both the physical and
the phantom channels, so that it is idealized as a perfect,
isolated cavity. We expand the electric field E(r) and electric
displacement field D(r) in the ring in terms of discrete ring
modes Eα(r) and Dα(r) as

E(r) =
∑

α

√
�ωα

2
bαEα(r) + H.c.,

D(r) =
∑

α

√
�ωα

2
bαDα(r) + H.c., (A1)

where ωα are the mode frequencies and bα the associated an-
nihilation operators. The contribution to the ring Hamiltonian
arising from the third-order nonlinear susceptibility can be
written [28] as

HNL = − 1

4ε0

∫
dr�ijkl

(3) (r)Di(r)Dj (r)Dk(r)Dl(r), (A2)

with implied summation over repeated lowercase Roman
indices, where ε0 is the permittivity of vacuum and �

ijkl

(3) (r)
represents the nonlinear response coefficients. Within the
rotating-wave approximation, only keeping relevant terms for
the pump, signal, and idler modes, we obtain

HNL = − 1

4ε0

(
4!

2!1!1!

)
�ωP

2

√
�ωS

2

�ωI

2
QSIPP b

†
Sb

†
I bP bP

− 1

4ε0

(
4!

2!1!1!

)
�ωP

2

√
�ωS

2

�ωI

2
QPPISb

†
P b

†
P bI bS

− 1

4ε0

(
4!

2!2!

)(
�ωP

2

)2

QPPPP b
†
P b

†
P bP bP

− 1

4ε0

(
4!

1!1!1!1!

)(
�ωP

2

�ωS

2

)
QSPSP b

†
Sb

†
P bSbP

− 1

4ε0

(
4!

1!1!1!1!

)(
�ωP

2

�ωI

2

)
QIPIP b

†
I b

†
P bI bP ,

(A3)

where the constants QIJKL are given by

QIJKL =
∫

dr
{
�

ijkl

(3) (r)
[
Di

I (r)
]∗[

D
j

J (r)
]∗

Dk
K (r)Dl

L(r)
}
.

(A4)

As is typically done for dispersive media, we take [29]

�
ijkl

(3) (r) = χ
ijkl

(3) (r)

ε2
0n

2(r; ω1)n2(r; ω2)n2(r; ω3)n2(r; ω4)
, (A5)

where n(r; ω) is the linear refractive index of the ring medium
at frequency ω, and χ

ijkl

(3) (r) is the frequency-dependent
nonlinear susceptibility. To evaluate the coefficients QIJKL,
we introduce coordinates for the ring r⊥ and lφ , such that the
volume element

dr = ρdρdφdz (A6)

can be written as

dr = ρdρdz

R
dlφ = dr⊥dlφ, (A7)

where R is the nominal ring radius and lφ = Rφ, which varies
from 0 to 2πR ≡ L, the nominal ring circumference. The
coordinate r⊥ is understood as shorthand for the pair (ρ,z).
Writing the mode fields Eα(r) as

Eα(r) = eα(r⊥)eikαlφ

√
L

, (A8)

where kα = 2πnα/L for integer nα , we can simplify HNL to

HNL = − 3

L2

�ωP

2

√
�ωS

2

�ωI

2
Q′

SIPP b
†
Sb

†
I bP bP

− 3

L2

�ωP

2

√
�ωS

2

�ωI

2
Q′

PPISb
†
P b

†
P bSbS

− 3

2L2

(
�ωP

2

)2

Q′
PPPP b

†
P b

†
P bP bP

− 6

L2

(
�ωP

2

�ωS

2

)2

Q′
SPSP b

†
Sb

†
P bSbP

− 6

L2

(
�ωP

2

�ωI

2

)2

Q′
IP IP b

†
I b

†
P bI bP , (A9)

in which the reduced constants Q′
IJKL are given by

Q′
IJKL = 1√

ZIZJ ZKZL

(A10)

×
{∫

dr⊥dlφε0χ
ijkl

(3) [r⊥,lφ]
[
ei
I (r⊥)

]∗[
e
j

J (r⊥)
]∗

× ek
K (r⊥)el

L(r⊥)ei(kK+kL−kI −kJ )lφ

}
. (A11)
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The modes (A1) are normalized [29] such that

Zα = 1

L

∫
dr⊥dlφε0n

2(r⊥; ωα)e∗
α(r⊥) · eα(r⊥)γgp(r⊥; ωα)

(A12)

= 1, (A13)

where γgp(r⊥; ωα) is the ratio of the group and phase velocities
of the ring medium at each frequency and spatial point.
However, we display the Zα explicitly in (A10) so that the
expression can be used regardless of whether the eα(r⊥) are
normalized such that Zα = 1.

