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We predict that all-optically-reconfigurable generation of photon pairs with tailored spatial entanglement can be
realized via spontaneous parametric down conversion in integrated nonlinear coupled waveguides. The required
elements of the output quantum wave function are directly mapped from the amplitudes and phases of the classical
laser pump inputs in each waveguide. This is achieved through special nonuniform domain poling, which locally
inverts the sign of quadratic nonlinear susceptibility and accordingly shapes the interference of biphoton quantum
states generated along the waveguides. We demonstrate a device configuration for the generation of any linear
combination of two-photon Bell states.
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I. INTRODUCTION

Entanglement is a key characteristic of quantum mechanics,
and as shown by Bell [1], is responsible for quantum theories’
violation of the classical principle of local relativistic causality.
As well as being of fundamental scientific interest, quantum
entanglement can enable powerful new technologies such as
quantum computing [2], quantum communication [3], and
quantum enhanced measurement [4]. However, the highly
advantageous nonclassical properties of these technologies
will require a flexible interface between the classical and
quantum worlds. Indeed, the development of such an interface
is an area of active research [5–8], the dominant method being
spontaneous parametric down conversion (SPDC), where a
classical laser interacts with a χ (2) nonlinear medium to
produce entangled photons [5,6,8].

Photons are an ideal platform for creating and manipulating
quantum information due to the low noise from the environ-
ment and ease of transmission. A qubit encoded into a photon
can be easily sent between different photonic elements along
an optical fiber, in analogy to the transmission of classical bits
along electrical wires [2]. Furthermore, logic operations can be
performed on entangled photons by exploiting the nonlinearity
inherent in quantum measurement, or by using the interaction
between multiple light fields via a nonlinear medium [2,9].
However, in order for these properties to be fully utilized, it
must first be possible to quickly map information onto the
quantum state of entangled photons. Therefore, an entangled
photon source with fast all-optical reconfigurability of the
output wave function would be an important step towards
realizing new quantum technologies.

The practicality of any of these technologies will be
determined by their scalability and reliability; this suggests the
use of quantum photonic circuits will be essential. Integrating
optical elements onto a single chip reduces the systems contact
with the environment, preserving the fidelity of the quantum
entanglement by reducing phase fluctuations and other sources
of noise [10]. Furthermore, integrated devices are compact and
stable, so they can be combined to build complex quantum
circuits that would be impossibly large using traditional
bulk optics. Hence, a practical source of entanglement will
require the generation and control of entangled photons to be
integrated within a single photonic chip.

The latest experimental developments [6,8,11–13] suggest
that the goal of a fully integrated and optically reconfigurable
source of entangled photons is achievable, but there is still
some way to go. For instance, Refs. [6,11] show that entangled
photons could be created on-chip, while [12,13] demonstrate
that the reconfigurable manipulation of entangled photons in
quantum photonic circuits is possible. Indeed, the on-chip
generation of photon pairs and their interference using tunable
phase shifters was demonstrated in Refs. [8,13], although
all-optical reconfigurability as well as the ability to generate
a full set of Bell states and their superpositions are yet to be
achieved.

In this work, we predict that a photonic chip consisting
of an array of coupled nonlinear waveguides [14–16] can
be designed for all-optically-controlled generation of any
set of path-entangled biphoton states. This device is par-
ticularly elegant because the output quantum wave function
is directly mapped from the amplitudes and phases of the
classical laser inputs. Hence, the device can be reconfig-
ured in real time by varying classical inputs, providing a
flexible interface between classical and quantum informa-
tion.

