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Generation of Rabi-frequency radiation using exciton-polaritons
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We study the use of exciton-polaritons in semiconductor microcavities to generate radiation spanning the
infrared to terahertz regions of the spectrum by exploiting transitions between upper and lower polariton branches.
The process, which is analogous to difference-frequency generation (DFG), relies on the use of semiconductors
with a nonvanishing second-order susceptibility. For an organic microcavity composed of a nonlinear optical
polymer, we predict a DFG irradiance enhancement of 2.8 × 102, as compared to a bare nonlinear polymer film,
when triple resonance with the fundamental cavity mode is satisfied. In the case of an inorganic microcavity
composed of (111) GaAs, an enhancement of 8.8 × 103 is found, as compared to a bare GaAs slab. Both structures
show high wavelength tunability and relaxed design constraints due to the high modal overlap of polariton modes.
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I. INTRODUCTION

Half-light half-matter quasiparticles called polaritons arise
in systems where the light-matter interaction strength is so
strong that it exceeds the damping due to each bare constituent.
In semiconductor microcavities, polaritons have attracted sig-
nificant attention due to their ability to exhibit strong resonant
nonlinearities and to condense into their energetic ground state
at relatively low densities. Such polaritons result from the
mixing between an exciton transition (EX) and a Fabry-Perot
cavity photon (EC). They exhibit a peculiar dispersion, which
is shown in Fig. 1. Around the degeneracy point of both
bare constituents, the lower and upper polariton (LP and UP,
respectively) branches anticross and their minimum energetic
separation is called the vacuum Rabi splitting (��R). It
can range from a few meV in inorganic semiconductors to
∼1 eV in organic ones [1–5]. Radiative transitions from the
upper to the lower polariton branch can therefore provide a
simple route towards tunable infrared (IR) and terahertz (THz)
generation.

Such transitions can be understood as resulting from a
strongly coupled χ (2) nonlinear interaction in which two
photons, dressed by the resonant interaction with excitons,
interact emitting a third photon. As a consequence of the
usual χ (2) selection rule, such polariton-polariton transitions
are forbidden in centrosymmetric systems. To overcome this
issue several solutions have been proposed, including the use
of asymmetric quantum wells [6,7], the mixing of polariton
and exciton states with different parity [8,9], and the use of
transitions other than UP to LP [10,11].

Here, we study the use of noncentrosymmetric semiconduc-
tors, possessing an intrinsic second-order susceptibility χ (2),
to allow for the generation of Rabi-frequency radiation. For
the case where the UP and LP branches are driven by two
incident pump waves, the irradiance of the resulting radiation is
identical to classical difference-frequency generation (DFG).
Using a semiclassical model, we show that the DFG irradiance
is enhanced by nearly four orders of magnitude compared
to the bare χ (2) nonlinearity. Although here we consider
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DFG, a similar enhancement is expected for the case of
parametric fluorescence, which does not require a LP pump
wave. Finally, we highlight the use of a triply resonant
scheme to obtain polariton optical parametric oscillation
(OPO).

Semiconductor microcavities are advantageous for non-
linear optical mixing due to their ability to spatially and
temporally confine the interacting fields. In contrast to conven-
tional nonlinear optical crystals, which require birefringence or
quasi-phase-matching, the efficiency of the nonlinear process
does not depend on phase matching for small interaction
lengths, but instead on maximizing the field overlap [12]. To
overcome mode orthogonality, while simultaneously satisfy-
ing the symmetry requirements of the χ (2) tensor, a number of
strategies have been proposed such as mode coupling between
crossed beam photonic crystal cavities with independently
tunable resonances [13–15] and the use of single cavities
supporting both TE and TM modes [16,17]. Exciton-polaritons
provide a simple solution to this problem because they arise
from coupling to a single cavity mode and thus naturally
display good modal overlap. Many of the fascinating effects
observed in strongly coupled semiconductor microcavities
exploit this property, but these have been principally limited
to the resonant χ (3) nonlinearity inherited from the exciton.
Examples include stimulated polariton scattering [18,19],
parametric oscillation [20–22], optical bistability [23], con-
densation, and superfluidity [1,24].

