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In the absence of decay, the conditional dynamics for an open system is often describable by a non-Hermitian
Hamiltonian. This study investigates spin squeezing (SS) in a non-Hermitian one-axis twisting (OAT) model.
Somewhat surprisingly, SS close to the limit of Hermitian two-axis counter twisting (TACT) Hamiltonian is
achievable for some parameters, which significantly improves upon the optimal value realizable by the Hermitian
OAT model. The drawback is like with all conditional schemes, it takes on average longer time to evolve into
a steady state, and the probability of no decay or success decreases as the number of atoms (spins) increases.
The result above for the steady-state SS in a non-Hermitian OAT Hamiltonian is thus limited to small systems.
For other parameter regimes, however, desirable SS arrives dynamically before a steady state is achieved, with a
greatly shortened evolution time and enhanced probability of success, while still remains significantly improved
over the limit of Hermitian OAT.
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I. INTRODUCTION

A squeezed spin state (SSS) [1–3] is a symmetric state of
spin-1/2 particles, whose fluctuation in one collective spin
component perpendicular to the mean spin direction is smaller
than the classical limit set by the summed fluctuations from
independent spins pointing along the same direction. This
reduced fluctuation manifests quantum correlations among
individual spins. SSS has attracted considerable attention
because of its potential application to improve the precision
of quantum measurements [2–8] and to detect quantum
entanglement [9–12]. According to Kitagawa and Ueda [1],
SSS can be dynamically generated from the product initial state
with all spins up (or down) under the one-axis twisting (OAT)
Hamiltonian HOAT = χJ 2

x and the two-axis counter twisting
(TACT) Hamiltonian HTACT = χ (J 2

x − J 2
y ). The collective

spin �J (≡ ∑
k �σk/2, with � = 1 hereinafter) is defined in terms

of the Pauli operator of the kth spin or pseudospin �σk , and χ

denotes the coupling strength between two spins. When SSS
is applied to quantum metrology [2,3], the property of interest
is the squeezing parameter ξ 2 = N (�J⊥)2/|〈 �J 〉|2 < 1, where
(�J⊥)2 ≡ 〈J 2

⊥〉 − 〈J⊥〉2 denotes the minimal fluctuation of
a spin component perpendicular to the mean spin 〈 �J 〉 =
(〈Jx〉,〈Jy〉,〈Jz〉).

The optimal spin squeezing (SS) realizable theoretically
for the OAT model is 1.15N−2/3 [1], which is reached at the
time 1.2N−2/3. A better squeezing of 4/N [1] approaching
the Heisenberg limit 1/N is achievable through TACT at a
shorter time ln(4N )/(2N ), which generally helps to mitigate
accumulative influences from detrimental effects induced
by particle losses and phase dephasing. Besides, unlike
the situation encountered in OAT, the direction of optimal
squeezing from TACT remains fixed during time evolution and
is independent of the system size (number of spins N ) [13].
Despite of its better performance in SS, two-body interactions
capable of facilitating TACT do not occur naturally in most
systems of interest. Although many proposals have been put
forward to implement TACT models [13–18], no experimental
realizations have been reported so far. In contrast, SS from

OAT has been proposed and demonstrated in various systems
[4,5,7,19–26]. Therefore many subsequent studies aimed at
improved SS in general OAT models are proposed [13,27–30].

A recent study [31] reports the surprising finding that the
non-Hermitian TACT model can realize slightly stronger SS
than its Hermitian counterpart, which is counterintuitive as
damping is always viewed as causing damage to quantum
coherent processes like SS. Inspired by the desire for a better
understanding of SS in non-Hermitian models, we carried
out this investigation of the non-Hermitian OAT model. We
find surprisingly the non-Hermitian OAT model may be even
more favorable. In addition to being more readily realizable
experimentally, it provides SS approaching the limit of TACT
model (ξ 2 ∼ 1/N , Heisenberg limit) or even slightly better
with a smaller coefficient when the system parameter is
optimal, which is significantly better than the optimal SS
available from a Hermitian OAT. As will be shown later
in this study, near optimal squeezing, e.g., with scaling like
ξ 2 ∼ N−4/5, can be reached within significantly shorter time
at other system parameter values. Combining our results with
that of Ref. [31], we come to the conclusion that the presence
of dissipation can indeed improve the degree of squeezing,
independent of the mechanism used to produce squeezing
(OAT or TACT).

