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Influence of gain dynamics on dissipative soliton interaction in the presence of a continuous wave
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We investigate the effect of the gain dynamics on the motion and interactions of solitons in the frame of a
complex Ginzburg-Landau-type model, which accounts for dissipative soliton formation and propagation in a
ring fiber laser. It is shown that the gain dynamics modifies the soliton velocity and their interactions. In the
presence of an injected continuous wave, an initial crystal of a few solitons gets broken, either into bunches or
into individual solitons. Quasielastic collisions analogous to Newton’s cradle have been seen. The soliton set
may evolve into gas, solitons, or harmonic mode-locked patterns. The time jitter present in the last situation has
been considered.
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I. INTRODUCTION

Dissipative solitons are robust entities which arise in many
physical situations. As conservative solitons, which have been
considered as interesting candidates for elementary particles,
they may have particlelike behavior. Laser cavities are the
ideal experimental frame for the study of dissipative soliton
interactions since they make it possible to build many various
situations, which show a huge quantity of different behaviors.
In fiber lasers, using various mode-locking processes, large
numbers of solitons can be produced, forming a multipulse
pattern [1].

It has been shown that several features of high-power
wave propagation, such as supercontinuum generation [2] or
optical rogue waves [3], could be explained from interactions
of a large numbers of solitons. Further, such patterns have
practical applications to produce ultrahigh-repetition rate
pulsed laser sources [4]. The knowledge of the interactions
between solitons is then essential to stabilize the pulse
train.

On the other hand, experiments have shown that they exhibit
collective behaviors comparable to states of matter [5–7].
Gas, liquids, and crystals of solitons have been evidenced,
but also more exotic behaviors such as the soliton rain [8]
or harmonic mode locking of soliton crystals [9]. Thus, the
modeling of the multisoliton interaction is an important issue,
from both the fundamental and the applicative points of
view.

Harmonic mode locking is usually considered as the result
of a purely repulsive interaction between moving pulses, which
thus arrange themselves in order to maximize the distance
between neighboring pulses. It has been observed that a
continuous component was generally present together with
the regularly distributed short pulses [1,9–11]. The possibility
of controlling such a component by externally injecting it
has been recently investigated experimentally [4]. From the
theoretical point of view, the soliton motion which is involved
in this process, and also necessary for soliton gas formation,
is, in principle, prohibited in the complex Ginzburg-Landau
(CGL) equation due to the spectral filtering (the finite gain
bandwidth), while it is present in the experiments (notice,
however, that some computation made it possible to retrieve
a soliton gas behavior within the frame of CGL [12]). It has

been shown that an external source of continuous wave can
induce soliton motion and lead to the formation of the various
states of matter of solitons, depending on its frequency and
amplitude [13].

However, although the CGL model driven by a continuous
wave makes it possible to reproduce the experimental observa-
tions in what regards the soliton crystal, gas, and liquid, to our
knowledge, it fails to describe the harmonic mode-locking
regime. It seems that purely repulsive interactions are not
present within this model. On the other hand, two very
important effects due to the dynamics of gain are not taken into
account by the CGL equation. One is that the total energy in
the cavity is limited and can be controlled by the pumping rate.
Consequently, there is some limitation in the number of pulses,
which is not taken into accounted by the CGL equation. The
second is that the gain is nonconstant all along the pulse train,
since each soliton takes some energy, and there is less left for
the following one. This induces a dissymmetry and effective
long-range interaction [14]. Hence, we may think that gain
dynamics can be responsible for harmonic mode locking and
will support this statement by numerical study of a CGL-type
model.

The aim of the present paper is to investigate how these
two effects impact soliton motion or, more exactly, how
the gain dynamics (the second effect) affects soliton motion
within a pulse train whose length is fixed owing to the gain
saturation (the first effect). After having presented the model
(Sec. II), we first discuss in Sec. III the effect of the integral
term which accounts for gain dynamics on the motion of the
solitons of CGL equation. In Sec. IV, we retrieve with this
more complete model, the generation of soliton gas, liquid,
or crystal already obtained with a simpler model in [13]. In
Sec. V we see that the model makes it possible to obtain the
harmonic mode locking, as observed in experiments [4]. A
remarkable feature of the model is that it presents jitter; two
different jitter types are identified in Sec. VI, after which we
conclude.