Note that in this paper we define the vacuum Rabi frequency
as being equal to the resonant splitting due to light-matter
coupling. Although this definition is commonly used in the
study of quantum light-matter interactions [25], it differs from
that often employed in the field of microcavity polaritons [26],
where the vacuum Rabi frequency is defined as being equal to
half of the resonant splitting.

This paper is organized as follows. Section II reviews the
nonlinear transfer-matrix scheme used to calculate frequency
mixing in the small-signal regime. In Sec. III, we calculate
the enhancement in irradiance at the Rabi frequency over a
bare nonlinear slab for organic and inorganic microcavities,
and in Sec. IV we discuss the results and highlight some of the
peculiarities of both material sets. Conclusions are presented
in Sec. V.
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FIG. 1. (Color online) Dispersion relation of exciton-polaritons
as a function of the in-plane wave vector. The interaction between
an exciton transition (EX) and a Fabry-Perot cavity mode (EC),
both represented by dashed lines, leads to the appearance of lower
and upper polariton (LP and UP) branches (solid blue). A radiative
transition at the Rabi energy (��R) occurs between two incident
pumps at frequencies ω1 and ω2 through difference-frequency
generation in a second-order nonlinear semiconductor (χ (2) �= 0).
Inset: Microcavity showing the two pump beams ( �E1,2), incident
at angle θi , and the Rabi radiation ( �E3), reflected at angle θ3. The
solid blue lines in the χ (2) layer illustrate the high modal overlap of
polariton fields. Layers are numbered from 1 (air) to N (substrate) for
the transfer-matrix formalism.

II. THEORY

To calculate the propagation of the incident pump fields and
the difference-frequency contribution due to nonlinear layers,
we use the nonlinear transfer-matrix method introduced by
Bethune [27]. This method is applicable to structures with
an arbitrary number of parallel nonlinear layers [28], but is
restricted to the undepleted pump approximation, where the
three fields are essentially independent. First, we propagate
the incident pump fields using the standard transfer-matrix
method. Within each nonlinear layer, these behave as source
terms in the inhomogeneous wave equation. Then, we solve
for the particular solution and determine the corresponding
source field vectors. Finally, we use the boundary conditions
and propagate the free fields using the transfer-matrix method
to obtain the total field in each layer.

A. Propagation of the pump fields

We begin by calculating the field distribution of the two
incident pumps as shown in Fig. 1 by using the standard
transfer-matrix method [29–31]. To simplify the discussion,
we consider the pumps to be TE (ŷ) polarized. In our notation,
the electric field in each layer i is given by the sum of two
counterpropagating plane waves:

E±
i (z,x,t) = Re{E±

i exp[i(±kizz + kxx − ωt)]}, (1)

where the kiz and kx components of the �ki wave vector
satisfy the relationship k2

iz + k2
x = n2

i (ω) ω2/c2, with ni the
refractive index of layer i. The forward and backward complex
amplitudes of the electric field are represented in vector form
as Ei = [E+

i E−
i ]

T
.

For a given incident field E1, the field in layer i is calculated
by Ei = TiE1, where Ti is the partial transfer matrix:

Ti = Mi(i−1)φi−1 · · · M21. (2)

The interface matrix Mij , that relates fields in adjacent
interfaces i and j , and the propagation matrix φi , that relates
fields on opposite sides of layer i with thickness di , are given
by

Mij = 1

2kiz

[
kiz + kjz kiz − kjz

kiz − kjz kiz + kjz

]
(3)

and

φi =
[

exp(ikizdi) 0
0 exp(−ikizdi)

]
. (4)

B. Inclusion of nonlinear polarizations

To obtain the difference-frequency contribution within a
nonlinear layer, we must solve the inhomogeneous wave
equation for the electric field:

