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Quantum nonlinear cavity quantum electrodynamics with coherently prepared atoms
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We propose a method to study the quantum nonlinearity and observe the multiphoton transitions in a multiatom
cavity quantum electrodynamics (CQED) system. We show that by inducing simultaneously destructive quantum
interference for the single-photon and two-photon excitations in the CQED system, it is possible to observe the
direct three-photon excitation of the higher-order ladder states of the CQED system. We report an experiment
with cold Rb atoms confined in an optical cavity and demonstrate such interference control of the multiphoton
excitations of the CQED system. The observed nonlinear excitation of the CQED ladder states agrees with a
theoretical analysis based on a fully quantized treatment of the CQED system, but disagrees with the semiclassical
analysis of the CQED system. Thus it represents a direct observation of the quantum nature of the multiatom
CQED system and opens new ways to explore quantum nonlinearity and its applications in quantum optical
systems in which multiple absorbers or emitters are coupled with photons in confined cavity structures.
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I. INTRODUCTION

Cavity quantum electrodynamics (CQED) studies the
fundamental atom-photon interactions and has important
applications in quantum physics and quantum electronics [1].
A variety of the CQED systems has been realized [2–5],
and a wide array of fundamental studies and practical ap-
plications based on the CQED concepts and effects have been
explored [6–11]. A basic CQED system consists of single
atoms or atomic qubits coupled to a cavity mode. Studies of
CQED can also be done with a composite system consisting
of a cavity mode collectively coupled with multiple atoms
or atomic qubits. The CQED system with multiple atoms
is uniquely suited for studies of collective atom and photon
interactions, in which the Dicke states of the atoms and the
cavity mode form the collective polariton states and lead to
interesting physical phenomena such as quantum many body
effects [6], quantum entanglement of multiple atoms [7], and
a cavity controlled super-radiant laser [11].

It was recognized that the linear excitation of the CQED
system reveals two normal modes with a frequency separation
commonly referred to as the vacuum Rabi splitting and can be
understood classically as two coupled linear oscillators [12].
To reveal the intrinsic quantum mechanical nature of the
CQED system and explore potential applications of the CQED
quantum nonlinearities [13–15], it is necessary to induce the
multiphoton transitions in the higher-order ladder states of
the CQED system and observe the quantum nonlinearity in
CQED system. In recent years, the multiphoton transitions
associated with the quantum nonlinearity have been observed
in the single-atom or qubit CQED systems [16–19]. In a
multiatom CQED system, the collective polariton states of the
CQED system form a ladder system with equal spacing among
different orders and the multiphoton transitions [20] become
degenerate in the transition frequency with the single-photon
transition [21]. Although the resonant multiphoton excitation
is now possible, it is difficult to separate the dominant
single-photon transition from the multiphoton transitions, and

explore the quantum nonlinearity and its applications in the
multiatom CQED system. Although the earliest observation
of the vacuum Rabi splitting was reported in a CQED system
with multiple atoms decades ago [1] and there are theoretical
proposals to study the quantum nonlinear excitation in CQED
systems with a few atoms [22,23], it is still elusive to
attempt the experimental observation of the direct multiphoton
transitions in a multiatom CQED system.

Here we propose a method to study the quantum nonlinear
CQED in a coupled cavity and multiatom system and observe
the pure three-photon transition of the quantum ladder states
of the CQED system. The method replies on inducing
simultaneously the quantum destructive interference for the
single-photon transition and two-photon transition in the
multiladder CQED system which suppresses both the single-
photon and two-photon transitions and resonantly enhances
the three-photon transition. We present experimental results
that demonstrate such an interference technique for studies of
the quantum nonlinearities in the multiatom CQED system.
The experimental measurements agree with the theoretical
analysis based on a fully quantized treatment of the CQED
system, but disagree with the semiclassical analysis of the
cavity QED system. Thus our experimental work represents an
observation of the pure three-photon transition in the quantum
ladder states and direct demonstration of the quantum nature
of the multiatom CQED system.