This paper is organized as follows. In Sec. II, we introduce
the nonlinear waveguide array (WGA), a device that can
produce entangled photon pairs with correlations between
photons in different waveguides. In Sec. III, we show how
to design χ (2) poling structures in the WGA to allow the
production of nearly any desired two-photon state when
pumping just a single waveguide. As a specific example,
we show how to structure the poling so that pumping each
waveguide in an array of four coupled waveguides produces
a different Bell state. Then, in Sec. IV we investigate the
limits of using χ (2) poling patterns to produce any arbitrary
two-photon wave function, showing that not all wave functions
can be produced in a homogeneous WGA. In Sec. V,
we show that these limits can be overcome by altering
the widths of some waveguides in the WGA in order to
break the symmetry of the device. In Sec. VI, we show
how the device can be characterized quickly using classical
frequency difference generation. Finally, in Sec. VII, we
numerically model the effect of realistic fabrication errors
on the performance of the device. We present conclusions
in Sec. VIII.
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FIG. 1. (Color online) (a) Diagram of quadratically nonlinear
waveguide array. A pump laser field Anp

produces path-entangled
two-photon state � via SPDC. (b) Poling pattern for wave-function
control: each waveguide is divided into a number of segments, with a
different duty cycle (ratio of “up” to “down” poling) in each segment.

II. DEVICE DESIGN AND MODEL EQUATIONS

We illustrate the device concept in Fig. 1(a). Laser driving
one of the waveguides in the nonlinear waveguide array will
generate entangled photon pairs in the driven waveguide via
SPDC. The waveguides are coupled such that the biphotons
(entangled photon pairs) can tunnel between neighboring
waveguides, but the pumping laser is confined to one waveg-
uide. This is an example of a driven quantum walk [17]
of pairs of entangled particles. It has been shown that the
interference between the probability amplitudes of different
biphoton paths can lead to highly nonclassical states at the
output of the device [14,15]. However, it remained an open
question as to whether the WGA could be tuned to produce
custom and reconfigurable quantum states. We demonstrate
that this can be achieved through specially designed domain
poling, as illustrated in Fig. 1(b).

To model SPDC in the waveguide array we work in the weak
pump regime, neglecting all terms in the state of the down-
converted photons corresponding to the creation of multiple
photon pairs. Hence, we assume that SPDC produces a two-
photon quantum state, which can be described as

|�(z)〉 =
∫∫

dωsdωi

×
N∑

nsni

�nsni
(z,ωs,ωi)a

†
ns

(ωs)a
†
ni

(ωi)|0〉s |0〉i , (1)

where a
†
n(ω) is the creation operator for a photon of frequency

ω in waveguide number n ∈ [1,2, . . . ,N ] and �nsni
(z,ωs,ωi)

is the biphoton wave function which depends on both the
frequency and position of the signal (subscript s) and idler (i)
photons in the WGA.

We consider filtering the frequency range of the output
biphoton state to a narrow band such that the signal and

idler are nearly degenerate. However, mathematically we
must still treat the photons as distinguishable because true
degeneracy occurs only at an infinitesimal point on the
spectrum. Restricting both the integrals over signal and idler
frequencies to a single, sufficiently narrow frequency range,
the two-photon state is described by a frequency-independent
wave function

�nsni
(z,ωs,ωi) ≈ �nsni

(z). (2)

When pumping the WGA with a laser of frequency ωp =
ωs + ωi , the biphoton wave function obeys the differential
equation [15,18]

i
∂�ns,ni

(z)

∂z
= i

N∑
np=1

Anp
dnp

(z)ei�β(0)zδns ,np
δni ,np

−C
[
�ns,ni+1+�ns,ni−1+�ns+1,ni

+�ns−1,ni

]
.

(3)

Here, the first term on the right is the generation of new
biphotons via SPDC, with classical laser driving amplitude Anp

and second-order nonlinear coefficient dnp
(z) in waveguide

number np, while the phase mismatch is denoted as �β(0).
The last term on the right describes the evanescent coupling of
signal and idler photons between neighboring waveguides with
the coupling rate given by C. Due to the symmetry in Eq. (3),
for the initial vacuum state �ns,ni

(0) = 0, the biphoton wave
function is symmetric, �ns,ni

(z) = �ni,ns
(z), at all z.

