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Eigenvalue decomposition method for photon statistics of frequency-filtered fields
and its application to quantum dot emitters
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A simple calculation method for photon statistics of frequency-filtered fields is proposed. This method, based
on eigenvalue decompositions of superoperators, allows us to study effects on the photon statistics of spectral
filtering by various types of filters, such as Gaussian and rectangular filters as well as Lorentzian filters, which is
not possible by conventional approaches. As an example, this method is applied to a simulation of quantum dot
single-photon emitters, where we found that the efficient choice of the filter types to have pure single photons
depends on the excitation conditions, i.e., incoherent or coherent (and resonant) excitations.
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I. INTRODUCTION

High-quality single-photon (SP) sources, which emit one
photon at a time with high purity and high rate, are essential for
the realistic and reliable application to quantum information
science and technologies [1,2]. As efficient solid-state SP
sources, semiconductor quantum dots (QDs) are promising
candidate systems in solids and have been attracting attention
for a number of advantages: the well-defined quantized
states, high controllability in the emission wavelength, high
brightness even enhanced by embedding them in nanocavities,
the emission-site controllability, and possible current injection
operations [3–12].

However, in QD SP emitters, a number of emission lines are
typically present due to the multiple transition levels and also
to other QDs in a sample, degrading the SP purity. To avoid
the degradation, spectral filters (Fig. 1) are usually used for
selecting the relevant emission, e.g., an exciton emission, and
filter out the spectrally separated irrelevant emissions, such
as the biexciton-exciton emission [14] and charged excitons.
The role of using a spectral filter is to prevent the detection
of irrelevant emissions spectrally separated in the frequency
domain. At the same time, due to the frequency-time un-
certainty, using narrow spectral filters inevitably widens the
detection field in the time domain, leading to degradation in
the time resolution and also in the purity of the SP emissions. In
this way, the spectral filter modifies the filtered field both in the
frequency and time domains, and therefore the filtering effect
on the photon statistics (which basically is a multiple-time
correlation function given in the time domain) is not so simply
understood, especially for quantum emitters.

Theoretical and experimental studies of filtering effects
on the photon statistics have recently been attracting atten-
tion [15–19]. These studies were triggered by the development
in the theoretical treatment, a versatile calculation method
proposed by E. del Valle et al. [15]. In this method, the spectral
filtering process is effectively replaced with the inclusion
of probe systems coupling weakly to the system. A great
advantage of this method over the former theory [20–22] is
that the complication in calculation coming from the time
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orderings of operators can be avoided, allowing the calculation
of higher-order correlation functions (n � 3). However, in
this method, the type of spectral filters the method can treat
is restricted to Lorentzian filters, since the spectral filter
is mimicked by a Lorentzian density of states of a probe
system under the Markov decay process. The former analytic,
but approximate, approach [21] also treats only Lorentzian
filters due to its simplicity. Therefore, the effect of spectral
filtering on the photon statistics has been investigated only for
Lorentzian filters so far.

In this paper, we propose a simple calculation method
that allows for theoretical treatment of a variety of spectral
filters in order to deepen the understanding of filter effect on
the photon statistics. In Sec. II, we introduce the calculation
method based on superoperator eigenvalue decomposition, and
find the exact expressions for the second-order correlation
function for Gaussian and rectangular filters as well as
the Lorentzian filters. Whereas we apply the superopera-
tor eigenvalue decomposition technique to the higher-order
correlation functions, it has previously been applied to the
calculation of the first-order correlation functions, e.g., in a
calculation of the Mössbauer spectra [23]. While our method
allows for the treatment of types of filters, it directly treats
the operator ordering problem, and thus the difficulty in
calculating high-order correlation functions is not removed.
In this sense, our method is complementary to the previous
theory [15]. In Sec. III, as an example, we show a numerical
simulation applied to QD SP emitter systems, where we found
the efficient choice of the filter types for purifying the single
photons depends on the excitation conditions, i.e., incoherent
or coherent (and resonant) excitations.

We note that the effect of the background noise which is
not related to the system dynamics is out of the scope of the
theoretical framework. Throughout the paper, we set � = 1 for
simplicity unless otherwise specified.

II. SUPEROPERATOR EIGENVALUE DECOMPOSITION
METHOD FOR PHOTON STATISTICS OF FREQUENCY

FILTERED FIELDS

A. Definition of the problem

Here, we will define the problems to solve. The system
we consider consists of an emitter, a spectral filter, and a
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FIG. 1. (Color online) Quantum emitter and detection system.
The emission dynamics of the quantum emitter is given by the
quantum master equation, d

dt
ρ̂ = Lρ̂. The effect of the spectral filter

is described by the correlation function f (τ ), and the photons passed
through the filter enter into the HBT setup [13] for the g(2) correlation
measurement.

detection system as shown in Fig. 1. Photons emitted from
the quantum emitter are detected by Hanbury-Brown Twiss
(HBT) setups [13] for the second-order intensity correlation
measurement, and before the detection the photons passed
through a spectral filter the response of which is described by
the filter correlation function f (τ ). Alternatively, the detection
can be performed with a high-speed streak camera with
high time resolution (less than a few picoseconds), which
is now becoming a powerful detection system for the study
of photocounting statistics [24]. Throughout the paper, we
assume the effect of back reflection at the filter surface on the
emitter system can be neglected [20]. In this case, the dynamics
of the quantum emitter and the emission field is given by the
Hamiltonian Ĥ for the emitter, Lindblad-type superoperators
Lη for decay and pump processes labeled by η with the rates
γη, and the resulting quantum master equation [25]:

d

dt
ρ̂ = i[ρ̂,Ĥ ] +

∑
η

γηLηρ̂ ≡ Lρ̂. (1)

The emission field operator, Ê±, at the exact emission time, t ,
is given by the Heisenberg operator (accounting for the system
dynamics except for the filter and detection systems), Ê±(t),
and the frequency-filtered field Ê±

F (t) to be detected at a time
t is given by

Ê−
F (t) =

∫ ∞

0
f (τ )Ê−(t − τ )dτ,

(2)

Ê+
F (t) =

∫ ∞

0
f ∗(τ )Ê+(t − τ )dτ.