II. THEORETICAL ANALYSIS

Figure 1 shows the schematic diagram for the multiatom
CQED system that consists of a single mode cavity con-
taining N three-level atoms interacting with two coupling
lasers from free space. The cavity mode couples the atomic
transition |g〉-|e〉 and the classical coupling lasers drive the
atomic transition |s〉-|e〉 with Rabi frequency 2�1 and 2�2,
respectively. A weak probe laser ωp is coupled into the
cavity and the transmitted probe light through the cavity
versus its frequency reveals the excitation spectrum of the
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FIG. 1. (Color online) Coherently coupled multiatom CQED
system in which N three-level atoms are coupled to the cavity mode
and two free-space laser fields ω1 and ω2.�1 and �2 � g

√
N .

CQED system. We treat the input probe field and the
cavity field quantum mechanically, but the coupling fields
classically. The interaction Hamiltonian can be written as

H = ωe

∑
j

σ (j )
ee + ωg

∑
j

σ (j )
gg + ωs

∑
j

σ (j )
ss + ωca

+a

+ g
∑

j

(
aσ (j )

eg + a+σ (j )
ge

∣∣)

+
∑

j

∣∣[(�1e
−iω1t + �2e

−iω2t )σ (j )
es + H.c.

]
+αp(aeiωpt + a+e−iωpt ). (1)

The last term in Eq. (1) represents the coupling of a weak
probe field and the cavity mode. Here â is the annihilation
operator of the cavity photons, σ

(j )
mn = |m(j )〉〈n(j )| (m,n =

e,g, and s) are the atomic operators for the j th atom,
g = μeg

√
ωc/2�ε0V is the cavity-atom coupling coefficient,

and αp is the probe field amplitude. We consider the
cavity frequency matches the atomic transition frequency,
i.e., ωc = ωe − ωg = ωeg , and define the coupling frequency
detunings �1 = ω1 − ωes and �2 = ω2 − ωes (ωes = ωe −
ωs). The collective atomic operators can be defined as
J+ = ∑

j σ
(j )
eg and R+ = ∑

j σ
(j )
es (assuming the uniform

coupling strength for the N identical atoms inside the cavity).
Then in the interaction picture, H

(1)
I = g(J+a + a+J−) +

[(�1e
−i�1t + �2e

−i�2t )R+ + H.c.] and H
(2)
I = αp(aei�pt +

a+e−i�pt ), where �p = ωp − ωc is the probe frequency
detuning. For a weak probe field, the atomic population
is concentrated in the ground state |g〉 and the collective
atomic operators can be written in terms of the Dicke states
|N

2 , − N
2 + l〉 [24] as

J+ =
∑

ln

∣∣∣∣N2 , − N

2
+ l

〉〈
N

2
, − N

2
+ l

∣∣∣∣J+

∣∣∣∣N2 , − N

2
+ n

〉〈
N

2
, − N

2
+ n

∣∣∣∣
=

∑
ln

∣∣∣∣N2 , − N

2
+ l

〉〈
N

2
, − N

2
+ n

∣∣∣∣√(N − n)(n + 1)δl,n+1

=
∑

n

∣∣∣∣N2 , − N

2
+ n + 1

〉〈
N

2
, − N

2
+ n

∣∣∣∣√(N − n)(n + 1). (2)

Here l and n are the atomic excitation numbers. Denote |N
2 , − N

2 + n〉 as |−N
2 + n〉, then J+ =∑

n |−N
2 + n + 1〉〈−N

2 + n|√(N − n)(n + 1). Under the condition of �1 and �2 � g (the atomic population in the
state |s〉 is very small), we can define the collective atomic state |s〉 = 1√

N

∑
j |g(1), . . . ,s(j ), . . . ,g(N)〉, and obtain

R+|s〉 =
∑
jj ′

|e(j )〉〈s(j )| 1√
N

|g(1), . . . ,s(j ′), . . . ,g(N)〉 = 1√
N

∑
j

|g(1), . . . ,e(j ), . . . ,g(N)〉 =
∣∣∣∣−N

2
+ 1

〉
. (3)

Then one derives

R+ =
∣∣∣∣−N

2
+ 1

〉
〈s| =

∑
m

∣∣∣∣−N

2
+ 1,m

〉
〈s,m|, (4)

and the annihilation operator of the cavity photons can be written in the Fock state basis as a = ∑
m |m〉〈m + 1|√m + 1 (m is

the Fock state number):

a =
∑
nm

√
m + 1|m〉〈m + 1| =

∑
mn

√
m + 1

(∣∣∣∣−N

2
+ n,m

〉〈
−N

2
+ n,m + 1

∣∣∣∣ + |s,m〉〈s,m + 1|
)