This paper presents our investigation of enhanced SS in
the non-Hermitian OAT model. It is organized as follows.
Following this introduction section, the next two sections re-
spectively discuss steady-state SS and dynamically generated
optimal squeezed states in the non-Hermitian OAT model. We
compare the above results to the corresponding ones from the
OAT and TACT models. We conclude in the last section.

II. STEADY STATE

Our model is built on the collective OAT interaction of
an ensemble of N two-state atoms (i.e., a collection of
pseudo-spin 1/2 particles) with up and down states {|↑〉,|↓〉}.
Assuming a finite lifetime (1/γ ) for the atoms in state |↑〉,
the density matrix ρ for atoms satisfies the master equation
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∂ρ/∂t = −i[HOAT,ρ] + L(ρ), where the superoperator

L(ρ) = γ

2

∑

k

[2σ−
k ρσ+

k − σ+
k σ−

k ρ − ρσ+
k σ−

k ], (1)

with the decay rate γ and the Pauli operators of the kth atom
σ̂±

k . As in the non-Hermitian TACT model of Lee et al.
[31], a finite and tunable value for γ can be engineered
through coupling of state |↑〉 to an unstable auxiliary state
|a〉. The Pauli operators in the above Eq. (1) are σ+

k =
(σ−

k )† = |↑〉kk〈a|, hence σ+
k σ−

k = |↑〉kk〈↑|. Conditioned on
the absence of a decay event [31], whose probability is
given by P = e−N↑γ t [32] for independent atomic decay
as modeled here, one can remove the “real” decay term
σ−

k ρσ+
k in Eq. (1) and obtain L(ρ) = −γ (N↑ρ + ρN↑)/2,

where Nl = ∑
k |l〉kk〈l| for the state label l = {↑,↓} denotes

the atom-number operator. The conditional master equation
now becomes ∂ρ/∂t = −i(Heffρ − ρH

†
eff), with the effective

Hamiltonian

Heff = χJ 2
x − iγN↑/2, (2)

with N↑ = Jz + N/2.
The Hermitian OAT term can be realized for instance in

trapped ions [20,33] or cavity QED [34], starting with a
coupled Hamiltonian of the form H = �a†a + g(a + a†)Jx ,
where a and a† denote annihilation and creation operators
of phonons in trapped ions or photons in cavity QED. For a
trapped ion system, this is realized through the two-photon in-
teraction of ions with two lasers of opposite detunings [20,33].
In cavity QED, it is implemented by the interaction of a single
cavity photon mode with atoms driven by a pair of coherent
laser fields [34]. The evolution governed by H is described by
propagator U (t) = e−if (t)aJx e−if ∗(t)a†Jx e−iλ(t)J 2

x , with f (t) =
i(g/�)(e−i�t − 1), and λ(t) = −(g2/�)[t + i(ei�t − 1)/�]
[35]. In the weak coupling limit � � g, f (t) is negligible,
so we arrive at an effective Hamiltonian Heff = −g2J 2

x /�.
Beyond the weak-coupling regime, ions (atoms) are strongly
entangled with the vibrational motion (cavity photons). At
times t = 2kπ/�, the vibrational motion (cavity mode) returns
to its original state, and the propagator reduces to U (t) =
e−iHeff t .

The presence of the non-Hermitian term causes all eigenval-
ues of the model Hamiltonian (2) to possess negative imaginary
parts. The state with the largest imaginary part becomes
the steady state of the system as it eventually becomes the
lone survivor after a sufficient time of evolution. We now
compute its squeezing properties. Hamiltonian (2) maintains
parity symmetric in Jx and Jy , which assures 〈Jx〉 = 〈Jy〉 =
0. The mean spin therefore points along the z axis. The
squeezing parameter for its steady state is determined by
ξ 2 = N (�J⊥)2