It is important to note that the propagation of biphotons in
a nonlinear waveguide array is essentially linear. So, if driving
the waveguide np with unity pump amplitude produces the
quantum output state |ψnp

〉, then driving multiple waveguides

produces the state |�〉 = ∑N
np=1 Anp

|ψnp
〉. Therefore, by

varying the N classical laser inputs Anp
, we can reconfigure the

device in real time to produce any state in an N -dimensional
quantum space. However, the total quantum output space will
have N (N + 1)/2 degrees of freedom, namely, the complex
wave-function amplitudes of pairs of photons occupying any
two of N waveguides. Thus, by varying the N lasers driving
the device, only a subspace of the full set of possible output
wave functions can be produced. So the ability to all-optically
vary the output wave function is limited by the fact that only
N of the N (N + 1)/2 degrees of freedom can be accessed.

We address this problem, showing that the output space
can be flexibly controlled by introducing special domain
poling patterns in the WGA [Fig. 1(b)]. Adjusting the domain
poling pattern allows us to choose the exact form of the N -
dimensional subspace that is spanned by varying the classical
laser inputs to the device. This is achieved by optimizing
the poling in each waveguide to produce a specific “basis
state” |ψnp

〉, when it is pumped individually. Then, pumping
all waveguides simultaneously will allow the creation of any
linear combination of the “basis states.”

III. POLING STRUCTURES

The typical use of domain poling is to achieve quasi-
phase matching (QPM) for χ (2) nonlinear processes [19].
QPM involves periodically inverting the orientation of the
ferroelectric dipole moment in the nonlinear medium; this
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corresponds to altering the sign of the second-order non-
linearity in the medium. The technique has also been used
to shape the wavefront of down-converted photons in bulk
nonlinear crystals [5,6,20,21]. We utilize domain poling within
the waveguide array structure to alter the sign of the nonlinear
coefficient dnp

(z) as a function of waveguide number np and
propagation length z. This effectively inverts the quantum
phase of biphotons generated at different points along the array,
enabling controlled interference between different biphoton
paths.

We begin by discussing the limits on the size of ferro-
electric domains, and how the limits are accounted for
in our design. With established fabrication techniques the
minimum length (or width) of a ferroelectric domain that can
be fabricated is around 5 μm [22], while newer techniques
promise smaller domain sizes [23]. In contrast, the typical
separation distance between waveguide cores for the type of
coupled WGA we consider is greater than 10 μm. Therefore, it
is entirely possible to envisage a device comprised of coupled
waveguides with a different poling pattern in each waveguide.
In order to shape the biphoton wave function, the efficiency
of SPDC is varied along the length of each waveguide by
changing the duty cycle of the poling pattern (the ratio of “up”
to “down” poling) between 0% and 50%. This would generally
result in domains that are too small to fabricate since having
an arbitrarily small duty cycle would require arbitrarily small
domain sizes. In Sec. VII, we show that doubling the period of
the poling pattern allows our method to work using only duty
cycles between 25% and 50%. For lithium niobate, this results
in a minimum required domain size of around 10 μm, which
should be achievable with established fabrication procedures.

As in QPM we alter the nonlinear coefficient to create
poling structure with periodicity that tends to cancel out the
phase mismatch of the SPDC process. However, as mentioned
above, we also modulate the local efficiencies of SPDC by
varying the duty cycle of the periodic poling structure. This
controlled variation of SPDC efficiency allows tailoring of the
output biphoton wave function. Note that varying the duty
cycle is not the only way to achieve this variation: the poling
could be structured in many different ways to achieve the
desired variation of SPDC efficiency. Hence, there is great
flexibility in the design process to accommodate fabrication
limitations. This leads us to formulate the problem more
generally in terms of the “aggregate nonlinearity,” the average
efficiency of the down-conversion process over one (or a small
number of) coherence lengths of SPDC, Lc = 2π/�β(0).