. (5)

When the cavity is resonant with the atomic transition ωc = ωe − ωg = ωeg , the system Hamiltonian can then be written as

HI = g
∑
nm

√
(N − n)(n + 1)(m + 1)

[∣∣∣∣−N

2
+ n + 1,m

〉〈
−N

2
+ n,m + 1

∣∣∣∣ + H.c.

]
+

∑
m

[
(�1e

−i�1t + �2e
−i�2t )

×
∣∣∣∣−N

2
+1,m

〉
〈s,m|+H.c.

]
+

∑
nm

αp

√
m + 1

[(∣∣∣∣−N

2
+n,m

〉〈
−N

2
+ n,m + 1

∣∣∣∣+|s,m〉〈s,m+1|
)

ei�pt +H.c.

]
. (6)
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FIG. 2. (Color online) (a) The energy level diagram of the CQED product states. (b) The eigenstates ladder of the CQED system and the
two free-space coupling fields connecting the atomic state |s〉 with the specific ladder states and the coupling laser detunings are �1 = −g

√
N

and �2 = −2g
√

N .

The CQED system satisfies g2N > κ
 (κ is the cavity
decay rate and 
 is the decay rate of the excited state |e〉) and
is in the strong coupling regime for the collectively coupled
atoms and the cavity mode (but g2 � κ
; the CQED system
is in the weak coupling regime for single atom and the cavity
mode). The cavity photon and the atoms form the symmetric,
Dicke-type atomic and photonic product states. The ground
state of the cavity-atom system is |−N

2 ,0〉 (all atoms are in
the ground state and no photon in the cavity mode), the two
product states with one excitation quanta are |−N

2 ,1〉 (one
photon in the cavity mode and all atoms are in the ground state
|g〉), and |−N

2 + 1,0〉 (one atom in the excited state |e〉 and
zero photon in the cavity mode); there are three product states
with two excitation quanta, and four product states with three
excitation quanta, and etc. as shown in Fig. 2(a).

The interaction term of the cavity photons and the collective
atomic operators is then given by Hint = g(aJ+ + a+J−) =
g

∑
nm

√
(N − n)(n + 1)(m + 1)(|−N

2 + n + 1,m〉〈−N
2 + n,

m + 1| + H.c.). When the two free-space coupling fields
drive the transition |s〉-|e〉 satisfy the condition �1 and
�2 � √

Ng, they can be treated as perturbations to the
cavity coupled atomic system. Then we can diagonalize
the interaction Hamiltonian Hint = g(aJ+ + a+J−) =
g

∑
nm

√
(N − n)(n + 1)(m + 1)[|−N

2 + n + 1,m〉〈−N
2 + n,

m + 1| + H.c.] and derive the eigenvalues and eigenstates of

the CQED system. The eigenstates are the superposition of
the atomic Dicke states and the cavity photon states, and are
referred to as polariton states, which form an infinite ladder
starting from the ground state J = 0 (J = 0,1, . . . ,n, . . .

is the excitation quanta number). For a given excitation
J, there are J + 1 polariton states with the energies given
by Em = J�ωc + m

√
Ng (m = 0, ± 2, . . . , ± J for J

is even, or m = ±1, . . . , ± J for J is odd) as shown
in Fig. 2(b). The two free-space coupling lasers (with
�1 = −g

√
N and �2 = −2g

√
N ) drive the same transition

|s〉-|e〉 and create an infinite ladder of Floquet states
|s,m〉 = ∑

j Cs,n|s(j ),m〉eij
√

Ngt (with the equal frequency

separation �1 − �2 = √
Ng between the neighboring

Floquet states) [25]. Here m is the number of the intracavity
photons and j is the index for the j th-order Floquet state.
Because