min/|〈Jz〉|2, with J⊥ = Jx cos α + Jy sin α lying
in the x-y plane. Given the system size N , the ratio γ /χ is the
only parameter governing the properties of the Hamiltonian
(2). Depending on its value, the squeezing parameter exhibits
different behavior due to the competition between the OAT
interaction and the dissipation. As mentioned earlier, γ is
tunable [31] and can assume whatever N dependence needed.
For essentially all atomic systems, spontaneous emission can
be added to an atomic state from induced off-resonant coupling
to an unstable state.
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FIG. 1. (Color online) (a) Spin squeezing parameter ξ 2 for the
steady state of our non-Hermitian OAT model Hamiltonian (2)
as a function of γ /χ . The dashed (red) and dash-dotted (black)
lines denote the optimal squeezing parameter from OAT and TACT,
respectively; the blue disk marks the parameter γ /χ = 0.4673,
where the optimal squeezing is realized. The black diamond marks
the parameter γ /χ = 1.19, where the squeezing limit of TACT
is achieved. The red square marks the parameter γ /χ = 1.6393,
where the degree of squeezing lies between the theoretical limits
of the OAT and TACT. (b) Time evolution of the squeezing
parameter ξ 2 at the corresponding γ /χ values labeled by markers
in Fig. 1(a), starting from the initial spin state |↓↓ · · · ↓〉. The
dashed (red) line denotes the corresponding result for the OAT
model; the blue, black, red solid lines denote the results for the
parameter values γ /χ = 0.4673,1.19,1.6393, respectively. (c) The
corresponding probability of success P (= e−N↑γ t ) as a function of
evolution time. (d) Quasiprobability distribution Q(θ,ϕ) in the Jx-Jy

plane for the three states labeled as (i)–(iii) in (b). For γ /χ = 1.19, Jz

is chosen to be along the direction pointing into the page with θ and
φ the corresponding polar and azimuthal angles. Here, the illustrative
calculations are carried out for N = 20.

Figure 1(a) presents the squeezing parameter ξ 2 (blue
solid line) obtained numerically as a function of γ /χ . The
actual calculation is carried out using exact diagonalization
of the non-Hermitian Hamiltonian (2). Over a wide range
of γ /χ (shaded area), the steady state of the non-Hermitian
Hamiltonian (2) is found to possess more SS than the optimal
SS afforded by the Hermitian OAT model (red dashed line).
In some parameter regime, the degree of SS is found to even
surpass the much improved limit provided by the Hermitian
TACT model (black dash-dotted line).

To further confirm their validity, we simulate the dynamical
non-Hermitian evolution governed by Hamiltonian (2) for the
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squeezing parameter ξ 2 with γ /χ set at the marked values in
Fig. 1(a) for the same initial state with all spins down |↓〉. The
corresponding results are shown in Fig. 1(b). The detailed
dynamics depend on the initial state, but the steady-state
squeezing properties do not. The initial state with all spin
down is the only stable N atom state, which represents the
natural starting point for the conditional dynamics described
by the non-Hermitian Hamiltonian (2). At short times, the non-
Hermitian term has little effect and the squeezing parameter
ξ 2 is observed to decrease according to OAT. After reaching
the optimal point of minimum squeezing, which is essentially
equal to the limit of Hermitian OAT, its value starts to increase
as the non-Hermitian term comes into play. This clearly shows
up as the two curves for Hermitian (red dashed line) and
non-Hermitian OAT (solid lines) start to deviate from each
other. The squeezing parameter ξ 2 for non-Hermitian OAT
continues to decrease as time goes on and finally approaches
its steady-state value. The degree of optimal squeezing and the
time to achieve it depends on the parameter γ /χ . For γ /χ =
0.4673 [blue disk in Fig. 1(a)], the squeezing parameter ξ 2

[blue solid line in Fig. 1(b)] reaches its optimal value at
tmin ∼ 2/χ , and remains steady at this level as time goes
on, although the likelihood for a decay event to destroy
coherence increases. For a larger γ /χ = 1.19 [black diamond
in Fig. 1(a)], a weaker squeezing equivalent to the TACT limit
[black solid line in Fig. 1(b)] is obtained at a shorter time
tmin ∼ 1/χ . Different from the above two cases, where the
time for the squeezing parameter to reach its steady value ts
matches with tmin, for γ /χ = 1.6393 [red square in Fig. 1(a)],
the optimal value of ξ 2 [red solid line in Fig. 1(b)] arrives at
an earlier time tmin ∼ 0.3/χ before the system settles down to
the steady state, i.e., ts > tmin.