The time region of the integration is physically restricted to
τ > 0 by the causality, and the correlation function in the
time domain, f (τ ), has the peak at a delay time, τ = τd ,
corresponding to the optical path length between the emitter
and the filter, and it has a width τc corresponding to the filter
correlation time [Fig. 2(a)]. The filter function F (ω) in the
frequency domain is centered at ωF and has a bandwidth λ

roughly equal to the inverse of the correlation time, λ ∼ 1/τc

[Fig. 2(b)]. Equations (1) and (2) are the most general
expression for system dynamics and the filtered emission
field, and thus can be directly applied to any emitters and any
filters. For example, in case of a resonantly driven two-level

FIG. 2. Schematics of the filter function: (a) f (τ ) in the time
domain and (b) F (ω) in the frequency domain.

atom (transition energy ωA, Rabi frequency �R, and the laser
frequency ωL), Ĥ = ωAσ̂+σ̂− + �Re−iωLt σ̂+ + �∗

ReiωLt σ̂−,
the spontaneous emission decay is included with the rate
γη = γsp and superoperator Lη = Lσ̂− in standard notation,
and the emission field is Ê±(t) = σ̂±(t).

The nth-order normalized intensity correlation function to
be evaluated is then given by

g(n)(t1,t2, . . . ,tn)

= 〈T+T−Ê+
F (t1) . . . Ê+

F (tn)Ê−
F (tn) . . . Ê−

F (t1)〉∏n
j=1〈Ê+

F (tj )Ê−
F (tj )〉 , (3)

where T− and T+ are time-ordering and antiordering superop-
erators working on the Heisenberg annihilation and creation
operators, respectively. The brackets mean the ensemble
statistical average over the emitter states, and mathematically
given by taking the trace after multiplying by the density
matrix of the emitter system, 〈Ô〉 = Tr(Ôρ̂). In addition, from
Eq. (2), it is necessary in calculating Eq. (3) to evaluate the
operator products with different time arguments by using the
quantum regression theorem [25]. The aim of this paper is to
give a simple calculation method for the correlation function
in Eq. (3).

The time-ordering operation has to be taken into account
in Eq. (3) when the effect of back reflection by the filter is
negligible as we assumed here [20]. However, the operation
makes the calculation of the nth-order correlation function
of large n (like n � 3) complicated. For g(n)(t1 = · · · = tn),
the number of time arguments (τj with j = 1, . . . ,n for Ê+

fields and j = n + 1, . . . ,2n for Ê− fields) is 2n. The number
of different time orderings in the integration is reduced to
(2n)!/(n!)2 by a symmetry argument. The number is reduced
from (2n)! to (2n)!/(n!)2 since the time-ordering operators
T+ and T− sort the product of Ê+ fields and Ê− fields of n!
different orderings, respectively, into one exclusive ordering.
Therefore, the number of terms with different time orderings
for the nth-order correlation function amounts to 6 for n = 2,
20 for n = 3, and 70 for n = 4 [21].

In our approach given below, we will finally obtain the
analytic expression for the correlation function in Eq. (3),
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whereas the time-ordering process is directly treated, hence
the difficulty is not removed. Therefore, the higher-order cor-
relation function with n � 4 is too computationally expensive.
In this sense, this method is limited to the application to the
correlation functions with n � 3 in realistic calculation, while
the recently proposed method [15] can avoid the complicated
time-ordering operation to be able to simulate photon statistics
to the higher order.

However, as mentioned in the Introduction, this method
allows us to have analytic results for general types of the
filter function f (τ ), whereas the previous method [15] can
treat only the Lorentzian filters. In this sense, our method is
complementary to the other methods [15,21], and this makes
possible the comparison of the efficiency in optimizing the
photon statistics for different types of filters.

B. Superoperator eigenvalue decomposition method

Here, we will introduce our method based on superoperator
eigenvalue decompositions. As an example for n = 2, we will
obtain a general expression for g(2)(τ = t1 − t2 = 0).

1. Superoperator eigenvalue decomposition

According to the quantum regression formula [25],
different-time correlation functions can be calculated by the
same equation as the density matrix equation in Eq. (1). Thus,
any time-dependent operator Ô(t) satisfies d

dt
Ô = LÔ. The

matrix equation can be written in a linear equation d
dt

�O = L �O
after reforming the operator Ô into a vector form �O =
(Ô1,1, . . . ,Ô1,Nc

,Ô2,1, . . . ,Ô2,Nc
, . . . ,ÔNc,1, . . . ,ÔNc,Nc

). The
length of �O is N2

c , and the Liouvillian matrix L (originally the
superoperator L) has dimension N2

c × N2
c . Therefore, L has

N2
c eigenvalues, �, which are in general complex values with

Re(�) � 0. The corresponding right and left eigenvectors, �v�

and �uT
�, are defined here as

L�v� = ��v�, �uT
�L = �uT

��. (4)

Therefore, if the eigenvalues are nondegenerate, the operator
in vector form, �O, is decomposed into the eigenvectors:

�O =
∑
�

C(�)�v�, (5)

where C(�) = (�uT
� · �O)/(�uT

� · �v�). From the above expres-
sion, we obtain the eigenvalue decomposition of the vector
by �O = ∑

�[ �O]� with [ �O]� ≡ C(�)�v�, the matrix form
of which with an original Hilbert dimension (Nc × Nc) is
written as Ô = ∑

�[Ô]�. The merit of using the eigenvalue
decomposition is that the time evolution of the operators is
explicitly given by

Ô(t) ≡ eLt Ô =
∑
�

[Ô]�e�t . (6)

In the calculus inside trace of operator products below, the �-
component [Ô]� also works as an operator (matrix) in the same
manner as the original operator Ô. Accordingly, [[Â]�1B̂]�2

is
understood as the �2 component of a matrix product [Â]�1B̂.