∇2E − με
∂2E
∂t2

= μ
∂2PNL

∂t2
, (5)

where the source term

PNL(z,x,t) = ε0χ
(2)E2(z,x,t) (6)

is the second-order nonlinear polarization, μ is the magnetic
permeability, and ε is the permittivity. By using a polarization
term of the same form as Eq. (1), Eq. (5) can be written in the
frequency domain as[−(kNL)2 + ω2

NLn2(ωNL)μ0ε0
]
E = −ω2

NLμ0PNL, (7)

with wave vector kNL, μ(ωNL) = μ0, and ε(ωNL) = n2(ωNL)ε0.
The nonlinear polarization thus generates a bound source field
at the same frequency given by

Es = PNL

(kNL)2

ω2
NLμ0

− n2(ωNL)ε0

. (8)

If we consider the presence of two pump fields E1(ω1) and
E2(ω2), with ω1 > ω2, the E2(z,x,t) term in Eq. (6) can be
written as

E2(z,x,t) = Re
{
E+

1 exp
[
i
(
k1
z z + k1

xx − ω1t
)]

+E−
1 exp

[
i
( − k1

z z + k1
xx − ω1t

)]
+E+

2 exp
[
i
(
k2
z z + k2

xx − ω2t
)]

+E−
2 exp

[
i
( − k2

z z + k2
xx − ω2t

)]}2
. (9)

Expanding E2(z,x,t) leads to terms related to fre-
quency doubling (ωNL = 2ω1 or 2ω2) and rectification
(ωNL = 0), sum-frequency generation (ωNL = ω1 + ω2), and
difference-frequency generation (ωNL = ω1 − ω2). The terms
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contributing to the latter (≡ω3) are given by

P3(z,x,t) = ε0χ
(2) Re

{(
E+

1 E+∗
2 exp

[
i
(
k1
z − k2

z

)
z
]

+E+
1 E−∗

2 exp
[
i
(
k1
z + k2

z

)
z
]

+E−
1 E+∗

2 exp
[ − i

(
k1
z + k2

z

)
z
]

+E−
1 E−∗

2 exp
[ − i

(
k1
z − k2

z

)
z
])

× exp
(
i
[(

k1
x − k2

x

)
x − ω3t

])}
. (10)

Copropagating waves (±,±) generate terms with perpen-
dicular wave vector k3−

z = k1
z − k2

z , whereas counterpropagat-
ing waves (±,∓) generate terms with k3+

z = k1
z + k2

z . Their
contributions can be handled separately when pump depletion
is ignored, so we divide the polarization term into two
components

P3− = ε0χ
(2)

[
E+

1 E+∗
2

E−
1 E−∗

2

]
, (11a)

P3+ = ε0χ
(2)

[
E+

1 E−∗
2

E−
1 E+∗

2

]
, (11b)

with their source fields given by Eq. (8) and the perpendicular
component of kNL taking the values of k3−

z or k3+
z , respectively.

In addition to the bound fields, there are also free fields
with frequency ω3 that are solutions to the homogeneous
wave equation. The free field in a nonlinear layer j is
obtained from the bound field amplitudes Ejs and the boundary
conditions at the interfaces. By imposing continuity of the
total tangential electric and magnetic fields across interfaces
i-j and j -k, an effective free field source vector can be defined
as

Sj = (
φ−1

j Mjsφjs − Mjs

)
Ejs . (12)

The source matrices with the subscript s, Mjs , and φjs

are identical to the ones given by Eqs. (3) and (4), with kiz

and kjz taking the values of k3
jz and k3±

jz , respectively. These
matrices use only source layer indices and involve optical
constants at all three optical frequencies (pumps and DFG).
They relate the free fields that propagate with wave vector
k3
jz = nj (ω3)ω3/c to the bound fields with wave vectors k3±

jz =
[nj (ω1)ω1 ± nj (ω2)ω2]/c.