The SS we study in this work for the non-Hermitian OAT
model is only experimentally accessible when no decay event
occurs, thus the probability of success P also represents an
important consideration. Figure 1(c) shows the probability of
success P as a function of evolution time. By comparing the
results from the three different γ /χ values, we find that the
degree of squeezing decreases as γ /χ increases, while the cor-
responding P increases. For instance, at γ /χ = 1.19, the
probability of success P when the optimal squeezing is
achieved is about 0.4, i.e., on average for two out of five
experimental runs, no decay occurs before reaching optimal
squeezing; while at γ /χ = 1.6393, the corresponding P ∼
0.6. These rates of success imply that the non-Hermitian
scheme is feasible, certainly for the small size of N = 20
numerically evaluated here.

The squeezing process can be intuitively illustrated by the
evolution of the quasiprobability distribution Q(θ,ϕ) for the
state |ψ(t)〉, which is determined by its projection onto the co-
herent spin state |θ,ϕ〉 = (cos(θ/2)|↑〉 + eiϕsin(θ/2)|↓〉)⊗N

,
i.e., Q(θ,ϕ) = |〈θ,ϕ|ψ(t)〉|2, as shown in Fig. 1(d). Shearing
of the initial isotropic uncertainty distribution results in a
reduced spin variance along one direction. Defining αmin as the
angle between the optimal squeezing direction with respect to
x axis, it is seen that αmin tends to zero under the influence of
the non-Hermitian term.

To check if the non-Hermitian scheme for improved SS
remains valid at larger atom numbers N , we carried out
calculations, which clearly reveal the scaling of various SS
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FIG. 2. (Color online) The N dependence of the various SS
quantities for the steady state. (a) Squeezing parameter ξ 2

min; (b) the
angle αmin between the optimal squeezing direction with respect to
x axis; (c) time to reach the steady state χts ; (d) total evolution
time χts/P ; all for γ /χ = 1/(0.03N ). The red dashed and black
dash-dotted lines denote, respectively, the corresponding results of
the Hermitian OAT and TACT models.

quantities with respect to N as shown in Fig. 2. The parameter
γ /χ is set at 1/(0.03N ), and the results are fitted to give
a degree of squeezing approaching the TACT limit 4/N , as
depicted in Fig. 2(a). The squeezing direction is almost fixed
along x axis or αmin 
 0 as shown in Fig. 2(b), representing
a significant advantage over the Hermitian OAT model. The
drawback is that the optimal squeezing time tmin, which is
essentially the same time for reaching a steady state, ts , is
around 0.1/χ ∼ 1/χ and it shows a weak dependence on N ,
slightly increases in the range of N = 100 to N = 10000, as
illustrated in Fig. 2(c). This is in contrast to the Hermitian OAT
model, whose squeezing time decreases as N increases. In
practical implementations, this could present a serious obstacle
for systems with short coherence times. The probability of
success P decays exponentially with N , like other conditional
schemes. For small N < 1000, P is found to decay slightly
more rapidly than for N > 1000. As our model is only
experimentally accessible when no decay event occurs, a low
success rate implies more measurement runs, which directly
translates into longer times. To reach a success rate P , the total
evolution time for success will have to be around χts/P . For
instance, for P = 0.2, five experiments on average must be
conducted to give a successful event, thus, the total evolution
time is 5χts = χts/P , with each experiment cost time χts . As
shown in Fig. 2(d), the total evolution time for success ∼χts/P

increases as the atom number N increases. For N > 1000, it
becomes larger than 10.

III. OPTIMAL SQUEEZED STATE

In previous discussions, we focus on the steady state at
a specific parameter of γ /χ = 1/(0.03N ), which provides
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FIG. 3. (Color online) (a) The squeezing parameter ξ 2 obtained
from a non-Hermitian evolution at γ /χ = 0.1 (blue solid line) and
γ /χ = 0.5 (blue dotted line), starting from the initial state |↓↓ · · · ↓〉.
(b)–(d) denote respectively the scaling of various SS quantities with
γ /χ . (b) Optimal squeezing parameter ξ 2

min; (c) optimal squeezing
time χtmin; and (d) total evolution time χtmin/P . Filled squares and
disks denote the results from the non-Hermitian OAT model at γ /χ =
0.1 and γ /χ = 0.5, respectively. The red dashed and black dash-
dotted lines denote the corresponding results from OAT and TACT.
All calculations are for N = 1000.

a significantly improved SS with the degree of squeezing
equal to the Hermitian TACT model. The price to pay is
the prolonged evolution time to settle into a steady state and
the low probability of success which further decreases as N

increases. To overcome these problems, we search for other
parameter regimes.