2. Average filtered-field intensity

Now, we apply the eigenvalue decomposition tech-
nique to the filtered-field intensity, 〈Ê+

F (tj )Ê−
F (tj )〉 =

Tr[Ê+
F (tj )Ê−

F (tj )ρ̂SS] in Eq. (3), whereas the system is as-
sumed to be in the steady state ρ̂(tj ) = ρ̂SS . Inserting Eq. (2),
we have

〈Ê+
F (tj )Ê−

F (tj )〉

=
∫ ∞

0

∫ ∞

0
dτ1dτ2 f ∗(τ1)f (τ2)

×Tr[Ê+(tj − τ1)Ê−(tj − τ2)ρ̂SS]

=
∫∫

τ2>τ1>0
dτ1dτ2 f ∗(τ1)f (τ2)Tr[Ê+eLτ21 (Ê−ρ̂SS)]

+
∫∫

τ1>τ2>0
dτ1dτ2 f ∗(τ1)f (τ2)Tr[Ê−eLτ12 (ρ̂SSÊ

+)],

(7)

with τij ≡ τi − τj . Applying Eq. (6), the filtered-field intensity
is expressed in the form

〈Ê+
F (tj )Ê−

F (tj )〉 =
∑
�

s(�)q(�) + s∗(�)q∗(�), (8)

where we noticed that the first and second terms in the right-
hand side of Eq. (7) are the conjugate pairs. The coefficients
are given by

s(�) =
∫∫

τ2>τ1>0
dτ1dτ2 f ∗(τ1)f (τ2)e�τ21 , (9)

q(�) = Tr(Ê+[Ê−ρ̂SS]�). (10)

This is the general form of the superoperator eigenvalue
decomposition for the filtered-field intensity. If the filter
bandwidth λ is set small, the intensity 〈Ê+

F (tj )Ê−
F (tj )〉 as a

function of the central frequency ωF is the emission spectrum.
This eigenvalue decomposition method was previously applied
to the calculation of the Mössbauer spectra [23] as a first-order
correlation function. The method shown here is essentially the
same as that shown in the paper. However, we will now apply
this method to the second-order correlation function.

3. Average filtered-field intensity correlation

Next, we compute the second-order correlation function at
zero delay assuming the steady state:

〈T+T−Ê+
F (t1)Ê+

F (t2)Ê−
F (t2)Ê−

F (t1)〉|t1=t2

= 22
∫∫∫∫

τ1 > τ2 > 0
τ4 > τ3 > 0

dτ 4f ∗(τ1)f ∗(τ2)f (τ3)f (τ4)

×Tr[Ê+(−τ1)Ê+(−τ2)Ê−(−τ3)Ê−(−τ4)ρ̂SS], (11)

where dτ 4 ≡ dτ1dτ2dτ3dτ4. The region of the fourfold inte-
gration is divided into six regions with different time orderings:
(i) τ2 < τ3 < τ4 < τ1, (ii) τ2 < τ3 < τ1 < τ4, (iii) τ2 < τ1 <

τ3 < τ4, (iv) τ3 < τ2 < τ1 < τ4, (v) τ3 < τ2 < τ4 < τ1, and
(vi) τ3 < τ4 < τ2 < τ1. Since the contributions from (i) and
(iv), (ii) and (v), and (iii) and (vi) are complex conjugate pairs,
respectively, we have only to compute the integration over (i),
(ii), and (iii).
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The second-order correlation function in Eq. (11),
Tr[Ê+(−τ1)Ê+(−τ2)Ê−(−τ3)Ê−(−τ4)ρ̂SS], is expressed by
using the quantum regression theorem and the superoperator
eigenvalue decomposition, as

Tr(Ê+eLτ32{Ê−eLτ43 [Ê−eLτ14 (ρ̂SSÊ
+)]})

=
∑

�1,�2,�3

exp(�1τ14 + �2τ43 + �3τ32)

×Tr(Ê+{Ê−[Ê−(ρ̂SSÊ
+)�1 ]�2}�3 ) (12)

for (i) τ2 < τ3 < τ4 < τ1. Similarly, it is∑
�1,�2,�3

exp(�1τ41 + �2τ13 + �3τ32)

×Tr(Ê+{Ê−[(Ê−ρ̂SS)�1Ê
+]�2}�3 ) (13)

for (ii) τ2 < τ3 < τ1 < τ4, and∑
�1,�2,�3

exp(�1τ43 + �2τ31 + �3τ12)

×Tr(Ê+{[Ê−(Ê−ρ̂SS)�1 ]�2Ê
+}�3 ) (14)

for (iii) τ2 < τ1 < τ3 < τ4. By inserting Eqs. (12)–(14) into
Eq. (11), we obtain a general expression:

〈T+T−Ê+
F (t1)Ê+

F (t2)Ê−
F (t2)Ê−

F (t1)〉|t1=t2

= 2Re
iii∑

k=i

∑
�1,�2,�3

Zk(�1,�2,�3)
k(�1,�2,�3), (15)

where

Zi = 22
∫∫∫∫

(i)
dτ 4f ∗(τ1)f ∗(τ2)f (τ3)f (τ4)

× exp(�1τ14 + �2τ43 + �3τ32), (16)

Zii = 22
∫∫∫∫

(ii)
dτ 4f ∗(τ1)f ∗(τ2)f (τ3)f (τ4)

× exp(�1τ41 + �2τ13 + �3τ32), (17)

Ziii = 22
∫∫∫∫

(iii)
dτ 4f ∗(τ1)f ∗(τ2)f (τ3)f (τ4)

× exp(�1τ43 + �2τ31 + �3τ12), (18)

and


i = Tr(Ê+{Ê−[Ê−(ρ̂SSÊ
+)�1 ]�2}�3 ), (19)


ii = Tr(Ê+{Ê−[(Ê−ρ̂SS)�1 ]�2}�3 ), (20)


iii = Tr(Ê+{Ê−[(Ê−ρ̂SS)�1Ê
+]�2Ê

+}�3 ). (21)

With the general decomposed expression, the effect of the
spectral filtering on the second-order correlation function
enters only through Zk(�1,�2,�3) and s(�). Therefore, they
can be regarded as response functions of the system in which
the filter response is convolved.