The total nonlinear field is then given by the sum of
independent source field vectors Sj propagated using the
transfer-matrix method reviewed in Sec. II A. In particular,
for the case where only layer j is nonlinear, we obtain

[
E3T

0

]
= MN(N−1) · · · M21

[
0

E3R

]

+MN(N−1) · · · M(j+1)j Sj

= TN

[
0

E3R

]
+

[
R+

j

R−
j

]
, (13)

with

Rj = TNTj
−1Sj . (14)

Therefore, the reflected and transmitted components of the
E3 field can be calculated by

E3R = −R−
j

T22
, (15a)

E3T = R+
j − T12

T22
R−

j . (15b)

The angle dependence of the reflected difference-frequency
field can be expressed as

|k3| sin θ±
3 = |k1| sin θ1 ± |k2| sin θ2, (16)

where the ± sign must match the wave-vector component
k3±
z when both pumps are incident on the same side of the

normal [32]. Because the first layer is taken to be air with
n(ω) = 1, if we consider both pumps to be incident with the
same angle θ1 = θ2 = θi , we obtain for the cases of k3−

z and
k3+
z

sin θ−
3 = ω1 sin θi − ω2 sin θi

ω1 − ω2
= sin θi, (17a)

sin θ+
3 =

(
ω1 + ω2

ω1 − ω2

)
sin θi . (17b)

Equation (17a) shows that the DFG component due to
copropagating waves exits the structure at the same angle
as the incident pumps, resembling the law of reflection.
Conversely, according to Eq. (17b), the component due to
counterpropagating waves is sensitive to deviations of the
pump waves from normal incidence. In particular, for low DFG
frequencies, the (ω1 + ω2)/(ω1 − ω2) term is much larger than
unity and this component easily becomes evanescent.

III. RESULTS

A. Organic polymer cavity

In this section, we investigate the use of organic microcav-
ities for Rabi-frequency generation. Due to the large binding
energy of Frenkel excitons, organic microcavities can readily
reach the strong-coupling regime at room temperature and have
shown Rabi splittings of up to 1 eV [3,4]. Demonstrations of
optical nonlinearities have been more limited than in their
inorganic counterparts, but a variety of resonant [33,34] and
nonresonant nonlinearities [35–37] have nevertheless been
observed in these systems.

Although most organic materials possess a negligible
second-order susceptibility, a number of poled nonlinear
optical (NLO) chromophores have been shown to exhibit high
electro-optic coefficients that exceed those of conventional
nonlinear crystals such as LiNbO3 by over an order of
magnitude [38,39]. In addition, the metallic electrodes needed
for polling can also be used as mirrors, providing high mode
confinement and a means for electrical injection.

We will consider a thin NLO polymer film enclosed by
a pair of metallic (Ag) mirrors of thicknesses 10 nm (front)
and 100 nm (back). The model polymer is taken to possess a
dielectric constant described by a single Lorentz oscillator:

ε(ω) = εB + f ω0
2

ω0
2 − ω2 − i	ω

, (18)
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FIG. 2. (Color online) Reflectance as a function of pump energy
and thickness of the polymer film. Front and back Ag mirrors have
thicknesses of 10 and 100 nm, respectively. Dielectric parameters:
εB = 4.62, f = 0.91, �ω0 = 1.55 eV, �	 = 0.12 eV, and χ (2) =
300 pm/V. The dashed horizontal line indicates the exciton energy.
At the thickness of 300 nm, indicated by a vertical dashed line, the
M1 cavity mode is resonant with the difference-frequency generation
of pumps 1 and 2 such that EUP − ELP = ��R = EM1.

where εB is the background dielectric constant, f is the
oscillator strength, ω0 is the frequency of the optical transition,
and 	 is its full width at half maximum (FWHM). The
parameters are chosen to be εB = 4.62, f = 0.91, �ω0 =
1.55 eV, and �	 = 0.12 eV. Experimental values are used for
the refractive index of Ag [40]. For simplicity, we ignore the
dispersive nature of the second-order nonlinear susceptibility
and take χ (2) = 300 pm/V. In principle, the Lorentz model
could readily be extended to account for the dispersive resonant
behavior [38].

