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Commutation-relation-preserving ladder operators for propagating optical fields in nonuniform
lossy media
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We have recently developed a quantized fluctuational electrodynamics (QFED) formalism to describe the
quantum aspects of local thermal balance formation and to formulate the electromagnetic field ladder operators
so that they no longer exhibit the anomalies reported for resonant structures. Here we show how the QFED can
be used to resolve between the left and right propagating fields to bridge the QFED and the quantum optical
input-output relations commonly used to describe selected quantum aspects of resonators. The generalized
model introduces a density of states concept describing interference effects, which is instrumental in allowing
an unambiguous separation of the fields and related quantum operators into left and right propagating parts. In
addition to providing insight on the quantum treatment of interference, our results also provide the conclusive
resolution of the long-standing enigma of the anomalous commutation relations of partially confined propagating
fields.
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I. INTRODUCTION

It has recently been suggested [1–4] that in contrast to
earlier predictions the commutation relations of photon ladder
operators have directly measurable physical significance. This
is especially interesting in the case of resonant structures
where conventional theoretical descriptions have been shown
to lead to anomalous commutation relations of the general form
[â,â†] = � �= 1, instead of the canonical form with � = 1
[5–9]. The anomaly is a direct consequence of the conventional
piecewise normalization of the optical modes in respective
homogeneous regions and of the interference effects coupling
the modes propagating in different directions. Originally these
anomalies were argued to bear no physical significance, but
recently it has been shown that the anomalous commutation
relations lead to the existence of a threshold for second
harmonic generation when it occurs inside microcavities
[1,2]. In addition, anomalies in the commutation relations
have also been shown to prevent systematic description of
the local thermal balance between the field and interacting
media [3,4,10]. Experimental measurements of the onset of the
second harmonic generation or the thermal balance formation
in microcavities could therefore confirm the theoretical pre-
dictions that the conventional mode normalization introducing
these anomalies is not sufficient for field quantization of
resonant structures. Here, we develop a field quantization
approach that (1) fully eliminates the anomalies for prop-
agating fields, (2) bridges the classical propagating wave
and commutation-relation-preserving quantum descriptions,
and (3) allows formulating conceptually simple models for
optical energy transfer and the formation of thermal balance
in interfering nanostructures.

One of the most widely used quantization approaches for
describing spatial field evolution in resonant structures is
the input-output relation formalism of the photon creation
and annihilation operators. The formalism was originally
developed for dispersionless and lossless media [11] and
later extended for lossy and dispersive dielectrics by several

groups [12–17]. The quantization procedures studied, e.g.,
by Barnett et al. [15] clearly highlight that the noise and
field operators in nonuniform systems are position dependent
and that the vector potential and electric-field operators obey
the well-known canonical commutation relation as expected
[15,16]. The canonical commutation relations in these early
models did not, however, extend to the ladder operators which
were found to exhibit anomalies in resonant structures [5]. The
anomalous commutation relations of the ladder operators were
later studied in several works [6–9] but no clear resolution for
the anomalies was found. Instead it was concluded that the
anomalies as well as the exact form of the ladder operators
within resonant structures were irrelevant as long as the field
commutation relations and classical field quantities were well
defined. However, this made it impossible to fully quantize the
optical fields in resonant structures.

To shed more light on the anomalous commutation rela-
tions, we have very recently developed a quantized fluctua-
tional electrodynamics (QFED) scheme based on generalizing
the fluctuational electrodynamics to quantum optical fields
[3,4,10]. Using the QFED approach we were able to formulate
the canonical commutation relations preserving ladder and
photon-number operators for the total electromagnetic (EM)
field [3,4,10]. However, even in the QFED framework, it has
not been evident how to separate the ladder and photon-number
operators to left and right propagating parts, which is also
essential for the final resolution of the anomalies and for
bridging the classical propagating wave descriptions and
the commutation-relation-preserving quantum descriptions. In
this work, we show that the QFED can be extended to resolve
between the left and right propagating fields, fully preserving
the canonical commutations with � = 1 also for the left and
right propagating field ladder operators. As it turns out, the
separation to the left and right propagating fields becomes
possible and conceptually simple when one introduces a new
density of states concept describing the fundamentally impor-
tant interference effects. The added insight obtained using the
introduced concepts provides a more detailed understanding
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of the quantization of optical fields in complex surroundings,
and can be used, e.g., for finding simple photon-number-based
expressions for the quantum optical Poynting vector as well as
more detailed description of quantized energy flow in resonant
structures.