To estimate the constants Q′
IJKL we approximate the

ratio γgp ≈ 1 everywhere and assume the eα(r⊥) to be of
uniform magnitude within the ring and vanish elsewhere.
We take this uniform magnitude to be unity and assume that
for the modes of interest (2kP − kI − kS)L  1. For modes
with polarization mainly perpendicular to the ring plane, the
relevant susceptibility will be χzzzz

(3) ≡ χ(3), independent of
position in the ring; this can be immediately generalized to
treat other mode polarizations. We then have

Zα = ε0n
2A, (A14)

where A is the cross-sectional area of the ring. Taking ωS ≈
ωI ≈ ωP in the prefactors of (A9), we finally obtain

HNL ≈ (��bP bP b
†
Sb

†
I + H.c.) + �ηb

†
P b

†
P bP bP

+ �ζ (b†Sb
†
P bSbP + b

†
I b

†
P bI bP ), (A15)

where

� = 3�ω2
P χ(3)

4ε0n4LA
(A16)

and η = �/2,ζ = 2�. In terms of the more experimentally
accessible nonlinear refractive index n2 = 3χ(3)/4ε0cn

2, this
becomes

� = �ω2
P cn2

n2LA
, (A17)

which is in line with the results of similar derivations [25].

APPENDIX B: AN OPERATIONAL DEFINITION
OF THE JOINT SPECTRAL INTENSITY

When characterizing a source of entangled photon pairs,
the JSI distribution is often introduced in the low-power
limit, when the state of the signal and idler modes is well
approximated by

|ψSI 〉 = pvac|vac〉+
∫

dωs

∫
dωif (ωs,ωi)a

†
S(ωs)a

†
I (ωi)|vac〉,

(B1)

where |pvac|2 < 1 is a constant and the a
†
J (ω) refer to the

creation operators at frequency ω for the signal and idler
modes [30]. The unsymmetrized and un-normalized JSI for
the such a state is defined as |f (ωs,ωi)|2 and is proportional
to the probability density per unit time of jointly detecting a
signal and idler photon pair with respective frequencies ωs

and ωi . For strongly pumped sources, when multiple photon
pairs are generated in significant quantities so that higher-order

FIG. 10. (Color online) Schematic of experimental setup for
measuring the JSI distribution. Pump, signal, and idler {P,S,I }
outputs from the ring resonator are incident on a filter F that
removes the pump component from the beam. Signal and idler
fields with modes cS and cI are then separated by dichroic beam
splitter, DBS, and independently filtered by monochromators, which
are implemented by frequency-dependent beam splitters BS1 and
BS2. Each monochromator-beam splitter transmits in a small window
δωtrans about ωi and ωs , respectively. Broadband photodetectors D1
and D2 measure the detector modes cS,det and cI,det, and are connected
to a coincidence counter, CC, to register joint detection events within
a temporal resolution of δt . Vacuum is input to the empty ports of
BS1, BS2, and DBS.

terms involving more than two creation operators appear in the
state, it is less straightforward to define a single function that
characterizes the energy relationship between simultaneously
detected signal and idler photons. Instead, one can opera-
tionally extend the definition of the JSI to strongly pumped
sources by calculating for arbitrary input power the outcome of
experiments designed to measure |f (ωs,ωi)|2 in the low-power
limit. In this section we develop such a calculation for a typical
measurement scheme employed to measure the JSI of photon
pairs produced in a microring resonator.

We consider a standard experimental setup [31] to mea-
sure coincidence rates between signal and idler photons of
particular frequencies as illustrated in Fig. 10. The signal
and idler fields are separated, and each field is sent through
a separate monochromator set to transmit photons in some
small range δωtrans about a center frequency ωs for the signal
and ωi for the idler. Placed after each monochromator are
broadband photodetectors connected to a coincidence counter
to identify simultaneously detected signal and idler photons.
The transmission frequencies ωs and ωi are independently
controllable and correspond to a single point (or, more
accurately, single bin) on the JSI plot, which is produced by
scanning through ωs and ωi and measuring the corresponding
coincidence rate. The transmission width is chosen to be much
smaller than the linewidth of the measured photons, δωtrans 
�, so that the full two-dimensional spectrum can be resolved.