We should mention here the case of short correlation time
τc filters [τc is defined through f (τ 	 τc) = 0], which should
correspond to an unfiltered case. If τc is much shorter than the
time scale of system dynamics, we can put exp(�iτj ) = 1 for

Zk in Eqs. (16)–(18) and for s in Eq. (9). In this case (τc → 0),
s and Zk for k = i–iii are independent on �, �1,�2, and �3.
Then, by using

∑
�1,�2,�3


k = 〈Ê+Ê+Ê−Ê−〉, ∑
� q(�) =

〈Ê+Ê−〉, we safely find that the expression for the normalized
correlation function is reduced to be that of the unfiltered field:

g
(2)
F (0) = 〈Ê+Ê+Ê−Ê−〉

〈Ê+Ê−〉2
. (22)

4. s and Zk for Lorentzian, Gaussian, and rectangular filters

As the typical examples, the above general expression is
applied to three types of filters—Lorentzian, Gaussian, and
rectangular filters—to obtain the explicit analytic forms for s

and Zk here. In the calculation, we assume for simplicity that
the time delay of the filter response, τd in Fig. 2(a), is much
larger than the correlation time, τc, and in addition the system
is assumed to be in the steady state. Under this assumption,
we will change the time variables from τ to τ + τd and
approximately change the lower limit of the time integration
from zero to −τd ≈ −∞. With this change, the range of the
integration for s(�) is replaced by −∞ < τ1 < τ2 < ∞ in
Eq. (9). Similarly, for Zk in Eqs. (16)–(18), the time range
of the integration is replaced by −∞ < τj < ∞ while the
ordering among τ1, τ2, τ3, and τ4 is unchanged.

The Lorentzian filter is the simplest example to perform
the time integration to give s (= sL) and Zk (= ZL

k ), since the
correlation function of Lorentzian filter f (τ ) = fL(τ ) is an
exponential [21]:

fL(τ ) = λθ (τ )exp[(−λ − iωF )τ ], (23)

where θ (x) is the Heaviside step function. Inserting this and
after straightforward integrations, we find that they are given
by simple polynomial fractions:

sL(�) = λ/2

iωF + λ − �
, (24)

ZL
i = λ

λ − iωF − �1

λ

2λ − �2

λ

3λ + iωF − �3
, (25)

ZL
ii = λ

λ + iωF − �1

λ

2λ − �2

λ

3λ + iωF − �3
, (26)

ZL
iii = λ

λ + iωF − �1

λ

2λ + i2ωF − �2

λ

3λ + iωF − �3
.

(27)

For Lorentzian filters, the time integration for correlation func-
tions gives the products of the transfer function, and therefore
analytic time integration up to the arbitrarily high orders is
possible. For simplicity, the photon statistics of filtered fields
has been studied only for Lorentzian filters [15,21]. However,
as shown in the next section, when the time scale of the system
dynamics is comparable to τc, which we sometimes face in
state-of-the-art quantum emitters, the best choice of the filter
type is essential. Therefore, the photon statistics of the field
filtered by other types of filters should be necessary. Here we
just show the results for Gaussian and rectangular filters (but
the method can be applied to arbitrary filter function).

For Gaussian filters, the correlation functions, f (τ )
[=fG(τ )] in the time domain and F (ω) [= FG(ω)] in the
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TABLE I. Coefficients for ZG
k of Gaussian filters, Eq. (31).

k Ak Bk Ck

i �1−�2+�3
2λ

−2iωF −�1+�3
2λ

−�2
2λ

ii −2iωF +�1−�2+�3
2λ

−�1+�3
2λ

−�2
2λ

iii �1−�2+�3
2λ

−�1+�3
2λ

2iωF −�2
2λ

frequency domain are

fG(τ ) = λ√
π

exp[−(λτ )2 − iωF τ ], (28)

FG(ω) = 1

2π
exp

[
−

(
ω − ωF

2λ

)2]
, (29)

where the Fourier transform is defined by F (ω) ≡
(2π )−1

∫
f (τ )exp(iωτ )dτ . For this filter, s(�) [= sG(�)] is

given by

sG(�) = 1
2 exp[y(�)2]{1 + erf[y(�)]}, (30)

where y(�) ≡ (� − iωF )/(
√

2λ) and erf(x) is the Gauss
error function. For the second-order correlation function, we
obtained an analytic expression for Zk (= ZG

k ):

ZG
k = 1√

π
eA2

k+B2
k +C2

k

∫ ∞

0
e−(z−Ak )2

[1 − erf(z + Ck)]

× [erf(z + Bk) − erf(−z + Bk)]dz, (31)

the coefficients of which—Ak , Bk , and Ck—are given in
Table I.

For rectangular filters, filter correlation functions f (τ )
[=fr (τ )] and F (ω) [= Fr (ω)] are given by

fr (τ ) = exp(−iωF τ )
sin(λτ )

πτ
, (32)

Fr (ω) = 1

2π
θ (λ − |ω − ωF |). (33)

For this filter, s(�) [= sr (�)] is found to be

sr (�) = 1

2πi
ln

(
ωF + λ + i� − i0

ωF − λ + i� − i0

)
, (34)

where the infinitesimally small positive number, zero, is
introduced for the analytic continuation of the logarithmic
function [which is essential in case Re(�) = 0]. The analytic
expression for Zk (= Zr

k) is also found by inserting Eq. (32)
into Eqs. (16)–(18) and performing the integration

Zr
k = i

2π3
{[φ(α+

k ,β+
k ; 2) + φ(α−

k ,β−
k ; −2)]

× [ln(2 − γk) − ln(−γk)]

−�(α+
k ,β+

k ,γk; 2) + �(α−
k ,β−

k ,γk − 2; −2)}, (35)

where α±
k ≡ αk ± 1; β±

k ≡ βk ± 2; and the coefficients αk ,
βk , and γk are given in Table II. The functions φ and � are
defined with an analytically continued function of the nth-

TABLE II. Coefficients for Zr
k of rectangular filters, Eq. (35).

k αk βk γk

i −ωF −i�3
λ

+ i0 −i�2
λ

+ i0 ωF +λ−i�1
λ

+ i0

ii −ωF −i�3
λ

+ i0 −i�2
λ

+ i0 −ωF +λ−i�1
λ

+ i0

iii −ωF −i�3
λ

+ i0 −2ωF −i�2
λ

+ i0 −ωF +λ−i�1
λ

+ i0

order polylogarithm, Lin(z) = ∑∞
m=1 zm/m2, by

φ(a,b; z) ≡ − ln(z − b) ln(−a)

+ ln(z − a) ln

(
z − b

a − b

)
+ Li2

(
z − a

b − a

)
, (36)

�(a,b,c; z) ≡
∫ z

0

φ(a,b; z)

z − c
dz. (37)

In the evaluation of Zr
k , we have carefully performed the

multiple complex integrations since the contours cross branch
cuts of the logarithmic functions.