Using the aggregate nonlinearity makes it possible to find
a general solution for the poling pattern required to produce
any arbitrary biphoton wave function. This general solution
amounts to solving Eq. (3) for �nsni

(L) and then inverting
the result to express the poling structure dnp

(z) in terms
of �nsni

(L). The role of the aggregate nonlinearity is to
mediate between the discrete up-down poling structure and
the continuous valued biphoton wave function.

The solution to Eq. (3) is found in terms of the supermodes
of the coupled waveguide array. These are the eigenfunctions
of the interwaveguide coupling operator and are denoted
fks,ki

(z), where ks and ki are the discrete wave vectors of
the signal and idler within the array. Solving Eq. (3) gives the
following solution for the biphoton wave function in terms of

amplitude of each supermode at the end of the array:

fks,ki
(L) = eiβks ki

L

N∑
np=1

Anp
sin

(
πkinp

N + 1

)
sin

(
πksnp

N + 1

)

×
∫ L

0
dnp

(z)ei(�β(0)−βks ki
)zdz. (4)

Here, βkski
= 2C{cos[πki/(N + 1)] + cos[πks/(N + 1)]} is

an extra phase-mismatch term resulting from the transverse
momentum of the various supermodes, and L is the total length
of the array.

In practical implementations of this type of waveguide array
the phase mismatch due to the individual waveguide modes is
much larger than the contribution of the WGA supermodes to
the phase mismatch, i.e., βkski

� �β(0). Therefore, in Eq. (4)
we can separate the integral over the total phase mismatch into
slowly and quickly varying terms βkski

and �β(0), respectively.
Under this approximation, the integral over z in Eq. (4)
becomes

∑
j e−iβks ki

zj
∫ (j+1)�
j�

dτ dnp
(τ )ei�β(0)τ , where � is a

length scale over which the slowly varying term does not
change significantly but the quickly varying term has one or
more complete periods.

We use a QPM poling structure such that dnp
(z) is a

square wave with periodicity � = 2π/�β(0). This results in
the quickly varying term appearing to change linearly over
length scales much longer than one period of the poling
structure [19]. The rate of increase of the quickly varying term
can be described by the concept of aggregate nonlinearity, the
average quantity of biphoton wave function generated from a
QPM poling structure with arbitrary duty cycle. The aggregate
nonlinearity is defined as Dnp

(z) = �−1
∫ �

0 dτ dnp
(τ )ei�β(0)τ ,

where � is the quasi-phase-matching period. Over each duty
cycle the sign of dnp

(z) will change from positive to negative
at the point lnp

(z). So, the aggregate nonlinearity produced by
a given duty cycle is

Dnp
(z) = d0

�
eiφnp (z)�β(0)

×
[∫ lnp (z)

0
ei�β(0)τ dτ −

∫ �

lnp (z)
ei�β(0)τ dτ

]
. (5)

Here, d0 is the absolute value of the nonlinear coefficient
dnp

(z), which is unaffected by domain poling. The arbitrary

phase eiφnp (z)�β(0)
simply results from translation of each

section of the poling structure with respect to the driving laser.
Dividing by the poling period � ensures that the aggregate
nonlinearity represents the amount of biphoton wave function
produced per unit length, rather than the amount produced over
a whole period. Integration of (5) gives

Dnp
(z) = 2d0

π
exp

{
i�β(0)

[
lnp

(z)

2
+ φnp

(z)

]}

× sin

[
�β(0) lnp

(z)

2

]
. (6)

Now, by varying the translation φnp
(z) and the length of

the positive part of the duty cycle lnp
(z), we can produce an

aggregate nonlinearity with any phase and with any magnitude
(less than the optimal quasi-phase-matching magnitude).
Hence, by combining a few sections of different duty cycles
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FIG. 2. (Color online) (a)–(d) Target output biphoton states pro-
duced when each of the four waveguides is pumped individually,
representing Bell states with dual-rail encoding. (e) The values of
the aggregate nonlinear coefficient Dnp

(z) along the length of each
waveguide.

along the length of each waveguide we can set the aggregate
nonlinearity to different values in each section [Fig. 1(b)]. This
allows very flexible control over the creation of biphotons and
therefore over the final output states of our device.