√
Ng � �1 and �2, only two Floquet states

|s(0),m〉 and |s(1),m〉ei
√

Ngt (with j = 0 and j = 1) need
to be considered and the rest of them can be neglected.
This results in |s,m〉 ≈ |s(0),m〉 + (�1+�2)2

g2N
|s(1),m〉ei

√
Ngt . In

the weak excitation regime (the probe laser coupled into
the cavity mode is very weak), we keep only up to J = 3
excitation processes of the CQED system and neglect the other
higher-order (J > 3) processes. Then the CQED system can
be approximately treated with the truncated basis consisting

033822-3



YANG, GU, LI, ZOU, AND ZHU PHYSICAL REVIEW A 92, 033822 (2015)

of 12 states as shown in Fig. 2(b), which are: the ground
(J = 0) state |−N

2 ,0〉 = |0,0〉; three first-order (J = 1)
excited polariton states, |1+〉 = 1√

2
(|−N

2 + 1,0〉 + |−N
2 ,1〉),

|1−〉 = 1√
2
(|−N

2 + 1,0〉 − |−N
2 ,1〉), and |s(0),0〉;

four second-order (J = 2) excited polariton states,

|2+〉 = 1
2 (| − N

2 + 2,0〉 + √
2|−N

2 + 1,1〉 + |−N
2 ,2〉), |20〉 =

1√
2
(|−N

2 + 2,0〉 + |−N
2 ,2〉), and |2−〉 = 1

2 (|−N
2 + 2,0〉

− √
2|−N

2 + 1,1〉 + |−N
2 ,2〉), and |s(1),1〉; and four

third-order (J = 3) excited polariton states,

|3−1〉 = 1

2
√

2

(
−

∣∣∣∣−N

2
+ 3,0

〉
+

√
3

∣∣∣∣−N

2
+ 2,1

〉
−

√
3

∣∣∣∣−N

2
+ 1,2

〉
+

∣∣∣∣−N

2
,3

〉)

|3−0〉 = 1

2
√

2

(√
3

∣∣∣∣−N

2
+ 3,0

〉
−

∣∣∣∣−N

2
+ 2,1

〉
−

∣∣∣∣−N

2
+ 1,2

〉
+

√
3

∣∣∣∣−N

2
,3

〉)
,

|3+0〉 = 1

2
√

2

(
−
√

3

∣∣∣∣−N

2
+ 3,0

〉
−

∣∣∣∣−N

2
+ 2,1

〉
+

∣∣∣∣−N

2
+ 1,2

〉
+

√
3

∣∣∣∣−N

2
,3

〉)
,

|3+1〉 = 1

2
√

2

(∣∣∣∣−N

2
+ 3,0

〉
+

√
3

∣∣∣∣−N

2
+ 2,1

〉
+

√
3

∣∣∣∣−N

2
+ 1,2

〉
+

∣∣∣∣−N

2
,3

〉)
.

With the truncated 12 basis states, the system Hamiltonian is reduced to

Heff = −g
√

N (|1−〉〈1−| + |s(0),0〉〈s(0),0|) − 2g
√

N (|2−〉〈2−| + |s(1),1〉〈s(1),1|)
− 3g

√
N (|3−〉〈3−|) − �1/2(|1−〉〈s(0),0| + |s(0),0〉〈1−|) − �2/2(|2−〉〈s(1),1| + |s(1),1〉〈2−|)

×αei�pt

(
1√
2

∣∣∣∣−N

2
,0

〉
〈1−| + 1√

2
|1−〉〈2−| +

√
6

2
|2−〉〈3−| + (�1 + �2)2

g2N
|s(0),0〉〈s(1),1|

)
+ H.c. (7)

Then one can derive the density matrix equations dρ

dt
=

i[ρ,Heff] + Lρ, where L is the damping operator from the
atomic decay and cavity decay. The density matrix equations
can then be solved numerically with the quantum optics
toolbox [26] and the expectation value of the intracavity photon
number is given by

〈a+a〉 == 1
2ρ1−.,1− + ρs1,s1 + ρ2−.2− + 2

3ρ3−,3−. (8)

In Eq. (8) the first two terms 1
2ρ1−.,1− and ρs1,s1 represent

the contribution from the single-photon process; the third term
ρ2−.2− represents the contribution from the two-photon pro-
cess; and the fourth term 2

3ρ3−,3− represents the contribution
from the three-photon process. The total number of photons
transmitted through the cavity is then given by κ〈a+a〉.