II. FIELD QUANTIZATION

A. Photon operators

In contrast to previous approaches, the requirement of the
QFED is the preservation of the local canonical commutation
relation [â(x,ω),â†(x,ω′)] = δ(ω − ω′) also in resonant media
[3,10]. This requirement leads to conceptually simple defini-
tions for the position-dependent ladder and photon-number
operators as a weighted sum over the incident fields and
the noise. For the expectation value of the photon-number
operator, for instance, this weighted sum reads as [4]

〈n̂(x,ω)〉 =
∫ ∞
−∞ ρNL(x,ω,x ′)〈η̂(x ′,ω)〉dx ′

∫ ∞
−∞ ρNL(x,ω,x ′)dx ′ , (1)

where 〈η̂(x,ω)〉 is the source field photon-number expecta-
tion value which for thermal fields is given by the Bose-
Einstein distribution 〈η̂(x ′,ω)〉 = 1/[e�ω/[kBT (x ′)] − 1] with the
position-dependent temperature of the medium given by T (x ′).
The weighting coefficient ρNL(x,ω,x ′) in Eq. (1) is given by

ρNL(x,ω,x ′) = ω3|ε(x,ω)|
πc4S

εi(x
′,ω)

×
(
|G(x,ω,x ′)|2 +

∣∣∣∂G(x,ω,x ′)
k(x,ω)∂x

∣∣∣2)
, (2)

where c is the speed of light in vacuum, S is the area
of quantization in the y-z plane, ε(x,ω) = n(x,ω)2 is the
relative electric permittivity of a nonmagnetic medium with
refractive index n(x,ω) and εi(x,ω) is its imaginary part,
k(x,ω) = ωn(x,ω)/c is the wave number, and G(x,ω,x ′) is the
Green’s function of the Helmholtz equation given for selected
layered structures in Ref. [3]. The quantity ρNL(x,ω,x ′) is here
referred to as the nonlocal density of states (NLDOS) since it
highlights the nonlocal origin of the local density of states
(LDOS) ρ(x,ω) given as

ρ(x,ω) =
∫ ∞

−∞
ρNL(x,ω,x ′)dx ′, (3)

and appearing in the denominator of Eq. (1). After integration,
the LDOS can also be expressed in the more familiar form
in terms of the imaginary part of the Green’s function [4].
Using this definition, the NLDOS ρNL(x,ω,x ′) accounts for
both the electric-field (term |G|2) and the magnetic-field (term
|∂G/(k∂x)|2) contributions.

B. Quantum optical Poynting vector

The quantum optical Poynting vector Ŝ(x,t) that will be
used as a starting point for separating the field components is
defined in terms of the positive (+) and negative (−) frequency
parts of the electric- and magnetic-field operators Ê(x,t) and
B̂(x,t) as Ŝ(x,t) = ε0c

2[Ê−(x,t)B̂+(x,t) + B̂−(x,t)Ê+(x,t)]
[18,19]. Using the QFED framework and substituting the
electric- and magnetic-field operators as given in Ref. [3],

we write the Poynting vector expectation value at angular
frequency ω as

〈Ŝ(x,t)〉ω = �ωv(x,ω)
∫ ∞

−∞
ρIF(x,ω,x ′)〈η̂(x ′,ω)〉dx ′, (4)

where v(x,ω) = c/nr(x,ω) is the energy propagation velocity,
nr(x,ω) is the real part of the refractive index n(x,ω) =√