For instance, we show the squeezing parameter ξ 2 obtained
from non-Hermitian evolution at parameters γ /χ = 0.1 (blue
solid line) and γ /χ = 0.5 (blue dotted line) for N = 1000
in Fig. 3(a). For both cases, we find that their ξ 2 reach the
minimal values (marked by arrows) before settling down to the
steady values, i.e., tmin < ts . Although the optimal squeezing
at these two values for the parameter γ /χ does not surpass
the squeezing at γ /χ = 1/(0.03N ), which approaches the
TACT limit, the benefits for these two cases reside in their
much shortened evolution times. To learn the dependence
of the optimal squeezing parameter ξ 2

min on the parameter
γ /χ , we show the relations between them in Fig. 3(b). In
a wide parameter range, the degree of squeezing for our
non-Hermitian OAT model again is found to surpass that of
the Hermitian OAT model, which implies that the performance
of our non-Hermitian scheme is insensitive to noise-induced
parameter fluctuations. With smaller γ /χ , we find that the
degree of squeezing improves, again at the cost of longer
evolution times, whether for a single run [Fig. 3(c)] or for
the total time needed for success [Fig. 3(d)].

The results above therefore impose a trade-off between the
degree of squeezing with evolution time. Reaching the optimal
degree of squeezing requires a delicate balance between the
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FIG. 4. (Color online) The dependence of various SS quantities
on N . (a) Optimal squeezing parameter ξ 2

min; (b) optimal squeezing
time χtmin; (c) total evolution time required for success χtmin/P .
Dotted markers denote the results from a non-Hermitian OAT model
with γ /χ = 0.1 (blue squares) and 0.5 (blue disks). The red dashed
and black dash-dotted lines denote the corresponding results from
Hermitian OAT and TACT models, respectively.

two. To demonstrate this more clearly, we compare the scaling
of various quantities with N at two values of parameter
γ /χ = 0.1 and 0.5 as presented in Fig. 4. For γ /χ = 0.1
(blue squares), we find that the squeezing parameter ξ 2 scales
as 1.2N−4/5 [Fig. 4(a), blue solid line], the corresponding
evolution time for a single run χtmin scales approximately as
17.4N−2/3 [Fig. 4(b), blue solid line], and the total evolution
time to success χtmin/P decreases as N increases [Fig. 4(c)].
For the larger γ /χ = 0.5 (blue disks), the degree of squeezing
becomes less with scaling ∼1.2N−3/4 [Fig. 4(a), blue dashed
line], the evolution time both for a single run 5.4N−2/3

[Fig. 4(b), blue dashed line] and for the total [Fig. 4(c)] become
shorter. Specifically, for N = 104 spins, we obtain a degree
of squeezing equal to 10log10ξ

2 = −31.1dB for the former
at an evolution time of χtmin = 0.0354, while for the latter
case, −29.0dB squeezing is reached at χtmin = 0.0112. They
can be compared to the more standard results of −26.2dB at
χtmin = 0.00254 for the Hermitian OAT model, and −34.1dB
at χtmin = 0.000445 for the Hermitian TACT model.

IV. CONCLUSION

In conclusion, we investigate SS in a non-Hermitian OAT
model, which is conditional on the absence of a decay
event. The ratio of the dissipation rate γ to the OAT
interaction strength χ , γ /χ , is the only tunable parameter
in this model, whose value determines the complete squeezing
behavior. At γ /χ = 1/(0.03N ), we find a steady-state SS
can reach the squeezing limit of TACT, which represents a
significant improvement over the Hermitian OAT model. This
is achieved at the expense of prolonged evolution time and
low probability of success P conditional on no decay event.
The former increases slightly with N , while the later decays
exponentially with N , like other conditional schemes. This
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combines to give an overall unfavorable scaling with N . Thus
while encouraging, our scheme is perhaps only applicable to
systems with small N . Furthermore, by investigating the non-
Hermitian dynamics at other parameter regimes where optimal
SSSs arrive before steady states, we find that the optimal
squeezing time can be greatly shortened and the success rate
enhanced, while at the same time impressive degrees of SS
significantly beating the OAT model are maintained. Our work
highlights potentially fruitful applications of non-Hermitian
OAT to small samples of coupled spins, including multiple
component atomic condensates where a non-Hermitian OAT

model Hamiltonian can be engineered and experimentally
implemented.
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