II. MODEL AND GAIN DYNAMICS

The evolution of dissipative soliton in the cavity of a
mode-locked fiber laser, where an external continuous wave
is injected, can be modeled by the following CGL-type
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The parameters β, D, ε, μ, and ν have their standard
meaning in the context of the dimensionless CGL equation:
They represent, respectively, the spectral gain filtering, the
dispersion, the saturation of the linear absorption, the quintic
nonlinear gain, and the quintic nonlinear index in a normalized
way. A simplified form of this model, the cubic CGL equation
[i.e., Eq. (1) with 1/Is = � = A = μ = ν = 0], was derived
from the equations which describe propagation in a fiber in
[15] in the case of a fiber laser mode locked by nonlinear
rotation of the polarization and in [16] for the figure-eight
laser. It is nothing but the evolution equation related to Haus
master mode-locking equation [17]. The quintic CGL equation
[i.e., Eq. (1), with 1/Is = � = A = 0, but nonvanishing μ,
ν] was derived in [18,19]. All cited papers provide explicit
expressions of the coefficients of the CGL equation in terms
of laser characteristics.

The gain saturation term involves the gain coefficient g0,
while r yields for linear losses and Is for saturation intensity.
The averaged intensity is 〈|E|2〉 = 1

T

∫ |E|2dt , where T is
the length of the cavity (the round-trip time) or the length
of the numerical box. Notice that, multiplied by the effective
area of mode, the average intensity 〈|E|2〉 is nothing but the
average power in the usual sense. The relaxation time of the
gain is rather long (about 10 ms for Er/Yb doped fibers),
and consequently the power should, in principle, be averaged
over a large number of round trips. However, we restrict
to the average over one cavity length for technical reasons.
This approximation is used very often and gives results in
accordance with experiments.

The integral term accounts for the gain dynamics, the fast re-
sponse of the gain. � is proportional to the gain (in principle, it
should be the saturated gain [g0/(1 + ∫ |E|2dt/Ws) − r], but
the saturation of this term can be considered as a higher-order
correction and is omitted for sake of simplicity). A derivation
of this contribution term by means of a perturbative approach
has been provided in Ref. [20]. The last term is a source one,
accounting for the injected continuous wave, as in Ref. [13].

We solve the initial value problem for Eq. (1) by means of a
standard fourth-order Runge-Kutta algorithm in the frequency
domain. The nonlinear terms are computed by inverse and
direct fast Fourier transforms at each substep of the scheme,
the integral in the saturation term is evaluated by a mere
summation, the antiderivative in the fast gain response term is
computed in the spectral domain. The adequate definition of
the antiderivative is that the mean value of the integrand must
be removed first and that the mean value of the antiderivative
must be zero: It is exactly what provides the computation in
the spectral domain.

Evaluation of the values of parameters corresponding to a
given experiment is a difficult task, which had been performed

in Ref. [20] (however, quintic nonlinear terms and injected
waves were not considered there). From the experimental
point of view, β measures the bandwidth of the gain and
losses. It thus essentially depends on the nature of the
amplifying medium, but the bandwidth can be modified using
spectral filters, the change leading normally to a narrowing
of the bandwidth, i.e., an increase of β. The nonlinear gain
parameters ε and μ characterize the saturable absorber used.
When using the nonlinear rotation of the polarization, they are
modified by adjustment of polarization controllers. ν normally
arises from the fifth-order nonlinear susceptibility χ (5) of the
medium, but an effective effect can be expected in some
situations. It was shown to be zero in the situation and within
the approximations of Ref. [18]. Due to the normalization,
all parameters depend also on the dispersion parameter, on
the nonlinear index n2, and on one free adjustment parameter.
Owing to this great complexity, in order to remain very general,
we use arbitrary (ad hoc) values of the normalized parameters,
as D = 1 (anomalous dispersion regime as in experiment),
ν = 0, β = 0.5, ε = 0.4, and μ = −0.05. This choice ensures
that the fundamental soliton is stable, which occurs in the
experimental situation we intend to model.

We use periodic boundary conditions. In some sense, it
reproduces the experimental situation, since the real cavity
makes a loop. However, the real cavity length is much larger
than the numerical one, with respect to the soliton duration.
Some features of the numerical model can be interpreted in
terms of finite cavity length, but the fact that the order of mag-
nitude of the cavity length is not the one which is relevant with
respect to experiment must be kept in mind. Hence, a model
independent of the numerical box size should be welcome.