ε(x,ω), and

ρIF(x,ω,x ′) = 2ωnr(x,ω)

πc3S
εi(x

′,ω)

× Re
(
iωG(x,ω,x ′)

∂G∗(x,ω,x ′)
∂x

)
. (5)

The quantity ρIF(x,ω,x ′) at field point x essentially describes
the contributions of the left and right propagating fields
originating from the source point x ′. The term ρIF(x,ω,x ′)
fully accounts for the reflections, losses, and interference and
is closely related to the concepts of LDOS and NLDOS.
Therefore, we refer to it as the interference density of states
(IFDOS). In contrast to the NLDOS, the integral of the IFDOS
with respect to x ′ is always zero as required, e.g., by the fact
that in a medium in equilibrium, there is no net power flow,
i.e., 〈Ŝ(x,t)〉ω = 0 when 〈η̂(x ′,ω)〉 is constant.

C. Left and right propagating fields

To generalize the LDOS and photon-number concepts in
Refs. [3] and [4] and Eq. (1) to separately account for the left
and right propagating fields, we write the left and right propa-
gating field Poynting vector expectation values 〈Ŝ+(x,ω)〉 and
〈Ŝ−(x,ω)〉 as 〈Ŝ±(x,ω)〉ω = �ωv(x,ω)ρ±(x,ω)(〈n̂±(x,ω)〉 +
1
2 ), where ρ±(x,ω) and 〈n̂±(x,ω)〉 are the left and right propa-
gating field LDOSs and photon numbers to be determined,
and the term one half describes the zero-point fluctuation
current. The left and right propagating photon numbers must
additionally satisfy two equations: the total Poynting vector
must be given by

〈Ŝ(x,t)〉ω =�ωv(x,ω)ρ+(x,ω)
(
〈n̂+(x,ω)〉 + 1

2

)

− �ωv(x,ω)ρ−(x,ω)
(
〈n̂−(x,ω)〉 + 1

2

)
, (6)

and the total energy density 〈û(x,t)〉ω =
�ωρ(x,ω)(〈n̂(x,ω)〉 + 1

2 ) [4] by

〈û(x,t)〉ω =�ωρ+(x,ω)
(
〈n̂+(x,ω)〉 + 1

2

)

+ �ωρ−(x,ω)
(
〈n̂−(x,ω)〉 + 1

2

)
. (7)

At zero temperature, where 〈n̂+(x,ω)〉 = 〈n̂−(x,ω)〉 = 0, the
Poynting vector is zero and thus ρ+(x,ω) = ρ−(x,ω) in Eq. (6).
Respectively, Eq. (7) at zero temperature leads to the rela-
tion ρ+(x,ω) + ρ−(x,ω) = ρ(x,ω). Together, these conditions
uniquely define the left and right propagating LDOSs in terms
of the total LDOS as ρ+(x,ω) = ρ−(x,ω) = ρ(x,ω)/2.

Using the above local density of states relations, we
can uniquely solve the left and right propagating pho-
ton numbers from Eqs. (6) and (7) as 〈n̂±(x,ω)〉 =
[�ωρ(x,ω)]−1[〈û(x,t)〉ω ± 〈Ŝ(x,t)〉ω/v(x,ω)] − 1/2. In terms
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of the source field photon number this corresponds to

〈n̂±(x,ω)〉 =
∫ ∞
−∞[ρNL(x,ω,x ′) ± ρIF(x,ω,x ′)]〈η̂(x ′,ω)〉dx ′

∫ ∞
−∞[ρNL(x,ω,x ′) ± ρIF(x,ω,x ′)]dx ′ .

(8)

Equation (8) shows that the propagating field photon-number
expectation values are also obtained as a weighted sum of
the source field values, but the weight factor now includes an
additional term describing the interference and propagation
direction. In the denominator, one can neglect ρIF(x,ω,x ′) as
it integrates to zero indicating that the denominator is simply
equal to the LDOS in Eq. (3).