Substituting the aggregate nonlinearity into Eq. (4) gives

fks,ki
(L) ≈ eiβks ki

L

N∑
np=1

Anp
sin

(
πkinp

N + 1

)
sin

(
πksnp

N + 1

)

×
M∑

j=1

Dnp
(zj )

∫ zj+1

zj

e−iβks ki
zdz , (7)

which is valid in the realistic situation where βkski
� �β(0).

This equation can be inverted to solve for the aggregate
nonlinearity Dnp

(zj ), given that such a solution exists (see
Sec. IV for a discussion of the existence of solutions to
the inverse problem). To invert the equation, the aggregate
nonlinearity is treated as a free parameter, allowed to take on a
number of different values down the length of each waveguide.
The number of different values of the aggregate nonlinearity
is chosen to be large enough that a solution exists for the target
output state �ns,ni

(L) when inverting Eq. (7). Generally, this
will require around N (N + 1)/2 different values for Dnp

(zj )
down the length of each waveguide since this is the number of
free parameters in the output space.

To illustrate this general approach, we design a four-
waveguide device with poling to generate the set of two-
photon Bell states as the outputs |ψnp

〉 [Figs. 2(a)–2(d)].
The Bell states in Figs. 2(a)–2(d) encoded with dual-rail

encoding [2,12], where the signal photon occupying waveg-
uide 1(3) represents a logical 0(1) and similarly for the
idler photon in waveguides 2 and 4. Driving the waveguides
simultaneously will produce a superposition of the four Bell
states, with the amplitude and phase of each Bell state
determined by the amplitude and phase of the classical laser
driving the waveguide np.

We consider the device realized in lithium niobate
(LiNbO3) [15], with a waveguide length of L = 5 cm, a
coupling rate between the waveguides C = 161 m−1, and
a poling period of � = 18.5 μm at 230 ◦C for 775 nm
pump wavelength. Using these parameters we solve Eq. (7)
for the four Bell states [Figs. 2(a)–2(d)]; this provides the
required aggregate nonlinearities in the four-waveguide array
[Fig. 2(e)]. From the values of the aggregate nonlinearity we
can reconstruct the full poling structure dnp

(z), using Eq. (6),
the reconstruction is shown in Fig. 3(e). To check our solutions
numerically, we compare the states produced by the full poling
structure to the target Bell states; the errors are shown in
Figs. 3(a)–3(d). The fidelities between the target states and
the realized states are all greater than 0.999; this shows that

FIG. 3. (Color online) (a)–(d) The error between the target states
in Figs. 2(a)–2(d), and the states resulting from using the poling
structures in (e). (e) The poling structures used to approximate the
aggregate nonlinearities in Fig. 2(e); two colors represent the up and
down orientations of the ferroelectric dipole moment. The number of
domains has been reduced to approximately 100 for visualization.
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the approximate use of the aggregate nonlinear coefficient is
valid for realistic parameters.

To conclude this section, we have demonstrated how to
create all-optically-reconfigurable linear combinations of the
set of two-photon Bell states in an array of four coupled
nonlinear waveguides with special poling. Moreover, the
poling technique can be applied to a WGA to enable it to
produce any set of biphoton states. This opens the door for the
design of a variety of reconfigurable entangled photon sources,
with output quantum spaces tailored to specific technological
applications. We also note that the nearest-neighbor coupling
interactions and nonlinear effects we consider here are
common to many physical systems. For instance, similar all-
optically-reconfigurable control of entangled photons could be
achieved via spontaneous four-wave mixing in χ (3) media.