The excitation spectrum of the CQED system can be
measured by coupling a weak probe laser into the cavity mode
and collecting the transmitted probe photons while scanning
its frequency detuning �p = ωp − ωge. Without the coupling
fields, the energy ladder of the CQED system is shown in
Fig. 3(a). The spectrum [see Fig. 5(a)] exhibits two peaks
located at �p = ±g

√
N , where all orders of multiphoton

transitions are degenerate. However, with a weak probe
laser far below the saturation, the single-photon transition
is dominant and the two spectral peaks �p = ±g

√
N repre-

sent the resonant single-photon excitation of the first-order
excited states (the polariton states or the normal modes)
|1±〉 [27,28].

When there is only one coupling laser present (�1 	= 0
but �2 = 0) and it is tuned to the polariton resonance at
�1 = −g

√
N (or �1 = +g

√
N ), the coupling laser 1 creates

two dressed polariton states |�±〉 = 1√
2
(|1±〉 ± |s,0〉) (Since

�1 � √
Ng, the effect of the coupling field 1 on other ladder

states of the CQED system can be neglected due to the large
detunings from these states) [see Fig. 3(b)], which results in
two excitation paths with a π phase shift. The destructive
interference suppresses all orders of the linear and nonlinear
excitations (this configuration is similar to the EIT suppression
of both single-photon and two-photon absorptions in a ladder
type four-level atomic system in free space [29–31]) and a
narrow dip appears in the spectral peak at �p = −g

√
N as

shown in Fig. 5(b) and reported in Ref. [32].
When both coupling lasers are present (�1 	= 0 and �2 	=

0), and the coupling 1 is tuned to the polariton resonance |1−〉
at �1 = −g

√
N (or �1 = +g

√
N ) and the coupling 2 is tuned

to the next higher-order resonance |2−〉 at �2 = −2g
√

N (or
�1 = +2g

√
N ) (again, since both �1 and �2 � √

Ng, the
effects of the two coupling fields on other ladder states can be
neglected due to the large detunings from these states). The
coupling laser 1 creates two dressed polariton states |�1

±〉 =
1√
2
(|1−〉 ± |s,0〉) and the coupling laser 2 creates two higher-

order dressed polariton states |�2
±〉 = 1√

2
(|2−〉 ± |s,1〉), which

results in the destructive interference for the single-photon
excitation and the two-photon excitation as shown in Fig. 3(c).
But the three-photon excitation |−N

2 ,0〉-|3−〉 is intact and
resonantly enhanced, which shows up as a peak in the
probe excitation spectrum at �p = −g

√
N as shown in

Fig. 5(c).
Figure 4 plots separately (a) the amplitude of the single-

photon excitation, (b) the amplitude of the two-photon exci-
tation, and (c) the amplitude of the three-photon excitation
by the probe laser versus the probe frequency detuning
�p/
. It shows that at �p = −g

√
N , both the single-photon

excitation and the two-photon excitation are suppressed, but
the three-photon excitation is resonantly enhanced. The other
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FIG. 3. (Color online) (a) Without the free-space coupling fields, the quantum ladder states of the CQED system representing the multiple
two-level atoms coupled to a single cavity mode. (b) With only a single coupling field (�1 	= 0 but �2 = 0) tuned to the resonance of the
transition |s,0〉-|1−〉(�1 = −g

√
N).The coupling field produces two dressed states |�1

±〉 = 1√
2
(|1−〉 ± |s(0),0〉) separated by the Rabi frequency

2�1, which leads to two excitation paths for the probe laser. The destructive interference between the two transition paths suppresses all orders
of the transitions at �p = −g

√
N . (c) With �1 and �2 � g

√
N , the two coupling fields creates the dressed states |�1

±〉 = 1√
2
(|1−〉 ± |s(0),0〉)

and |�2
±〉 = 1√

2
(|2−〉 ± |s(1),1〉), which opens the two excitation paths for the single-photon transition and the two-photon transition for a weak

probe laser coupled into the cavity mode. When the probe laser is tuned to �p = −g
√

N , the single-photon and two-photon transitions are
suppressed but the three-photon transition |−N