Above we have only focused on the photon-number expec-
tation values that can be directly extracted from the Poynting
vector. To find the corresponding ladder and photon-number
operators in the QFED we will further investigate the forms
of the photon annihilation operators â+(x,ω) and â−(x,ω)
that lead to the expectation values in Eq. (8) and fulfill
the canonical commutation relations. The photon annihilation
operators fulfilling these conditions are of the form

â±(x,ω) = 1√
ρ(x,ω)

∫ ∞

−∞
ei(φ±π/4)

×
√

ρNL(x,ω,x ′) ± ρIF(x,ω,x ′) f̂ (x ′,ω)dx ′, (9)

where f̂ (x ′,ω) is a bosonic source field operator obeying
the canonical commutation relation [f̂ (x,ω),f̂ †(x ′,ω′)] =
δ(x − x ′)δ(ω − ω′) and which is related to the source field
photon number as 〈η̂(x ′,ω)〉 = ∫ 〈f̂ †(x ′,ω)f̂ (x ′′,ω′)〉dx ′′dω′
[3,4,10]. The phase factor φ is in principle arbitrary and
it does not play a role in our calculations as it cancels in
the commutators. The total field annihilation operator â(x,ω)
is given by the sum â(x,ω) = 1√

2
[â+(x,ω) + â−(x,ω)]. It is

straightforward to check that the left and right propagating
field annihilation operators in Eq. (9) also obey the commu-
tation relation of the form [â±(x,ω),â†

±(x,ω′)] = δ(ω − ω′).
With these choices, however, the cross-commutators become
nonzero as [â±(x,ω),â†

∓(x,ω′)] �= 0 due to the coupling of
the left and right propagating fields originating from the
same source points by the reflecting interfaces. This cross-
commutator form is intuitively reasonable and does not appear
to present any complications as the only commutation relations
directly linked to the studied physical observables are the
self-commutators.

As shown by Eqs. (8) and (9) it is necessary to separately
account for all the individual source points and their mutual
interference to arrive to the correctly commutating opera-
tor forms. Similar bookkeeping is also present in classical
fluctuational electrodynamics (FED). In contrast to the FED,
however, to describe the quantum features the photon ladder
and number operators need to be renormalized to fully satisfy
the commutation relations.

In addition to describing the total energy density and energy
flow presented in Eqs. (4), (6), and (7), the QFED formalism
is also capable of separating the total field photon numbers to
their local electric- and magnetic-field equivalents 〈n̂e(x,ω)〉
and 〈n̂m(x,ω)〉 that are responsible for direct interactions
with materials and determine, e.g., the self-consistent local
temperature of the interacting media as discussed in Refs. [4]

and [3]. Essentially these electric- or magnetic-field specific
quantities and the corresponding LDOSs can be obtained by
using Eqs. (1) and (3) when only the electric- or magnetic-
field term in the NLDOS in Eq. (2) is taken into account
[4]. The electric- and magnetic-field specific quantities were
previously shown to have quite distinct properties as compared
to the total field quantities and to include, e.g., oscillations
in the field temperatures [3,4]. In the propagating operator
formalism, however, the electric- and magnetic-field specific
ladder operators are again united with the total propagating
field operators because the direct interference effects between
the left and right propagating fields have been eliminated when
projecting the ladder operators to the left and right propagating
operators. This fully agrees with our previous results [3,4]:
in the present formalism the separation to left and right
propagating fields also fully separates the interference effects
from the local fields, whereas the formalism simultaneously
capturing both left and right propagating fields in a single term
must also capture the interference effects.

III. RESULTS

To better illustrate the physical implications of the presented
concepts we briefly discuss the properties of photon numbers
of the left and right propagating fields and compare them to the
corresponding total field photon number in an optical cavity
consisting of three homogeneous layers as illustrated in Fig. 1.