Figure 2 shows the linear reflectance, calculated at normal
incidence, as a function of polymer film thickness. The
reflectance for film thicknesses below 200 nm shows only
the fundamental cavity mode (M1), which is split into UP and
LP branches. For these branches, the Rabi energy falls below
the LP branch, where there are no further modes available for
difference-frequency generation.

By increasing the thickness of the film, low-order modes
shift to lower energies and provide a pathway for the DFG
radiation to escape. For example, at 300 nm, a triple-resonance
condition occurs where the Rabi splitting of the M2 cavity
mode matches the M1 energy (EUP − ELP = ��R = EM1 =
0.68 eV). A second resonance occurs between M3 and
LP because EM3 − ELP = ELP = 1.25 eV, but with reduced
modal overlap.

The enhancement in DFG irradiance from the microcavity,
as compared to a bare nonlinear slab, is shown in Fig. 3 as
a function of the pump energies. The two peaks correspond
to the triple-resonance conditions mentioned above, where the
left peak corresponds to an enhancement of 2.8 × 102 at the
Rabi energy (λ3 = 1.82 μm) and the right peak corresponds to
an enhancement of 3.3 × 102 at the LP energy (λLP = 996 nm).
The apparent contradiction of a higher DFG enhancement in
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FIG. 3. (Color online) DFG irradiance enhancement of the poled
NLO polymer model structure with respect to a bare film of equal
thickness. Due to the thickness of the second mirror, only reflected
fields are considered. The tilted dashed lines correspond to pairs of
pump energies that generate the same DFG energy and that match
the M1 (left, �ω3 = �ωM1 = 0.68 eV) and LP (right, �ω3 = �ωLP =
1.25 eV) energies in the triple-resonance condition. Inset: Normalized
electric-field profiles of the relevant modes, illustrating the excellent
modal overlap of the LP and UP branches.

the case of reduced modal overlap arises from normalizing
each point by the corresponding DFG irradiances of the bare
polymer slab.

The inset shows the normalized electric-field profiles of
the relevant modes, which highlight the good modal overlap
of the two pump fields in the strong-coupling regime. The
small thickness of the front metallic mirror lowers the mutual
orthogonality of different modes and accounts for the lack of
symmetry of the fields with respect to the center of the film.
This loss of orthogonality allows the overlap integral between
M3 and LP to be nonzero and the enhanced DFG extraction
due to the triple-resonance condition leads to the appearance
of the second peak at �ω3 = 1.25 eV in Fig. 3.

Additionally, oblique incidence of the pump beams can be
used to tune the DFG energy. As indicated by Eq. (17b), the
k3+
z component of the DFG signal rapidly becomes evanescent

and therefore we shall consider only the k3−
z component.

Figure 4 shows the dependence of DFG energy and irradiance
on the angle of incidence when θ1 = θ2 = θi . In the lower
panel, as the interacting modes move to higher energies, the
triple-resonance condition at the Rabi (EUP − ELP) energy is
maintained for incidence angles up to 79◦. The maximum
irradiance is obtained at 57◦ for �ωNL = 0.72 eV (λNL =
1.72 μm). This enhancement is reduced by 3 dB at �ω3 =
0.74 eV (λ3 = 1.68 μm) for 79◦. The upper panel shows that
the peak at �ω3 = 1.25 eV falls out of the triple resonance
condition faster with a 3-dB roll-off at 40◦.