However, this independence can be understood in two
different ways, namely, either the number of pulses, or their
density (number of pulses by unit length of cavity) can be
conserved as T is changed. We have written the equation
according to the second option. Questions come from gain
saturation and gain dynamics (only). Regarding saturation, the
model is written in a way that is independent of the box size,
since we consider the average intensity instead of the energy.
However, variations still occur when the box size is modified.
They seem to originate in the fact that the number of pulses
depends on Is in a very subtle way, and the computation of
the integral

∫ |E|2dt is not very accurate, depending on spatial
resolution. Concretely, a few percent correction of the value
of Is may be necessary to get the same result when doubling
or halving the box size.

The integral term is, in principle, independent of the box
size, too, but, in practice, some difficulties arise: For small
values of T , the mismatch between the eigenperiod of the pulse
train (distance between pulses) and the box size induces low-
frequency components, corresponding to a slow increase of the
gain (this integral gain term), followed by a rapid decrease. A
change of the box size may invert the direction of this variation.

III. PULSE MOTION DUE TO GAIN DYNAMICS

Before we investigate how the gain dynamics can modify
the collective behavior of solitons, it is worth considering,
from the very mathematical point view, how the term which
represents gain dynamics in the model, i.e., the integral term
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in Eq. (1), affects the motion of a single soliton by itself.
Hence, we consider Eq. (1) without source term (A = 0)
and without gain saturation (Is = ∞). The algebraic excess
of gain is fixed as δ = (g0 − r) = −0.01. The numerical
cavity length is T = 200. The initial data is built by linear
superposition of two solitons of the pure CGL equation [i.e.,
Eq. (1) with the above parameters and � = 0], computed
numerically. The coefficient � depends essentially on the
gain and on its saturation parameter [20], but also on the
normalization. Although it may considerably vary depending
on the experimental conditions, including the pumping rate,
there is no straightforward way to adjust it in an experiment.
It is, however, always a small parameter.

The fast response of gain induces a slow motion of the
pulse. The inverse velocity w = dt/dz is about −0.0058 for
� = 0.006 and −0.0028 for � = 0.007. Globally, it tends to
increase with �, but not in a monotonic way. Notice that,
since Eq. (1) is written in a frame moving at the linear group
velocity vg of the waves, w = �(1/vg) is a correction to the
inverse of the pulse velocity. It is negative, and, consequently,
the correction to the pulse velocity is positive and the gain
dynamics increases the speed. Indeed, it corresponds to some
consumption of the pump energy by the pulse; hence, the gain
is higher in front of the pulse than behind it. The amplitude
of the pulse front increases due to enhanced gain, and the
amplitude of the back is reduced correspondingly. This yields
an effective pulse motion towards its front, i.e., an increase of
the speed.

An instability is observed, in the form of a set of new
pulses which arise in front of the initial pulses (on the side of
the negative t) and quickly disappear. The process of unstable
pulse emission tends to repeat along the whole cavity; after
little more than one round trip the pulses tend to stabilize
and a multipulse pattern forms (Fig. 1). For larger �, the
instability increases: Secondary pulses form sooner and they
vanish faster. From about � = 0.03 on, the final stabilization
of the pulse train does not occur any more, and pulses are
created and vanish permanently (see Fig. 2). The generated
pulses vanish so quickly that they have no time to propagate
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FIG. 1. (Color online) Instability with � = 0.01: generation of a
long pulse train.
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FIG. 2. (Color online) Instability with � = 0.03: permanent gen-
eration and vanishing of pulses.

any more, and the process of generation and vanishing of the
pulses turns into an effective motion of the pulse. The inverse
velocity w of this motion is very large with respect to the initial
induced velocity discussed above (see Fig. 3). For high values
of �, the moving soliton turns to be unstable and vanishes, the
whole solutions going toward the off state (not shown). It is
thus seen that gain dynamics can induce soliton motion and
even that, if it becomes larger, a fast apparent motion due to
absorption and reemission is possible.