A. Lossless cavity structure

In a lossless configuration, the left and right propagating
field photon numbers are piecewise continuous and only
depend on the cavity geometry and the input fields 〈n̂1+〉 and
〈n̂3−〉 incident from the left and right. In different regions, they
can be written as

〈n̂1−〉 = |R1|2〈n̂1+〉 + √
ε1/ε3 |T ′

1T ′
2 |2〈n̂3−〉,

〈n̂2+〉 =
√

ε2/ε1 |T1|2〈n̂1+〉 + √
ε2/ε3 |T ′

2R′
1|2〈n̂3−〉

Re[1 + 2R′
1R2ν2e2ik2d2 ]

,

〈n̂2−〉 =
√

ε2/ε1 |T1R2|2〈n̂1+〉 + √
ε2/ε3 |T ′

2 |2〈n̂3−〉
Re[1 + 2R′

1R2ν2e2ik2d2 ]
,

〈n̂3+〉 = √
ε3/ε1 |T1T2|2〈n̂1+〉 + |R′

2|2〈n̂3−〉, (10)

where d2 is the cavity thickness, k2 is the wave num-
ber inside the cavity, ν2 = 1/(1 + r1r2e

2ik2d2 ), R1 = (r1 +
r2e

2ik2d2 )ν2, R2 = r2, T1 = t1ν2, T2 = t2, R′
1 = r ′

1, R′
2 =

FIG. 1. (Color online) Optical cavity consisting of three homo-
geneous layers. We calculate the left and right propagating field
photon-number expectation values in each layer.
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FIG. 2. (Color online) Left and right propagating photon num-
bers 〈n̂−〉 and 〈n̂+〉 and the total photon number 〈n̂〉 in a lossy
cavity structure at the first resonant energy �ω = 0.046 eV (λ =
26.9 μm). The media from left to right have refractive indices√

ε1 = 2.5 + 0.4i,
√

ε2 = 1.2 + 0.2i, and
√

ε3 = 1.5 + 0.5i, and
source field temperatures T1 = 300 K, T2 = 200 K, and T3 = 100 K.

(r ′
2 + r ′

1e
2ik2d2 )ν2, T ′

1 = t ′1, and T ′
2 = t ′2ν2 with the conven-

tional single interface Fresnel reflection and transmission
coefficients for left incidence ri and ti , i ∈ {1,2}, and right
incidence r ′

i and t ′i , i ∈ {1,2}. In contrast, e.g., to the electric-
field values where resonance effects can substantially increase
the field magnitude inside a resonator, the photon-number
values inside the cavity and at the outputs in Eq. (10) are always
between the input field photon numbers. This also ensures
that in global thermal equilibrium all the photon numbers are
equal and no photon-number accumulation can occur inside
the cavity.

B. Lossy cavity structure

In a lossy structure the photon numbers are no longer
piecewise constant and all material points can act as field
sources through the source field 〈η̂(x ′,ω)〉, which is related
to material temperature. To illustrate this, we study a lossy
cavity structure, where the refractive indices of the media are√

ε1 = 2.5 + 0.4i,
√

ε2 = 1.2 + 0.2i, and
√

ε3 = 1.5 + 0.5i,
and the layer temperatures are T1 = 300 K, T2 = 200 K, and
T3 = 100 K. Here the layer temperatures are set to constant
predefined values for simplicity even if the QFED formalism
also allows calculating the in-cavity temperature distribution
self-consistently if the studied layers were to be considered
as thermal insulators [4,10]. Figure 2 shows the total, right
propagating, and left propagating photon numbers 〈n̂〉, 〈n̂+〉,
and 〈n̂−〉 as a function of position at the first cavity resonance
�ω = 0.046 eV (λ = 26.9 μm), where the layer temperatures
correspond to steady-state photon numbers 0.20, 0.074, and
0.0048. The photon numbers are highest at the leftmost
medium at T1 = 300 K and decrease towards the rightmost
medium at T3 = 100 K. The right propagating photon number
notably decreases at and after the first interface due to reflection
and thermalization, eventually reaching equilibrium with the
lossy medium in the rightmost layer. The left propagating
photon number notably changes at the interfaces and in the
middle and leftmost layers. It can be also clearly seen that
the total photon number is the average of the left and right

propagating photon numbers as expected, since the photon
number essentially describes the average photon number in
the collection of optical modes under study.