2 ,0〉 − |2−〉-|3−〉, is then resonantly enhanced.

spectral peaks at �p = −g
√

N ± �1(representing the excita-
tion of the dressed polariton states |�1

±〉 = 1√
2
(|1−〉 ± |s,0〉)),

�p = −2g
√

N (representing the two-photon Raman transition
|−N

2 ,0〉-|1−〉|s,0〉 with a single photon from the probe and

a single photon from the coupling 2, which is detuned
from the intermediate polariton state |1−〉), and �p = g

√
N

(representing the single-photon excitation to the polariton state
|1+〉) are all dominated by the single-photon transitions.
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FIG. 4. (Color online) With two coupling fields present (�1 = �2 = 
, and �1 = −g
√

N and �2 = −2g
√

N ), (a) the calculated amplitude
of the single-photon transition, (b) the calculated amplitude of the two-photon transition, and (c) the calculated amplitude of the three-photon
transition versus the probe detuning �p/
. The parameters used in the calculations are g

√
N = 10 
, κ = 2 
, and αp = 0.2.
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FIG. 5. (Color online) The probe light intensity transmitted through the cavity versus the probe frequency detuning �p. Noisy blue lines
are experimental data and smooth red lines are calculations. (a) Without the two coupling fields (�1 = 0 and �2 = 0). (b) With only coupling
field 1 (�1 ≈ 10 MHz and �2 = 0). (c) With both coupling fields (�1 ≈ �2 ≈ 10 MHz), �1 = −g

√
N and �2 = −2g

√
N . The parameters

used for the calculations are �c = 0, g
√

N = 36 MHz, �1 = −g
√

N and �2 = −2g
√

N , κ ≈ 
 = 6 MHz.

III. EXPERIMENTAL RESULTS

The experiment is done with cold 85Rb atoms confined
in a magneto-optical trap (MOT) produced at the center of
a 10-ports stainless-steel vacuum chamber [33]. A tapered-
amplifier diode laser (TA-100, Toptica) with output power
∼300 mW is used as the cooling laser and supplies three
perpendicular retroreflected beams. An extended-cavity diode
laser with an output power of ∼20 mW is used as the
repump laser. The trapped 85Rb atom cloud is ∼1.5 mm in
diameter. The three-level atomic system is realized with the
Rb D1 transitions in which the ground hyperfine states F = 2
and F = 3 are chosen as the state |g〉 and |s〉, respectively,
and the excited hyperfine states F ′ = 3 is chosen as the
excited states |e〉. The decay rate of the excited state |e〉 is
γ ≈ 6 MHz. The standing-wave cavity consists of two mirrors
of 5 cm curvature with a mirror separation of ∼5 cm and is
mounted on a stainless holder enclosed in the vacuum chamber.
The empty cavity finesse is measured to be ≈500 (the decay
linewidth is κ ≈ 6 MHz). Movable anti-Helmholtz coils is
used so the MOT position can be finely adjusted to coincide
with the cavity center. Three extended-cavity diode lasers

operating at 795 nm are used as the probe laser (couples the
F = 2-F ′ = 3 transitions) and the two coupling lasers (drives
the F = 3-F ′ = 3 transitions). The coupling lasers are σ+
polarized (the quantization axis is defined as the propagation
direction of the coupling lasers, which is perpendicular to the
cavity axis) and have a beam diameter of ∼5 mm, and are
made to copropagate perpendicularly to the intracavity probe
beam to intercept the cold Rb atoms at the cavity center. The
attenuated probe beam is π polarized and is coupled into the
cavity through a mode-matching lens. The cavity-transmitted
probe light passes through an iris and is coupled into a
multimode fiber, the output of which is collected by a photon
counter (PerkinElmer SPCM-AQR-16-FC).