IV. INJECTED CONTINUOUS WAVE

We showed in [13] that the injected continuous wave is able
to induce soliton motion and consequently make it possible to
reproduce the collective behaviors as soliton liquid or gas in
the frame of the CGL model. A question arises as to whether
these results persist with the present, more complete, model
and how they can be modified. Therefore, we now consider the
joint effect of pulse propagation of both a continuous wave,
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FIG. 3. (Color online) Motion due to pulse generation and van-
ishing, � = 0.1. The second initial pulse quickly vanishes.
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FIG. 4. (Color online) A bound state of five solitons which will
be used as input for subsequent calculations; parameters: A = 0,
g0 = 0.09, � = 0.0003, r = 0.2, and Is = 0.025.

which we control by injecting it, and the gain dynamics. It
has been seen above for the gain dynamics and in [13] for the
injected wave that both induce instabilities which results in a
increase of the number of pulses, which will then be bounded
by the numerical cavity length only. We intend here to inspect
the propagation of a fixed number of pulses, smaller than the
maximal one which can appear in the cavity: This requires a
limitation of the pulse number, which is yielded by the gain
saturation term. Most features presented in this section, which
were not seen in [13], are due to this important difference
between the present model and the nonsaturated model used
in that reference.

Since the process is slow, very long propagation distances
are needed, and therefore we restrict to moderate cavity length
and temporal resolution. Without injected signal (A = 0), an
adequate choice of the parameters (g0, �, r , and Is) makes it
possible to obtain a bound state of four or five solitons, filling
a small part of the computation box. An example is given in
Fig. 4, obtained with � = 0.0003, g0 = 0.09, r = 0.2, Is =
0.025, and T = 400, the remaining parameters being the same
as above. The parameters g0 and � are, in principle, fixed by the
laser characteristics. However, although values of parameters
explicitly related to an experimental setup would be, in
principle, preferable, owing to the great complexity of the rela-
tionship between experimental control parameters and the nor-
malized parameters of the model (see Ref. [20]), we use in this
paper ad hoc arbitrary values. Although, for technical reasons,
we can consider here a small number of solitons only, we keep
in mind that this bound state represents the crystal state ob-
served in experiments with a much larger number of solitons.

We used this bound state (Fig. 4) as initial data to solve
numerically Eq. (1). We chose a relatively small frequency
shift �ν0 = �ω0/2π = 0.1, and we vary the amplitude A

of the injected continuous wave, which is easily realized
experimentally by adjusting the pumping rate of the injecting
laser. It is not equivalent to consider the same five-soliton
train in a shorter or in a longer numerical cavity. We
considered here two different cavity lengths, T = 400 and 100,

with the same saturation fluency T Is = 10. The five-soliton
bound state is stationary in both cases (but not completely
stable for T = 100), but the intensity saturation is changed
from Is = 0.025 to 0.1, and consequently the equation is
modified.

For T = 400 and Is = 0.025, when the amplitude of the
injected component is quite small (up to A = 0.04), nothing
happens; the bound state does not change. In this case, the
injected component has no visible effect on the behavior
of the solitons. When the amplitude A ranges from 0.05 to
0.13, the bound state still exists, but the solitons acquire
some speed. At moderately large amplitudes A ≥ 0.14, the
bound state breaks up, yielding two bunches of two and three
solitons. These bunches occupy only part of the computation
box, and the distance between them varies with the amplitude
of the injected component. For strong injected amplitudes A,
other solitons appear after some propagation distance, and may
eventually fill the entire computation box. These pulses have
different amplitudes, and their relative positions are not fixed.
In this situation, the injected component supplies energy to
the system. The model then does not describe a laser cavity
controlled by a small injected signal, but rather resembles a
passive cavity in which gain would have been added. The
physical situation is thus completely different, even if the
model is the same, and we do not consider it further hereafter.
It is thus seen that the injected wave is able to strongly modify
the interaction between solitons.

Changing T = 400 into 100 and Is = 0.025 to 0.1 con-
serves the initial bound state of five solitons, which now
occupies 3/10 of the numerical box, but it appreciably modifies
the gain dynamics. �ν0 = �ω0/2π is the detuning between
the optical frequencies of the injecting laser and of the main
cavity. In an experiment, it can be easily adjusted if a tunable
laser is used as the injecting one. We fix then �ν0 = 0.1 and
vary the amplitude A of the injected wave. Several collective
behaviors of the soliton set can be obtained. Typically, with
respect to the above situation, the thresholds of the continuous
wave amplitude A are lowered.