To summarize this section, a simple calculation method for
photon statistics of the filtered field, based on superoperator
eigenvalue decomposition technique, was proposed and ana-
lytic expressions for s and Zk are obtained for the three types of
filters: Lorentzian, Gaussian, and rectangular filters (as typical
examples). For other types of filters, it will also be possible to
find analytic expressions, although we will not go into further
details here. Validity of our method is confirmed numerically
by the perfect agreements with the other method [15] for the
case of Lorentzian filters, as shown in Sec. III.

III. APPLICATION TO QUANTUM DOT
SINGLE-PHOTON EMITTERS

Here, we take QDs as an example of efficient SP emitters
and apply the proposed eigenvalue decomposition method to a
simulation of the photon statistics of the emission field filtered
by Lorentzian, Gaussian, and rectangular filters.

A. QD SP emitters under incoherent pumping

The model of the QD emitter system is the same as that
used in our previous paper [14,26,27]. We consider the QD
emitter states consisting of the electron-hole carriers as shown
in Fig. 3(a). Among 16 carrier configurations occupying the
lowest-energy levels, six charge-neutral configurations are
taken into account: an empty state |G〉, two bright exciton (BX)
states |BX1〉 = ê

†
↑ĥ

†
↓|G〉 and |BX2〉 = ê

†
↓ĥ

†
↑|G〉, two dark

exciton (DX) states |DX1〉 = ê
†
↑ĥ

†
↑|G〉 and |DX2〉 = ê

†
↓ĥ

†
↓|G〉,

and a biexciton state |XX〉 = ê
†
↑ê

†
↓ĥ

†
↑ĥ

†
↓|G〉, where êσ and ĥσ

(ê†σ and ĥ†
σ ) are annihilation (creation) operators of electrons

and holes with spin σ =↑ , ↓ in their respective lowest-energy
levels of the QD. The Hamiltonian of the QD emitter is

Ĥ = ωXN̂tot − χ |XX〉〈XX|, (38)

where N̂tot = ∑
σ=↑,↓(ê†σ êσ + ĥ†

σ ĥσ )/2 is the number of exci-
tons, χ (= ωX − ωXX) is the biexciton binding energy, and the
fine-structure splitting between the exciton states is neglected.
The following incoherent decay processes are considered as
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FIG. 3. (Color online) A neutral QD model [14,26,27]. (a)
Among 16 electronic states at the QD ground levels, six neutral
states with up to two excitons (G, BX1, BX2, DX1, DX2, and XX)
are taken into account. (b) Incoherent pump (P ) and decay processes
(γsp , γ e

S , γ h
S ).

shown in Fig. 3(b): the decay of the injected electron-hole pairs
is dominated by the spontaneous emission (the rate γsp) [28],
the excitons suffer dephasing (with the rate �ph), and the spin
flip of electrons and holes (with the rates γ e

S and γ h
S ) results

in the transitions between dark and bright exciton states with
a rate γS (= γ e

S + γ h
S ). The above-band-gap laser excitation

followed by the fast carrier relaxation to the QD ground states
or the carrier current injection are modeled by an incoherent
pumping rate, P [14].

In this neutral QD, it was shown that XX emission at
ω = ωX − χ is enhanced by incoherent XX excitation via DX
states, and can strongly degrade the purity of SP emissions,
especially in the case when the spin-flip process is slower
than the spontaneous emission (γS < γsp) [14]. Therefore, if
the exciton emission at ω = ωX is applied to a SP source,
the XX emission must be effectively cut by using a spectral
filter. Here, for the calculation of the emission properties, we
define the emission field operator for the BX recombination
by Ê− ≡ ∑

σ êσ ĥ−σ = (Ê+)†, and the central frequency of
the filter ωF is set as ωF = ωX.

In Fig. 4(a), the emission spectrum is shown for a situation
(χ = 2 meV, �ph = 20 μeV, 1/γS = 10 ns, 1/γsp=1 ns).

In the same figure, the filter functions in the frequency
domain |F (ω)|2 are also shown for Lorentzian, Gaussian,
and rectangular filters with the bandwidth λ = 300 μeV. In
the frequency domain, the Lorentzian filter has a long tail,
Gaussian filter has a shorter tail, and rectangular filter has an
ideally sharp cut. Therefore, from the emission spectrum, the
rectangular filter (with a bandwidth less than χ = 2 meV) may
be expected to be the most effective filter, but we see in the
following that the real situation is not so simple.

In Fig. 4(b), we show the g(2)(0) obtained for the emission
spectrally filtered by the three types of filters as a function
of the bandwidth λ. As expected, the g(2)(0) is reduced if
the bandwidth is chosen as λ < χ for all filters. On the
other hand, if the bandwidth is chosen too small, g(2)(0)
increases as λ decreases due to the increased time uncertainty
(�t = τc = 1/λ in Fig. 2) as mentioned above and in previous
literature [21]. Therefore, by considering the two opposing
effects, spectral suppression of the unwanted detection of
XX emissions and increasing time uncertainty (decreasing
time resolution) for too narrow filters, the existence of the
optimal filter bandwidth λopt is expected. As predicted from
the above argument, we found the g(2)(0) shows the minima
(=0.0027 for Lorentzian, 0.0025 for Gaussian, and 0.0048
for rectangular filters) in Fig. 4(b) (�ph < λopt < χ where �ph

gives the exciton linewidth). Here, we note that our results for
the Lorentzian filter perfectly agree with those obtained by
using the other method [15], numerically showing the validity
of our method.

The above findings, e.g., the existence of an optimal filter
bandwidth at �ph < λopt < χ , seem to be trivial. However, the
following findings are rather counterintuitive.

(i) The rectangular filter has the largest minimum value of
g(2)(0) among the three filters although the rectangular filter
ideally cuts the XX emission in the frequency domain.