B. (111) GaAs cavity

The vast majority of resonant nonlinearities observed in
inorganic semiconductor microcavities are due to a χ (3)
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FIG. 4. (Color online) Angle dependence of DFG energy and
irradiance (kW/m2) for TE polarized pumps incident on the structure
with NLO polymer and Ag mirrors when θ1 = θ2 = θi . Only waves
with k3−

z = k1
z − k2

z are considered. Lower and upper panels show
the DFG at the Rabi and LP energies, respectively. Solid black lines
illustrate the energies of the M1 (bottom) and LP (top) modes where
DFG radiation can be extracted in triple resonance. Dashed black
lines illustrate a typical linewidth of 100 meV for the LP branch
and 50 meV for the M1 mode. Solid white lines indicate the angle
dependence of the DFG energy. For the upper panel, as the white
line moves out of resonance with the black LP line, the DFG peak is
suppressed. For the lower one, a slight increase is observed around 57◦

and corresponds to an enhancement of the triple-resonance condition,
after which the irradiance rolls off.

nonlinearity inherited from the exciton [41]. In the typical χ (3)

four-wave mixing process, two pump (p) polaritons interact
to produce signal (s) and idler (i) components such that their
wave vectors satisfy 2kp = ks + ki . Second-order suscepti-
bilities tend to be much larger than their χ (3) counterparts,
but conventionally used (001) microcavities only allow for
nonlinear optical mixing between three orthogonally polarized
field components.

A number of commonly used inorganic semiconductors
are known to be noncentrosymmetric and to possess high
second-order susceptibility tensor elements. Examples include
III-V semiconductors, such as gallium arsenide (GaAs) and
gallium phosphide (GaP), and II-VI semiconductors, such as
cadmium sulfide (CdS) and cadmium selenide (CdSe) [38,42].
To allow for the nonlinear optical mixing of copolarized waves
to occur, we will consider (111) GaAs as the microcavity
material [43,44], in contrast to the typical (001)-oriented
material.

We consider a λ/2 (111) bulk GaAs microcavity sand-
wiched between 20 (25) pairs of AlAs/Al0.2Ga0.8As dis-
tributed Bragg reflectors (DBRs) on top (bottom). The struc-
ture is followed by a bulk GaAs substrate with the same
dielectric constant as the cavity material, modeled by Eq. (18)
with experimental values εB = 12.53, f = 1.325 × 10−3,
�ω0 = 1.515 eV, and �	 = 0.1 meV [45]. Experimental values
are also used for the refractive index of AlxGa1−xAs [46]. The
nonlinear susceptibility was kept the same as for the NLO
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FIG. 5. (Color online) DFG enhancement of a λ/2 (111) GaAs
cavity structure with respect to a bare slab. GaAs parameters: εB =
12.53, f = 1.325 × 10−3, �ω0 = 1.515 eV, and �	 = 0.1 meV [45].
The same value of χ (2) = 300 pm/V was used as for the NLO
polymer. Due to the presence of the substrate, only reflected fields
are considered. The tilted dashed line corresponds to pairs of pump
energies that generate the same DFG energy. Inset: Normalized
electric-field profiles inside the GaAs layer illustrating the excellent
modal overlap of the LP and UP branches.

polymer (χ (2) = 300 pm/V) to allow for a direct comparison
of the irradiances. The absolute value chosen has no effect on
the enhancement factor. In practice, the largest contribution to
the background χ (2) in GaAs is due to interband transitions
and for simplicity we ignore the resonant contribution to χ (2).

The enhancement in DFG irradiance as compared to a bare
GaAs slab of equal thickness is shown in Fig. 5. Due to the
much smaller oscillator strength in GaAs, as compared to the
NLO polymer, the Rabi splitting of �ω3 = 5.52 meV falls
in the THz range (ν3 = 1.33 THz) with an enhancement of
8.8 × 103.

Figure 6 shows the angle dependence of the DFG energy
and irradiance when θ1 = θ2 = θi . The dashed black line in
the upper panel traces the DFG energy, where a logarithmic
scale for the irradiance was used due to its rapid decrease with
angle of incidence. The lower panel shows a segment of the
same data on a linear scale. Tunability down to 3 dB can be
obtained up to �ω3 = 7.21 meV (ν3 = 1.74 THz) at 17◦.