For low amplitudes (A ≤ 0.105), the soliton bound state
breaks up into two or three bunches. Collisions between the
soliton bunches arise when they meet again due to periodicity.
Some of these collisions are of quasielastic type: When one
soliton hits the bunch, another leaves on the other side, as
in a very short version of Newton’s cradle. Such effect has
already been observed for spatial dissipative solitons [21], and
also in chains of conservative solitons created by fission of
higher-order solitons [22]. In the latter case, the chain was
much longer, and the symmetry was broken by the third-order
dispersion. In the present paper, this role is played by the
integral term accounting for gain dynamics. Figure 5 shows
two typical examples. For readability, the numerical results are
presented in a frame moving at some inverse speed w (given
in the caption of each figure) close to the group velocity of the
train, which is not the frame in which Eq. (1) is solved.

The soliton bunches can be phase locked or not. In the
example of Fig. 5(a), phases vary linearly with z: There is
no phase interaction, while in the example of Fig. 5(b), the
solitons pairs can be phase locked between two collisions.

With moderately high amplitudes (between A = 0.110 and
A = 0.120), two situations are observed. The pulses may fill
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FIG. 5. (Color online) (a) Breaking of the initial bound state into
two bunches, for �ν0 = 0.1, A = 0.005, w = 0. (b) For a higher
amplitude of the injected component A = 0.020, the three-pulse
bunch breaks again into a pair and a soliton, which will collide
elastically; w = 0.0005.

half of the box, being identical and almost exactly equidistant
(locked in position), but in this case there is no phase locking
between consecutive solitons. This is a condensed phase, but
not regularly organized: We can refer to it as a liquid [Fig. 6(a)].
The other outcome is that the pulses fill the whole box,
being in permanent motion; in this case, their amplitudes are
irregular and the separation between two consecutive solitons
is not fixed, as in a gas [Fig. 6(b)]. There is obviously no
phase-locking either. We consider here a situation in which
the number of solitons is fixed and do not fill the entire
computation box, at least in condensed states. The situation,
where the initial soliton crystal fills the entire computation box,
was considered in [13]. In this case it was possible to consider a
much larger number of solitons, since the propagation distance
required to make apparent the crystal-liquid-gas transition
is much less than the time characteristic to the long-range
interaction between pulses we consider here. Using the same
values of the parameters β, D, ε, μ, and ν as in the present
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FIG. 6. (Color online) Evolution of an initial bound state (rep-
resenting the crystal) to either (a) a liquid or (b) a gas of solitons
depending on the value of the injected amplitude. Parameters
are �ν0 = 0.1 and (a) A = 0.115, w = 0.058 77; (b) A = 0.120,
w = 0.070 40.

paper and a fixed excess of linear gain δ = −0.01, but much
larger box size, we obtained, for �ν0 = 0.1, a crystal of
solitons for A = 0.1 and below, a liquid for 0.15 ≤ A ≤ 0.25,
and a gas for A ≥ 0.3. The results were very close to the
present ones; however, the values of the thresholds are not fully
independent of box size, as mentioned above. Summarizing,
we retrieve here the crystal-liquid-gas transition as in [13], but
the saturation of the gain makes it possible to bring forward the
condensate character of the liquid and crystal with respect to
the dilute gas. In addition, other behaviors as crystal breaking
have been observed.

V. HARMONIC MODE LOCKING

It may also happen that the bound state breaks into indi-
vidual solitons, which can, in turn, fill the whole computation
box, instead of bunches. When A = 0.125, the pulses occupy
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FIG. 7. (Color online) (a) Evolution of the temporal pattern
toward harmonic mode locking, �ν0 = 0.1, A = 0.130, w =
−0.027 55. (b) A typical example of the phase difference � between
two consecutive pulses.

the whole computation box and become stable and equidistant.
Such distribution of pulses occurs up to A = 0.133. Figure 7
shows such a distribution for A = 0.130. It is harmonic mode
locking. The phase difference between consecutive solitons
is shown in Fig. 7(b): After some transient state, the phase
differences lock to zero. The train is phase locked. The present
situation is thus simultaneously harmonic mode locking and
a bounded state. The optical spectrum (Fig. 8) is strongly
modulated, as expected for a coherent multiple pulse state.
From A = 0.134 on, the number of solitons in the numerical
box increases. It goes from 5 to 6 for A = 0.134. Then it
further grows with the amplitude of the injected wave, while
the distance between pulses decreases, up to 13 identical
and equidistant pulses for A = 0.270. When the 14th soliton
appears for A = 0.280, the harmonic mode locking ceases, a
soliton gas beginning to form. As said above, it is not, properly
speaking, the soliton gas observed in the fiber laser, since a
substantial part of the power is given by the injected continuous
wave.
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FIG. 8. (Color online) Optical spectrum of the harmonic mode

locking, �ν0 = 0.1 and A = 0.130.