As the photon-number expectation value depends strongly
on the frequency, it is convenient to illustrate the results
by using the effective field temperature that is defined in
terms of the photon-number expectation value as Teff(x,ω) =
�ω/{kB ln[1 + 1/〈n̂(x,ω)〉]} [4,10]. This corresponds to the
steady-state temperature of a small temperature probe in-
teracting only with a single mode [4]. Figure 3 shows the
total LDOS and field temperatures corresponding to the total,
right propagating, and left propagating fields as a function of
position and photon energy. In contrast to the case of a lossless
structure, the field quantities are position dependent. The total
LDOS in Fig. 3(a) is also oscillatory inside the cavity and
reaches its maxima at resonant energies �ω = 0.046 eV (λ =
26.9 μm), �ω = 0.097 eV (λ = 12.7 μm), and �ω = 0.150 eV
(λ = 8.29 μm). Also in the left- and rightmost layers, the total
LDOS is position dependent and oscillatory near interfaces.
The oscillations of the LDOS follow from the interference
effects combined with the material polarizability in analogy
with the Purcell effect [4].

Despite the oscillations in the LDOS, the total effective
field temperature Teff in Fig. 3(b) and the effective field
temperatures T +

eff and T −
eff corresponding to the right and left

propagating fields in Figs. 3(c) and 3(d) decrease towards
the right medium at lower temperature similar to the photon
numbers in Fig. 2. On the left and right Teff , T +

eff , and T −
eff also

asymptotically approach equilibrium values corresponding to
material temperatures. When compared to T +

eff , the magnitude
of T −

eff is everywhere lower since the source field temperature
on the right is lower than the source field temperature on the
left.

IV. CONCLUSIONS

In conclusion, we have developed a generalized quan-
tum optical noise formalism QFED that can unambiguously
describe the quantum aspects of propagating optical fields
in arbitrary stratified media, while being fully compliant
with the canonical commutation relations. In particular, the
QFED allows calculating position-dependent photon-number
expectation values for the left and right propagating fields and
fully eliminates the anomalies of the ladder operators in optical
cavities. In our model, the commutation relations are therefore
canonical. This implies that, in contrast to previous models
that involve anomalous commutation relations, our results
do not predict, e.g., any observable threshold for the second
harmonic generation inside cavities as the threshold is directly
linked to the ladder operators. Experimental measurements
of the existence of a second harmonic generation threshold
may therefore allow demonstrating the importance of correct
normalization of the commutation relations as well as the affili-
ated normal modes. In addition, the QFED framework enables,
e.g., the separation of the quantum optical Poynting vector
and related field quantities to their left and right propagating
components using a photon-number-based presentation and
the interference density of states. In practical modeling tasks,
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FIG. 3. (Color online) (a) Total LDOS, (b) Teff , (c) T +
eff , and (d) T −

eff in a lossy cavity structure. The media from left to right have refractive
indices

√
ε1 = 2.5 + 0.4i,

√
ε2 = 1.2 + 0.2i, and

√
ε3 = 1.5 + 0.5i, and layer temperatures T1 = 300 K, T2 = 200 K, and T3 = 100 K. Solid

lines denote the boundaries of the cavity and dashed lines denote resonant energies. The LDOS is given in the units of 2/(πcS).

the QFED provides simple tools for studying optical energy
transfer and the formation of thermal balance in complex
interfering nanostructures, highlighting the fundamentally
nonlocal nature of the energy transfer.
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