IV. DISCUSSION

In Sec. III we showed that the use of polaritonic modes
for Rabi-frequency generation can lead to irradiance enhance-
ments of almost four orders or magnitude with respect to bare
nonlinear slabs. Quantitative estimates can be obtained by
considering equal pump irradiances I1 = I2 = 10 GW/m2.
Figure 7 shows the maximum DFG irradiances for the two
structures and the reference slabs. For the NLO film with
Ag mirrors, the calculated peak DFG irradiances are IDFG =
7.69 kW/m2 at �ω3 = 0.68 eV and IDFG = 4.05 kW/m2 at
�ω3 = 1.25 eV. As expected, due to the higher modal overlap,
the DFG irradiance at the Rabi energy exceeds the one at the
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BARACHATI, DE LIBERATO, AND KÉNA-COHEN PHYSICAL REVIEW A 92, 033828 (2015)
3  

(m
eV

) 

Angle of incidence (deg) 
0 5 10 15 20 25 30

3

6

9

12

15

18 50

40

30

20

10

0

0 10 20 30 40 50 60 70 80

10

20

30

40

50

60 100

10-1

10-4

10-6

10-9

EUP-ELP

FIG. 6. (Color online) Angle dependence of DFG energy and
irradiance (W/m2) for TE polarized pumps incident on the λ/2 (111)
GaAs structure with DBR mirrors when θ1 = θ2 = θi . Only waves
with k3−

z = k1
z − k2

z are considered. The upper panel shows the angle
dependence of DFG irradiance in logarithmic scale, with the dashed
black line tracing the DFG energy. The lower panel shows a smaller
angular range of the same data in linear scale where a fast decrease of
DFG irradiance can be observed as the angle of incidence increases.

LP energy. For the λ/2 (111) GaAs microcavity with DBRs,
we find IDFG = 45 W/m2 at �ω3 = 5.52 meV.

These results can be compared to the ones obtainable
with conventional nonlinear crystals. Assuming perfect phase
matching and neglecting pump depletion or losses, the
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FIG. 7. (Color online) Comparison of the calculated DFG irra-
diances for the two structures studied. The solid blue (dash-dotted
red) line represents the NLO polymer (GaAs) cavity with Ag (DBR)
mirrors, and dotted lines directly below represent the corresponding
bare slabs. The top blue (bottom red) energy scale relates to the NLO
polymer (GaAs) cavity. The curves have been extracted from the maps
shown in Figs. 3 and 5 by picking out the maximum values among
all pairs of pump energies that generate the same DFG energy. Pump
irradiances are I1 = I2 = 10 GW/m2.

conversion efficiency CE can be expressed as

CE = I3

I1I2
= 2(ω3χ

(2)L)2

n(ω1)n(ω2)n(ω3)ε0c3
, (19)

where I1,2,3 are the irradiances and L is the crystal length [38].
Comparing the organic microcavity to a beta barium borate
crystal (BBO, χ (2) = 4.4 pm/V) [38] for near-infrared gen-
eration, the required crystal length to achieve the same DFG
irradiance is L = 45 μm, a factor of 150 larger than the mi-
crocavity thickness or 1502 = 2.25 × 104 lower in conversion
efficiency. Similarly, the GaAs microcavity can be compared to
a zinc telluride crystal (ZnTe, χ (2) = 137 pm/V) for terahertz
generation [47]. In this case, the required crystal length is
L = 36 μm, a factor of 310 larger than the microcavity
thickness or 9.6 × 104 lower in conversion efficiency. In
this context, the main advantages of the thinner microcavity
layers are the absence of phase-matching requirements and the
potential for electrical injection.

The CE enhancements are a result of the larger χ (2)

used in the calculations (68 times that of BBO and 2.2 that
of ZnTe) and, most importantly, of the cavity electric-field
enhancements, where a substantial difference was found for
both material sets. Metal losses in the polymer cavity prevent
a significant enhancement of the UP and LP electric fields
with |Epeak/Ein| = 1.2, where Epeak and Ein are the peak
and incident fields, respectively. In contrast, for the GaAs
microcavity an enhancement of 15 is obtained. Despite this
field enhancement, the irradiance shown in Fig. 7 is 170 times
lower at the Rabi energy for the inorganic microcavity than for
the organic one. This is a consequence of the ω2

NL factor in the
source field given by Eq. (8), making DFG at smaller energies
increasingly difficult.