IV. EFFECT OF DEGENERACIES ON AVAILABLE
OUTPUT SPACE

We have shown that a nonlinear four-waveguide waveguide
array can be used to generate any linear combination of
the set of Bell states. In fact, domain poling patterns in
waveguide arrays provide nearly limitless freedom to produce
different quantum states. This, combined with WGA’s dynamic
all-optical reconfigurability, provides a very flexible source of
quantum states of light.

To design a waveguide array capable of being optically
reconfigured over a given output space, the array must be
able to produce the set of “basis” output states |ψnp

〉, that
define the full output space. If these states can be produced
from the device by only varying the pumping lasers, then
the device can be reconfigured over the full subspace to
any state |�〉 = ∑

np
Anp

|ψnp
〉. As we will show in this

section, degeneracies in WGA’s transverse modes mean that
not every subspace defined by a set of arbitrary |ψnp

〉 can be
spanned. In Sec. V, we show that this limitation is removed
if the degeneracies are broken by introducing refractive index
differences between waveguides.

To investigate the effect of degeneracies on the output
space of a WGA, it is convenient to consider using domain
poling structures in the WGA with different poling periods in
different locations. Localized adjustment of the poling period
allows phase matching with particular transverse modes of the
array. This lets us to isolate and drive each transverse mode
in different sections of the array, thus allowing any linear
combination of these modes to be produced at the output of
the array. Hence, any quantum state can be produced at the end
of the array given that all the transverse modes can be driven
individually. To demonstrate this we again consider Eq. (2)
from Sec. II, showing the output from the array in terms of
transverse modes fks,ki

:

fks,ki
(L) = eiβks ki

L

N∑
np=1

Anp
sin

(
πkinp

N + 1

)
sin

(
πksnp

N + 1

)

×
∫ L

0
dnp

(z)ei(�β(0)−βks ki
)zdz. (8)

Here, we see that poling the nonlinear coefficient, dnp
(z)

with a frequency of �β(0) − βk′
s k

′
i

will selectively drive trans-

k
i

ks

0

FIG. 4. (Color online) Two-photon eigenvalues (βkiks
) of the

transverse modes for a four-waveguide array. The dashed line
shows the symmetry axis ki = ks . The diagonal rectangle marks the
degenerate eigenvalues along the line ks = N + 1 − ki .

verse modes that have propagation constants βk′
s ,k

′
i
. Hence,

transverse modes with unique propagation constants can be
phase matched and driven individually, without affecting other
modes. In order to determine which modes have unique
propagation constants, we must look at the spectrum of the
modes’ eigenvalues as a function of ki and ks . This spectrum
is given by

βkiks
= 2C

[
cos

(
πki

N + 1

)
+ cos

(
πks

N + 1

)]
, (9)

and a plot of the modes’ propagation constants for N = 4
is shown in Fig. 4. First it is important to note that the
equation is transcendental, so there will be some randomly
occurring degeneracies, especially for large N . There will also
be some degeneracies that can be predicted analytically. Here,
we will consider only the degeneracies that can be predicted
analytically since in WGA’s with only a few waveguides these
are by far the most common type of degeneracy.

The most obvious of these predictable degeneracies occurs
because the signal and idler are almost degenerate, so naturally
βkiks

= βkski
, and the eigenvalues are symmetric across the

main diagonal. This degeneracy is not an obstacle to showing
that the device can generate any quantum state because it
arises from the particles themselves rather than from the
WGA. However, there will also be degenerate eigenvalues
when ks = N + 1 − ki since in this case βki ,(N+1−ki ) = 0 for
all ki . This degeneracy corresponds to the set of modes where
the entangled signal and idler photons have equal and opposite
propagation constants, so the net propagation constant of
the state is zero. This presents a problem because now the
degenerate eigenvalues correspond to distinguishable states,
but we cannot drive these states independently with domain
poling.