(ii) The optimal filter bandwidth λopt is much larger than
the emission linewidth ∼ �ph. (i) also applies to a wide range
of the XX binding energy (0.5 meV < χ < 8 meV) as seen in
Fig. 4(c), where the minima of g(2)(0) as a function of χ are
shown for the three filters.

FIG. 4. (Color online) (a) The emission spectrum of a QD SP emitter (solid) for XX binding energy χ = 2000 μeV is shown with the
normalized filter functions |F (ω)|2 (dashed) for Lorentzian (black), Gaussian (green), and rectangular (magenta) filters with λ = 300 μeV.
(b, c) g(2)(0) of the QD emission after spectral filtering by the three types of filters, Lorentzian (black), Gaussian (green), and rectangular
(magenta). (b) Filter bandwidth (λ) dependence for XX binding energy χ = 2000 μeV. (c) The χ dependence of g(2)(0) at the optimal filter
bandwidth λopt [≈ 100 μeV for the Lorentzian filter in (b); g(2)(0) at λopt are also indicated in (b)]. We set (γsp, �ph) = (0.67,20) μeV, small
pump rate P in the linear regime [14], and the spin-flip time τS ≡ γS = 10 ns for all figures.
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Figure 4(c) shows that the Gaussian filter will be the best
filter to purify the SP emission from this neutral QD system
(after the optimization of the bandwidth). (i) can be understood
as the difference of the filter correlation function in the time
domain, f (τ ). The f (τ )[= fr (τ )] in Eq. (32) is the sinc func-
tion with the slow power-law decay at large τ , different from
the fast exponential decay for the other two filters. Therefore,
the increase in the time uncertainty matters significantly if a
rectangular filter is used. In the case of the Gaussian filter,
because the correlation function is Gaussian also in the time
domain, the long-time tail is strongly suppressed compared
with the rectangular filter. Therefore, the lower value of g(2)(0)
in Fig. 4(c) with the Gaussian filter is reasonable.

Here we briefly comment on the effect of the dephasing and
broadening, since they are the key parameters for solid-state
QD emitters. According to the same numerical simulation for
a larger dephasing rate, �ph = 100 μeV, we found that the
results corresponding to Figs. 4(b) and 4(c) are qualitatively
the same whereas the g(2)(0) value itself is increased due to the
increased broadening (not shown). Spectral broadening is also
caused by coupling the QDs to a small cavity due to the Purcell
effect. In this case, a cavity plays two roles: One is the spectral
broadening increasing g(2)(0), and the other is the cavity effect
as a (Lorentzian) spectral filter with the bandwidth equal to the
cavity loss rate. Because of the latter effect, there is an optimal
cavity loss [14], being similar to Fig. 4(b).

B. SP emitters under coherent pumping

Our next example to study the filtering effect is a resonantly
driven SP emitter. The resonantly scattered light by an emitter
exhibits the Mollow triplet emission spectrum [29], which

can be applied to an indistinguishable SP source [3,11,12,21],
since the resonant excitation prevents emitters from suffering
spectral diffusion and dark exciton effects, and by reducing
dephasing processes.

The physics of the SP emission from the scattered light is
illustrated in Fig. 5(a). In the presence of a coherent laser field
(frequency ωL) in resonance with the emitter (ωX = ωL ≡ ω0),
the scattered light is known to exhibit the Mollow triplet [25]
[Fig. 5(b)] with a central (C) peak and two side peaks (L, U).
The three peaks in the fluorescence spectrum correspond to
the transitions (arrows) between the dressed states indicated
by C (dash-dotted), L (dashed), and U (solid), respectively in
Fig. 5(a). From the illustration, the side peak (say the upper,
U) is successively followed by emissions of the other side
(L) or central (C) peaks. Therefore, successive two-photon
emission within the same side peak is strongly suppressed if the
splitting between the dressed states is larger than the linewidth
(2�R 	 γsp if the linewidth is limited by the emitter lifetime).
This scheme to produce highly efficient and distinguishable
single photons has been studied in recent years with QD
emitters [3,11,12,21], in which the spectral filtering of a
side peak emission (say ω = ω0 + 2�R) is essential. In this
scheme, the major cause of the contamination noise on the SP
purity is the other two emission peaks (ω = ω0, ω0 − 2�R)
and the excitation laser itself (ω = ω0). The main physics can
be described by a resonantly driven two-level system (TLS):

d

dt
ρ̂ = i[ρ̂,Ĥ ] + γspLσ̂− ρ̂ + (�ph/2)Lσ̂z

ρ̂, (39)

where Ĥ = �Rσ̂+ + �∗
Rσ̂− in the rotating frame, and γsp

and �ph are the spontaneous emission and dephasing rates.

FIG. 5. (Color online) Illustration of the single-photon emission from coherently driven emitters (the Rabi frequency �R and ω0 ≡ ωL =
ωX, laser frequency ωL, and the emitter transition frequency ωX). (a) The bare and dressed energy levels with the radiative transitions marked
by arrows corresponding to the emission peaks in (b), and (b) the fluorescence spectrum showing Mollow triplets, a central peak (C) at ω = ω0,
and upper (U) and lower (L) side peaks. The g(2)(0) of the upper side peak emission (U) spectrally selected by three types of filters with
ωF = ω0 + 2�R, Lorentzian (black), Gaussian (green), and rectangular (magenta). (c) g(2)(0) as a function of the normalized filter bandwidth
λ/�R. (d) g(2)(0) minimized in the range 0 < λ < 2�R as a function of the normalized Rabi energy �R/γsp (the values inside brackets and
arrows indicate the minima in (c); the upper limit of the range is set in order to avoid the detection of the driving laser light in the shaded area,
λ > 2�R). We set the spontaneous emission γsp = 0.3�R and dephasing rate �ph = 0 for (b) and (c), and the dephasing rate �ph = 0 for all
figures.
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First we set the dephasing rate �ph = 0 according to the
experimental reports showing lifetime limited linewidth [12].
For the calculation of the emission properties, we define the
emission field operator by Ê± ≡ σ̂±, and the central frequency
of the filter ωF is set as ωF = ω0 + 2�R.