We fix now the amplitude of the injected wave (A = 0.130)
and vary the frequency shift �ν0. The harmonic mode locking
of the five pulses occurs between �ν0 = 0.0987 and �ν0 =
0.1012.

A strong periodic perturbation of the structure of the train
is observed. This kind of jitter is related to the instants where
a soliton crosses the boundary of the computation box. It will
be discussed thereafter. It vanishes for the particular value of
the frequency shift �ν0 = 0.0999.

When the frequency shift of the injected component is
relatively small (0 ≤ �ν0 ≤ 0.0987) for an amplitude A =
0.130, the number of solitons in the box can vary. It can be less
than the initial number of solitons (four pulses for �ν0 = 0),
more than it (seven or eight pulses for �ν0 = 0.09), or the same
as it (for �ν0 = 0.06). Increasing the frequency shift �ν0, the
same features are obtained, but for higher amplitudes A. This
is quite natural: We can expect that, closer to the resonance,
less injected power is required to yield comparable effects.
Note that the pulses are not always regularly spaced. For a
frequency shift just above the domain where the five pulse
harmonic mode-locking exists (more specifically, between
�ν0 = 0.1013 and �ν0 = 0.110), we can get a system of six
pulses in harmonic mode-locking regime.

For relatively large frequency shifts �ν0, we find distri-
butions similar to the behavior observed with varying the
amplitude, but other kind of distributions too. Indeed, it may
happen that the bound state of solitons breaks up, while the
total number of solitons remains the same. Another issue is
that the number of solitons may decrease in the cavity, down
to four, three, or two. A few examples are shown in Fig. 9. The
pulses are locked in position for �ν0 = 0.7 and �ν0 = 1.0
[Figs. 9(c) and 9(d)]. In the distributions presented in Fig. 9,
the pulses are never phase locked.

VI. JITTER

In the harmonic mode-locking regime, strong oscillations
of the pulse locations are observed. The pulses are in motion
for an appreciable inverse speed, with respect to the frame in
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FIG. 9. (Color online) Examples of temporal distributions for
different frequency shifts and a fixed amplitude (A = 0.130). (a)
�ν0 = 0.2 and w = 0; (b) �ν0 = 0.5 and w = −0.0024; (c) �ν0 =
0.7 and w = −0.0005; (d) �ν0 = 1.0 and w = 0.

which Eq. (1) is written, which is, recall, the frame moving at
the velocity of the linear monochromatic waves at the central
frequency (corresponding to �ν0 = 0). The inverse speed w

corresponds to a shift in the group velocity due to nonlinear
and nonconservative effects and mainly the gain dynamics.
Recall that the above figures are presented in the frame
which moves at the effective velocity of the stationary soliton
pattern. However, in the initial frame, due to the velocity shift
and periodicity, the pulses cross frequently the boundaries of
the computation box.

The gain dynamics term is not symmetric as t is changed
into −t , but tends to be monotonic, while the boundary
conditions force it to be periodic. As a result, it varies faster
in the vicinity of this boundary, which induces a strong
perturbation in the soliton speed as it crosses it. This effect
appears as a periodical perturbation of the pulse train in the
frame moving at its own velocity.

The periodic boundary conditions might represent the fact
that the real cavity makes a loop, and a physical meaning can be
given to the effect we just mentioned. The pulses form a train
in which the distance between them is fixed by the interactions.
Each pulse uses some amount of gain. The gain must be
recovered after one round trip, it is the gain-loss balance
required for the laser to operate. This physical condition is
taken into account in the model by the periodic boundary
condition imposed to the gain dynamics term. Some amount
of gain is recovered in the interval between two pulses, but the
speed at which it is recovered mainly depends on the amplitude
profile. After the train, there remains gain to be recovered in the
remaining time. If the mismatch is important, it creates a strong
disturbance in the gain profile, which, in turn, results in a distur-
bance in the amplitude profile. This causes some kind of jitter.