The experiment was run sequentially with a repetition rate
of 10 Hz. All lasers were turned on or off by acousto-optic
modulators (AOM) according to the time sequence described
below. For each period of 100 ms, ∼98.9 ms was used for
cooling and trapping of the 85Rb atoms, during which the
trapping laser and the repump laser were turned on by two
AOMs while the coupling lasers and the probe laser were off.
The time for the data collection lasted ∼1.1 ms, during which
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FIG. 6. (Color online) (a) Cavity-transmitted probe intensity versus the probe frequency detuning �p calculated from the semiclassical
analysis. The used parameters are �c = 0, g

√
N = 11 
, �1 = −g

√
N and �2 = −2g

√
N , κ = 
 = 6 MHz. (a) Without the two coupling

fields (�1 = 0 and �2 = 0). (b) With only the coupling field 1 (�1 = 2 
 and �2 = 0). (c) With both coupling fields (�1 = �2 = 2 
),
�1 = −g

√
N and �2 = −2g

√
N .
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FIG. 7. (Color online) (a) Cavity-transmitted probe intensity versus the probe frequency detuning �p. The noisy blue line is the experimental
data and the smooth red line is the calculations from the quantized analysis with the truncated states. (b) Calculated transmission intensity of the
probe laser from a semiclassical analysis. The parameters used in the calculations are �1 ≈ �2 ≈ 10 MHz, g

√
N = 36 MHz,�1 = −g

√
N ,

�2 = 0, �c = 0, αp = 0.2, and κ ≈ 
 = 6 MHz.

the repump laser was turned off first, and then after a delay of
∼0.1 ms, the trapping laser was turned off (the current to the
anti-Helmholtz coils of the MOT was always kept on), and the
coupling lasers and the probe laser were turned on. The probe
laser frequency was then scanned across the 85Rb D1 F = 2
to F ′ = 3 transitions and the probe light transmitted through
the cavity was recorded versus the probe frequency detuning.

The measured probe light intensity transmitted through the
cavity versus �p is plotted in Fig. 5. Figure 5(a) shows the
probe excitation spectrum without the free-space coupling
fields (both �1 = 0 and �2 = 0). It exhibits two peaks located
at �p = ±g

√
N , representing the single-photon excitation of

the two polariton states |1−〉 and |1+〉 (the normal modes)
separated in frequency by the vacuum Rabi splitting 2g

√
N .

Figure 5(b) shows that when there is only the coupling field
1 with �1 = −g

√
N , the probe excitation at �p = −g

√
N

is suppressed by the destructive interference induced by
the coupling laser 1. Figure 5(c) plots the probe excitation
spectrum when both coupling fields are present and the
detunings are �1 = −g

√
N and �2 = −2g

√
N . The dip

at �p = −g
√

N in Fig. 4(b) is now turned into a peak,

representing the three-photon excitation of the third-order
quantum state |3,−〉 of the CQED system. All other peaks,
including the two peaks at �p = −g

√
N ± �1 [the excitation

of the first-order dressed state |�1
±〉 = 1√

2
(|1−〉 ± |s,0〉)], a

small peak at �p = −2g
√

N (the Raman peak), and a peak
at �p = g

√
N (represent the first-order polariton state |1+〉)

are all dominated by the single-(probe) photon excitations (see
Fig. 4 and discussions therein).

In order to confirm that the observed three-photon peak
at �p = −g

√
N shown in Fig. 5(c) is a pure quantum

phenomenon, we carried out semiclassical CQED calculations,
in which the free-space coupling fields, the probe field, and the
cavity field are all treated classically. The results are plotted in
Fig. 6. The semiclassical calculations agree with the quantized
analysis of Fig. 5 for all observed spectral peaks except the
one and only pure three-photon peak at �p = −g

√
N in

Fig. 5(c). The fact that the semiclassical calculations presented
in Fig. 6(c) fails to reproduce the spectral peak at �p = −g

√
N

in Fig. 5(c) confirms that the small spectral peak observed
at �p = −g

√
N in Fig. 5(c) is solely from the three-photon
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FIG. 8. (Color online) With �1 = −g
√

N and �2 = 0 (cavity EIT is created), (a) the calculated amplitude of the single-photon transition
versus the probe frequency detuning �p. (b) The calculated amplitude of the two-photon transition versus �p. (c) The calculated amplitude
of the three-photon transition versus �p. It shows that at �p = −g

√
N , the single-photon transition |−N

2 ,0〉-|1−〉, the two-photon transition
|−N

2 ,0〉-|1−〉-|2−〉, and the three-photon transition |−N

2 ,0〉-|1−〉-|2−〉-|3−〉 are all resonant, but the single-photon transition is dominant. The
parameters used in the calculations are the same as that in Fig. 7(a).
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excitation and represents the observation of the pure quantum
feature of the CQED system.