Figure 5(c), shows the simulated g(2)(0) of the upper
side peak emissions spectrally filtered by the three types of
filters—Lorentzian (black), Gaussian (green), and rectangular
(magenta) filters. The g(2)(0) is plotted as a function of the filter
bandwidth λ, which shows a minimum in the regime 0 < λ <

2�R reflecting the physics of SP generation mentioned above.
If λ < 2�R, g(2)(0) decreases as λ decreases since the spectral
selection for the side peak becomes effective. On the other
hand, for λ much less than the spontaneous emission rate γsp

or the linewidth [γsp = 0.3�R in Fig. 5(c)], g(2)(0) increases
as λ decreases due to the degraded time resolution. The g(2)(0)
at the minima depends on the types of the spectral filters, being
similar to Fig. 4(b), the result for an incoherently pumped QD.
In this case, however, the Gaussian filter gives the smallest
g(2)(0), i.e., the most pure SP emission, and the Lorentzian
filter gives the worst purity for γsp = 0.3�R (2�R/γsp = 6.7)
in Fig. 5(c). Here, we again note that our results for the
Lorentzian filter perfectly agree with those obtained by using
the other method [15], numerically showing the validity of our
method.

In Fig. 5(d), the g(2)(0) at the minima is shown as a function
of the ratio between the Rabi frequency over the linewidth,
2�R/γsp. It is clearly found that g(2)(0) at the minima decreases
(i.e., the SP purity increases) as 2�R/γsp increases. This is
because the contamination source, i.e., the other emission
peaks, C and L, becomes spectrally separated and suppressed
well by the filters for larger splitting, 2�R/γsp. An interesting
feature is that the Lorentzian filter gives g(2)(0) larger than
others, i.e., the performance to obtain high SP purity is the
lowest among the three types, while the rectangular filter
was the worst choice in the case of incoherent excitation in
Fig. 4(c). Moreover, an interesting result is that the most
efficient filter type to give the highest SP purity depends
on the pump parameter 2�R/γsp in Fig. 5(d). For the Rabi
splitting not too large 2�R/γsp < 60, the Gaussian filter
with the smallest g(2)(0) is the best choice among the three.
For the strong Rabi field 2�R/γsp > 60, the rectangular filter
with the smallest g(2)(0) is the best filter type. We should note
here that the latter case especially is quite different from the
result of incoherent excitation in Fig. 4(c). We performed the
same numerical analysis for a case including finite dephasing
rate (�ph = 5γsp, not shown). Although the value of g(2)(0) is
increased due to the dephasing-induced spectral broadening,
we found a similar dependency of g(2)(0) at minima on
2�R/γsp, i.e., the rectangular filter becomes the most efficient
filter for large 2�R/(γsp + 2�ph).

We interpret the origin of the different results between
coherent and incoherent pumping as a kind of resonance phe-
nomenon between the Rabi oscillation dynamics of TLS (with
a frequency 2�R) and the oscillatory response [∝ sin(λτ )],
which will uniquely happen under coherent pumping together
with the rectangular filter used. The resonance phenomenon
consequently highlights the quantum correlation of the filtered
field in a coherent regime 2�R/γsp 	 1 if one of the resonance
conditions is satisfied on the filter bandwidth (λ = �R, 2�R,

and 4�R as shown below). The resonance feature is not found
for Gaussian or Lorentzian filters without such oscillatory
components in the response function. This interpretation is
mathematically explained as follows.

Here, we focus on Zk(�1,�2,�3) since the filter response
is included only through it. For a TLS resonantly driven in the
coherent regime 2�R/γsp 	 1, the eigenvalue � of L is ap-
proximately given by one of (0, − γsp/2, − 3γsp/4 ± i2�R) in
the rotating frame (ω → ω − ω0). Therefore, up to the zeroth
order in γsp, �j = iηj 2�R where ηj ∈ (−1,0,1). By rewriting
Eq. (32) as fr (τj ) = (i2πτj )−1 ∑

lj
lj e

i(lj λ−ωF )τj where the
sum is taken over lj = ±1, the oscillatory component in
the integrand, e.g., for Zi in Eq. (16) (except for the slowly
decaying component ∝ ∏

j τ−1
j ), is

eiωF (τ1+τ2−τ3−τ4) × eiλ(l1τ1+l2τ2−l3τ3−l4τ4)

×e�1τ14+�2τ43+�3τ32 = ei(l1+l2−l3−l4)λτ2

×ei[l1λ+(η1+1)2�R ]τ14 × ei[(l1−l4)λ+η22�R ]τ43

×ei[(l1−l3−l4)λ+(η3−1)2�R ]τ32 , (40)

where ωF = 2�R in the rotating frame is assumed in the
right-hand side. From the oscillation components, the integral
becomes large if resonance conditions are satisfied, i.e.,
when the coefficients of τ2,τ14,τ43, and τ32 are vanished. By
considering the case l1 + l2 − l3 − l4 = 0 [thus we can replace
l1 − l3 − l4 → −l2 in the last line in Eq. (40)], we find the
exponents can be vanished when λ = �R and fully vanished
when λ = 0, 2�R, and 4�R. Among the four conditions,
we consider only the three with nonzero λ will cause large
enhancement in the quantum correlation of the filtered field,
since the increased time uncertainty at λ = 0 will mask the
feature of quantum emissions as already discussed above.
Besides, we can naively expect the resulting photon statistics
is strongly dependent on λ close to the resonance conditions
λ ∼ �R, 2�R, and 4�R. Such a resonance feature will become
clear when the decay rate γsp, neglected in Eq. (40), is small
enough to fulfill 2�R/γsp 	 1. The same discussion holds for
Zii and Ziii as well.