The monochromators can be simply modeled as frequency-
dependent beam splitters. Provided that both the signal
and idler arms of the experiment are balanced, the spatial
dependence of the fields after the ring can be suppressed; all
fields in this section are understood to be evaluated imme-
diately after the ring-channel coupling point. We introduce
annihilation operators cS(ωs) and cI (ωi) for the ring output
fields ψS>(t) and ψI>(t) as in Eq. (64). We can then apply the
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appropriate transformation to obtain the annihilation operators
cJ,det(ωj ) for the fields seen by the detectors placed after the
monochromators. For the signal, we have

cS,det(ω) = T̂ (ω − ωs)cS(ω) + R̂(ω − ωs)cS,vac(ω), (B2)

in which cS,vac refer to the modes on the other input port of
the monochromator-beam splitter, into which only vacuum is
present. The transmission and reflection functions T̂ (ω) and
R̂(ω) determine which frequencies are transmitted by the the
monochromator. For example, a simple filter may be modeled
by a transmission function with a rectangular frequency
profile,

T̂ (ω) =
{

1, − δωtrans
2 < ω < δωtrans

2 ,

0, otherwise.
(B3)

The exact choice of T̂ (ω) is not important for our purposes;
for simplicity we only assume T̂ (ω) is a real, sufficiently
narrow, symmetric function of ω. The reflection function will
be irrelevant, though it will satisfy the usual restrictions to
correctly model a beam splitter.

In exactly the same manner, modes cI,det(ω) seen by the
detectors of the idler arm can be introduced. We can then
write down the fields measured by each detector in the usual
way,

ψJ,det(t) =
∫

dωj√
2π

cJ,det(ωj )e−iωj t . (B4)

In a typical coincidence measurement the signal detector is
continuously activated, and detection of a signal photon at time
t is used to trigger the activation of the idler detector (which
is placed at a small delay relative to the signal detector) for a
very short time δt , so that the idler detector samples the idler
field during the time interval [t − δt/2,t + δt/2]. The average
rate I (ωs,ωi ; t) at time t of coincident detection events at
ωs and ωi of the signal and idler detectors is given by the

standard Glauber formula involving the fields at each detector
[32],

I (ωs,ωi ; t)

= lim
T →∞

[
1

T

∫ t+T/2

t−T/2
dt ′

∫ t ′+δt/2

t ′−δt/2
dt ′′

× v2〈ψ†
S,det(t

′)ψ
†
I,det(t

′′)ψS,det(t
′)ψI,det(t

′′)〉
]
. (B5)

In steady state the expectation value depends only on time
difference |t ′′ − t ′|, which in the integrand is at most δt .
Provided that the coincidence resolution time δt is much
smaller than the time scale on which the expectation value

varies (in our case �
−1

), this expression for I (ωs,ωi ; t) is then
well approximated by

I (ωs,ωi ; t) ≈ v2δt〈ψ†
S,det(t)ψ

†
I,det(t)ψS,det(t)ψI,det(t)〉. (B6)

Proceeding to expand the detector fields in terms of their
constituent modes, we find

I (ωs,ωi ; t) = v2δt

(2π )2

∫
dν1 · · ·

∫
dν4[ei(ν1+ν2−ν3−ν4)

× T̂ ∗(ν1 − ωs)T̂
∗(ν2 − ωi)T̂ (ν3 − ωs)

× T̂ (ν4 − ωi)〈c†S(ν1)c†I (ν2)cS(ν3)cI (ν4)〉]. (B7)

By writing the operators cJ (νi) in terms of their respective
parent fields and then carrying out the integration over each
νi , we arrive at Eq. (65), where T (t) is the Fourier transform
of the transmission function T̂ (ω); see Eq. (66).

In obtaining (65) we have again used the fact that in steady
state the expectation value is invariant with respect to time
translations by t in each argument. The expression (65) is
manifestly real, independent of time, and in the limit of small
δωtrans indeed reproduces the single-pair JSI |f (ωs,ωi)|2 when
calculated with an initial state of the form (B1).
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