IV. FREQUENCY DEPENDENCE OF THE NONLINEAR
CAVITY QED

When �1 = −g
√

N and �2 = −2g
√

N , the two free-
space coupling fields induce the quantum interference that
suppresses both the single-photon and two-photon excitations,
but leaves the three-photon excitation resonantly enhanced.
Here we show that although the nonlinear cavity QED
phenomenon is enabled by the coupling-induced interference,
it is not associated with cavity electromagnetically induced
transparency (EIT) reported in earlier studies [34–37]. The
cavity EIT occurs when a free-space coupling laser is tuned
to be resonant with the transition of the bare atomic states
|s〉-|e〉, which results in a narrow transmission peak of the
probe laser at �p = 0. For the CQED system coupled by
two free-pace coupling fields, cavity EIT will be created
when either one of the two coupling fields is tuned to the
atomic resonance. We have performed the experiments and
the theoretical calculations by setting the frequency detunings
of the two coupling lasers to �1 = −g

√
N and �2 = 0, the

results are presented in Fig. 7.
Figure 7(a) plots the measured transmission spectrum of

the probe laser under the cavity EIT condition. We observe
the signature cavity EIT peak at �p = 0, a spectral peak at
�p = g

√
N (corresponding to the single-photon excitation

of the polariton state |0,0〉-|1+〉), two spectral peaks at �p =
−g

√
N ± �1 [corresponding to the single-photon excitation

of the dressed polariton states |�1
±〉 = 1√

2
(|1−〉 ± |s,0〉)],

and finally a spectral peak at �p = −g
√

N that is mostly
excited by the single-photon process as shown in Fig. 8 below.
This peak is to be distinguished from the pure three-photon
excitation peak in Fig. 5(c) even though the peak occurs at
exactly the same probe frequency �p = −g

√
N .

In order to confirm that the observed peak at �p = −g
√

N

in Fig. 7(a) is mainly from the single-photon process, we
performed the semiclassical CQED calculation under the
identical conditions in which the free-space coupling fields, the
probe field, and the cavity field are all treated classically.
The semiclassical calculation is plotted in Fig. 7(b) qualita-
tively reproduces all observed spectral peaks and thus confirms
the single-photon nature of the spectral peaks presented in
Fig. 7(a).

As a further confirmation, we also calculated separately
the amplitudes of single-photon transition, two-photon transi-
tion, and three-photon transition with the quantized analysis
[Eqs. (7) and (8)] under the cavity EIT condition �1 = −g

√
N

and �2 = 0. The results are plotted in Fig. 8. There are spectral
peaks at �p = −g

√
N , �p = −g

√
N ± �1, �p = 0, and

�p = g
√

N . In particular, the peak at �p = 0 is due to the
cavity EIT (the excitation of the intracavity dark state) [31–34].
However, all of the spectral peaks are dominated by the
single (probe) photon excitation. The three-photon excitation
amplitude is orders of magnitude smaller and cannot be
directly inferred.

V. CONCLUSION

In conclusion, we have proposed a method to study the
quantum nonlinear CQED. The method uses the quantum
interference induced by two free-space laser fields to suppress
the single-photon excitation and two-photon excitation in
the CQED system and resonantly enhances the three-photon
excitation of the third-order quantum ladder state. We observed
the interference controlled multiphoton excitation of the
CQED system in an experiment performed with cold Rb atoms
confined in an optical cavity and the experimental results agree
with the calculations from a fully quantized analysis based on
the truncated state basis. The semiclassical analysis performed
for the CQED system cannot reproduce the spectral peak
associated with the pure three-photon excitation process, but
agree with the experimental measurements and the quantized
analysis for the spectral peaks associated with the excitation
processes involving only a single probe photon. Thus this
represents a direct observation of a pure quantum phenomenon
in the multiatom CQED system. It will be interesting to
quantify the quantum statistical behavior of the nonlinear
excitation process and explore its possible application for
the nonclassical light generation and exotic quantum-state
preparation.
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