However, there is an appreciable discrepancy in the order of
magnitude of the cavity length of a real fiber laser and that of
the computation box. Further, the bounds of the real cavity are
not fixed in the frame moving at the linear group velocity, but
in the laboratory frame. Hence, although the periodic boundary
conditions might in some cases be interpreted as representing
qualitatively the finite length of the real cavity, no quantitative
correspondence can be expected.

It seems that the pulse train, even in the harmonic mode-
locking regime, has some eigenperiod τ , the characteristic
value of the separation between pulses, independently of the
box length T . It is characterized by the dynamics of gain
consumption and recovery [20]. If the ratio T/τ is exactly an
integer, the pulse train is periodic, and so is the gain, including
the gain dynamics term. If T/τ is not an integer, the gain
recovery at the end of the train must be either faster or slower
than between two pulses. This yields a strong perturbation in
the gain value about this point, which induces a local change
in the pulse velocity (see Fig. 10; the inverse speed corrected
in the figure was here w = −0.013 70). This can be considered
a dislocation of the soliton “crystal” and appears as a jitter.

For a particular value of parameters, the inverse velocity
may vanish (for T = 133.804, same parameters as above; the
inverse speed is w = −0.000 35 only), then the oscillations
vanish too.

It can be a physical effect, when one attempts to fill the
entire cavity with a soliton crystal, such a dislocation can
be expected somewhere in the pulse train. However, if the
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FIG. 10. (Color online) (a) An example of the dynamics gain
profile in the harmonic mode-locking regime: The dynamic gain
shift G = −�

∫ t (|E|2 − 〈|E|2〉)dt ′ vs time t . (b) Oscillations of
the soliton pattern due to the gain variations. Parameters: T = 104,
�ν0 = 0.099, A = 0.13, w = −0.01370.

numerical cavity is strongly increased, the effect becomes
much smaller and almost not perceivable. Hence, it cannot
occur in a fiber laser of several meters length as it appears in
calculations.

We have observed the exact matching of T/τ ; for �ν0 =
0.0999 and T = 100, the inverse speed does not vanish
(w = −0.027 55), but there are no oscillations (even less than
for �ν0 = 0.1). For �ν0 = 0.1001, and same parameters, the
oscillations are already appreciable.

Another type of jitter, independent of the boundary, and
consisting of oscillations of the train which do not originate in
the box length, can also arise. For T = 134.27, e.g., and same
parameters (see Fig. 11), the period of oscillations is about
1935, while the propagation distance for a pulse making one
round trip in the box is about 9300. The two values are not
commensurable. Here the origin of the oscillations differs from
the mechanism described above and which was related to the
box size: It is a true jitter. These oscillations can be considered
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FIG. 11. (Color online) Jitter: oscillations of the soliton pattern
which are not related with the box size. T = 134, �ν0 = 0.099,
w = −0.014 75.

as a wave propagating along the pulse train in the transverse
direction. However, in the frame which moves at the group
velocity of the train, all pulses oscillate in phase: The velocity
of the transverse wave coincides with the group velocity of the
pulse train. The ratio of the amplitude of the oscillations to the
pulse separation is here �τ/τ � 14%. We thus identified two
types of jitter, one of which is related to the matching between
some proper period of the pulse train and the cavity length.
Both types of oscillations may arise simultaneously.

VII. CONCLUSION

We investigated the effect of the gain dynamics on the col-
lective behavior of solitons in the frame of a CGL-type model
which represents dissipative soliton formation and propagation
in a ring fiber laser. By itself, the gain dynamics induces a shift
in the soliton velocity and can modify the properties of the
interaction between pulses. An injected continuous wave also
influences pulse velocity and interactions, and we investigate
the effect of both together. We ran numerical solution of the
model equation, starting from a bound state of a few solitons,
which represents the crystal state, and changing the parameters
of the continuous wave, and see that the outcomes are various.
The initial bound state can be dislocated into a few bunches or
into isolated pulses. Due to the periodicity, the splinters may
interact; quasielastic collisions analogous to Newton’s cradle
have been seen. Irregularly evolving multisoliton states, of
the liquid or gas type, can be produced. For rather specific
values of the parameters, the pulse-pulse interaction becomes
almost purely repulsive, and a harmonic mode-locking pattern
can form. However, phase locking was conserved in the
investigated examples.

The harmonic-mode-locking pattern presents almost al-
ways some jitter. It has been seen that it is often linked
to the mismatch between natural train length and numerical
cavity length. However, when these two quantities are perfectly
matched, another type of jitter may appear.
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