In Fig. 6, we show g(2)(0) as a function of the filter
bandwidth for a strong Rabi field 2�R/γsp = 100 	 1 (solid
line) and for the weaker field 2�R/γsp = 6.7 [dotted line, the
same as Fig. 5(c)]. By comparing the two results, as expected
in the above discussion, singular behavior is found at the three
resonance conditions: λ ∼ �R, 2�R, and 4�R. Two sharp
peaks found at λ ∼ 2�R and 4�R indicate strong bunching
effects [large g(2)(0)] caused by the detection channel opened
for cascaded emissions [e.g., for λ ∼ 2�R, the detection of
the cascaded emissions U → L/C and C → C/L/U becomes
possible in Fig. 5(a)]. Especially for the strong Rabi field
(2�R/γsp = 100), the bunching feature is highlighted, while
on the other hand the height and sharpness of the bunching peak
[the value of g(2)(0)] are decreased as the parameter 2�R/γsp

is decreased to 6.7 (dotted line). It is reasonable to consider
that a kind of constructive interference enhances the cascaded
emission detection for large 2�R/γsp if one selects λ ∼ 2�R

and 4�R. On the other hand, the strong dip (antibunching
dip) at λ ∼ �R is clear for 2�R/γsp = 100, while it is less
clear for 2�R/γsp = 6.7. This antibunching dip is reasonably
interpreted as a kind of destructive interference suppressing the
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FIG. 6. (Color online) g(2)(0) as a function of the filter bandwidth
λ/�R for a rectangular filter with different decay parameters
(2�R/γsp,�ph/�R): (100, 0) for the solid line, (100, 0.1) for the
dashed line, and (6.7, 0) for the dotted line [same as Fig. 5(c)]. For
the solid line, the g(2)(0) values at the dip and two peaks are indicated.

detection of the cascaded emission, which becomes effective
for large 2�R/γsp if one selects λ ∼ �R.

All the numerical results in Fig. 6 reasonably agree with
the above-discussed resonance feature. Furthermore we can
generalize the discussion to include the dephasing effect. A
comparison between the solid curve and the dashed curve
(with the same 2�R/γsp = 100 but with finite dephasing
�ph = 0.1�R) shows that the dephasing weakens the resonance
feature; the bunching at λ ∼ 2�R and 4�R and antibunching
at λ ∼ �R are all weakened. This is because the dephasing,
the additional decay channel of the coherent Rabi dynamics,
increases the negative real part of �j and has an effect
similar to increasing γsp. To summarize, in the presence of
the dephasing, we can roughly understand the results from
those without dephasing by replacing γsp with γsp + 2�ph.

It should be noted that the resonance phenomenon (between
the quantum dynamics of the emitter system and the filter
response) is a unique feature to the rectangular filter (among
three filters considered in this paper), and therefore the
resonance behavior at the conditions is not found in Fig. 5(c)
for Lorentzian and Gaussian filters. We consider this is the
reason why the strong suppression of g(2)(0) at the minima
occurs uniquely with the rectangular filter for the case of
coherent pumping at 2�R/γsp > 60 in Fig. 5(d).

IV. SUMMARY

We proposed a calculation method, based on the superoper-
ator eigenvalue decomposition technique, for photon statistics
of spectrally filtered fields with various types of filters. This
method can give exact results when the emission dynamics is
given by quantum master equations, which can be applied
to a wide variety of quantum emitters, and solvable with
the eigenvalue approach (matrix diagonalization). Also, it is
possible to treat a wide variety of filter functions if analytic
expressions for the convolution functions, s and Zk in Eq. (9)
and Eqs. (16)–(18), respectively, are obtained.

As typical examples, focusing on three filter types—
Lorentzian, Gaussian, and rectangular filters—we applied

this method to QD single-photon (SP) emitters. With the
simulation for two cases, under incoherent excitations and
under coherent and resonant excitations, we found condition-
dependent matching between filter types and emitters in order
to have the highest SP purity. Especially under coherent
excitations with strong Rabi field, multiple photon detection
can be suppressed close to a resonance condition (λ ∼ �R)
with a rectangular filter.

Finally, we mention the precision of the correlation mea-
surement to observe the filter effects in current state-of-the-art
experiments. In conventional measurements, the background
noise, which can be due to background emissions, dark count
of photodetectors, stray light from excitation lasers, etc., has
typically inhibited us from observing small values of g(2)(0).
However, thanks to the recent development of superconducting
nanowire single-photon detectors (SSPD), the dark count rate
and the detection response time can be remarkably reduced. In
addition, a resonant laser excitation to the excited states in a
QD is shown to reduce significantly the background emission
noise, by which small values of g(2)[0] down to 0.003 were
obtained recently together with the use of SSPD [30]. In such
precision experiments, the difference due to the choice of
spectral filters will be detectable.

As for the SP emission from a Mollow triplet side peak,
the corresponding experiments have been recently reported to
show g(2)(0) < 0.1 [31] after deconvolution of the response
of avalanche photodiodes, the response of which can become
faster by using SSPD. In these experiments, the stray light
from the excitation laser was effectively suppressed by using
distributed Bragg reflectors to achieve an orthogonal geometry
between the excitation laser and emission detection. The
background noise is thought to come from the drift of the
Michelson interferometer, which is used as a spectral filter,
resulting in unintended detection of photons from the Rayleigh
peak. The measured g(2)(0) value of 0.08 [Fig. 3(b)] is
comparable but less than our simulation results: min [g(2)(0)]
is 0.16 for the Gaussian filter, 0.22 for the rectangular filter,
and 0.36 for the Lorentzian filter, in which parameters for the
simulation are extracted from the report: 2�R = 53.8 μeV,
γsp = 1 μeV, and �ph = 3.5 μeV. This discrepancy could be
due to a difference in the spectral filter types; they used a
pair of Michelson interferometers (each of which works as a
sinusoidal filter) specially tailored to filter out two Mollow
peaks irrelevant to the SP emission. Therefore, the direct
comparison should be made with such a pair of sinusoidal
filters, although it has remained as a future issue.

An interesting issue remaining will be extending this
method to simulations for periodic and short-pulsed pumping,
which will allow us to study the effect of the spectral filtering
in case of short-pulse excitations aiming at more realistic
operations of the QD SP source [14].
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and Y. Arakawa, A gallium nitride single-photon source operat-
ing at 200 K, Nat. Mater. 5, 887 (2006).

[7] M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa,
Room-temperature triggered single photon emission from a III-
nitride site-controlled nanowire quantum dot, Nano Lett. 14, 982
(2014).

[8] T. Nakaoka, Y. Tamura, T. Miyazawa, K. Watanabe, Y. Ota,
S. Iwamoto, and Y. Arakawa, Wavelength tunable quantum dot
single-photon source with a side gate, Jpn. J. Appl. Phys. 51,
02BJ05 (2012).

[9] D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang,
T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković,
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