Finally, we can use Fig. 7 to evaluate the tunability of
the structures at normal incidence. For the first structure,
the FWHM of the �ω3 = 0.68 eV DFG peak is 0.045 eV,
indicating that the same structure can be used for DFG
generation from 1.76 to 1.88 μm by adjustment of the pumps
only. For the GaAs structure, the FWHM of the �ω3 =
5.52 meV DFG peak is 0.12 meV, indicating a tunability from
ν3 = 1.32 to 1.35 THz.

We should note that, although in our calculation two pumps
were used, similar enhancements are anticipated for (spon-
taneous) parametric fluorescence (I2 = 0). In addition, the
triply resonant scheme introduced for the organic microcavity
where the signal is resonant has further consequences. First,
coupled-mode theory analysis of triply resonant systems has
shown the existence of critical input powers to maximize
nonlinear conversion efficiency [13,48]. These are found to be
inversely proportional to the product of the Q factors. Lower
Q factors are thus advantageous for high-power applications.
Second, the scheme is also well suited for realizing a more
conventional χ (2) polariton OPO. In this case, the oscillation
threshold can be shown to depend inversely on the product of
Q factors.

Since in general any χ (2) medium will also have a nonzero
χ (3), these structures will display a change in refractive index
proportional to the square of the applied electric field, an
effect known as self- or cross-phase modulation. The power
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dependence of the refractive index can lead to rich dynamics
such as multistability and limit-cycle solutions [49,50].

V. CONCLUSION

We studied the potential for generating Rabi-frequency
radiation in microcavities possessing a nonvanishing second-
order susceptibility. Using a semiclassical model based on
nonlinear transfer matrices in the undepleted pump regime,
we calculated the Rabi splitting and the DFG irradiance
enhancement for an organic microcavity, composed of a poled
nonlinear optical polymer, and for an inorganic one, composed
of GaAs. In the first case, we obtained a Rabi splitting of
�ω3 = 0.68 eV (λ3 = 1.82 μm) and an enhancement of two
orders of magnitude, as compared to a bare polymer film. In
the second case, we found a Rabi splitting of �ω3 = 5.52 meV
(ν3 = 1.33 THz) and an enhancement of almost four orders

of magnitude, as compared to a bare GaAs slab. These results
show the potential of the use of polaritonic modes for IR and
THz generation. Both model structures display a high degree of
frequency tunability by changing the wavelength and angle of
incidence of the incoming pump beams. Similar enhancements
are anticipated for parametric fluorescence and the triply
resonant scheme introduced for the optical microcavity can
be exploited to realize monolithic χ (2) OPOs.

ACKNOWLEDGMENTS

F.B. and S.K.C. acknowledge support from the Natural
Sciences and Engineering Research Council of Canada.
S.D.L. acknowledges support from the Engineering and
Physical Sciences Research Council (EPSRC), Research Grant
No. EP/L020335/1. S.D.L. is a Royal Society Research Fellow.

[1] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun,
J. Keeling, F. Marchetti, M. Szymańska, R. Andre, J. Staehli
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Appl. Phys. Lett. 98, 111117 (2011).

[18] P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick,
D. M. Whittaker, and J. S. Roberts, Phys. Rev. Lett. 84, 1547
(2000).

[19] R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M.
Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis,
J. J. Baumberg, and J. S. Roberts, Phys. Rev. Lett. 85, 3680
(2000).

[20] J. J. Baumberg, P. G. Savvidis, R. M. Stevenson, A. I.
Tartakovskii, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts,
Phys. Rev. B 62, R16247 (2000).
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[47] J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, Opt. Express

18, 12311 (2010).
[48] I. B. Burgess, A. W. Rodriguez, M. W. McCutcheon, J. Bravo-

Abad, Y. Zhang, S. G. Johnson, and M. Lončar, Opt. Express
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