As a result of the degeneracy of the fki ,(N+1−ki ) modes, just
choosing the domain poling period cannot drive the modes
individually. This limitation can be overcome by adjusting the
pump intensity in each waveguide. The degenerate transverse
modes fki ,(N+1−ki ) have distinct spatial profiles for each ki .
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Hence, shaping the spatial profile of the laser driving of the
device can drive one of the transverse modes without exciting
the others. Coupling the pump laser into different waveguides
will change the rate each of the modes fkiks

is driven at. We
will call the rate each mode is driven at Pkiks

, the pump profile.
From Eq. (8) we can see the pump profile is given by

Pkiks
=

N∑
np=1

Anp
sin

(
πkinp

N + 1

)
sin

(
πksnp

N + 1

)
, (10)

where np denotes the waveguide numbers the pumping lasers
are coupled to. Now, to control the driving rate of modes with
degenerate eigenvalues we should look at Pki (N+1−ki ):

Pki (N+1−ki )

=
N∑

np=1

Anp
sin

(
πkinp

N + 1

)
sin

[
π (N + 1 − ki)np

N + 1

]
. (11)

This is the rate that each of the degenerate modes fki ,(N+1−ki )

is driven at when pumping each waveguide with an arbitrary
intensity and phase pump laser Anp

. It is equivalent to

Pki (N+1−ki ) = −1

2

N∑
np=1

Anp
(−1)np

[
1 − cos

(
2πkinp

N + 1

)]
.

(12)
Now, if we drive each waveguide with laser field given

by Anp
= cos [2πkpnp/(N + 1)](−1)np , then Pki (N+1−ki ) =

δkikp
+ δ(N+1−ki )kp

. Here, kp denotes the mode number of
the pump. This pump profile allows the mode fk′

i (N+1−k′
i ) to

be addressed individually, without exciting the other modes
sharing its degenerate propagation constant. By using a linear
combination of these pump profiles, i.e.,

Anp
=

∑
ki

cki
cos

(
2πkpnp

N + 1

)
(−1)np , (13)

any linear combination of the degenerate modes can be driven.
Therefore, the degeneracy in the modes’ propagation constants
can be overcome by carefully shaping the pumping Anp

to
exploit the spatial differences between degenerate modes.

Importantly pumping with the profiles Anp
=

sin[2πkpnp/(N + 1)](−1)np never excites the degenerate
fki (N+1−ki ) modes. So, this gives N/2 degrees of freedom
for exciting other modes while simultaneously using the
cos[2πkpnp/(N + 1)](−1)np pumping profile to excite the
N/2 degenerate fki (N+1−ki ) modes. This could be useful
for allowing reconfigurability, despite degeneracies, by
appropriate shaping of the poling structures in the array.

To summarize, we have shown in this section that waveg-
uide arrays can be designed to span large quantum output
spaces via all-optical reconfigurability, even in the presence of
degeneracies. Through careful choice of which waveguide is
driven to produce which basis state |ψnp

〉, the desired output
space can often be spanned. For example, in the preceding
section we show that the set of four Bell states can be spanned
with pump excitation of individual waveguides.

− 2C

− C

0

C

2C

β (b)(a)

Waveguide number
1 2 3 4 5

Waveguide number
1 2 3 4 5

FIG. 5. (Color online) Single-photon mode profiles and their
corresponding propagation constants for arrays of five waveguides
with (a) the same refractive index in all waveguides, (b) with one of
the edge waveguides having a higher refractive index.

V. REMOVING DEGENERACIES FOR MAXIMUM
RECONFIGURABILITY

We now consider how degeneracies could be removed
from a nonlinear waveguide array to allow it to span any
N -dimensional biphoton output space. Although (as shown
in Sec. II) arrays with small numbers of waveguides can
span interesting output spaces such as the Bell states, in
principle not every output space can be spanned due to
degeneracies. This becomes more important for large numbers
of waveguides because the increasing numbers of modes
increase the probability that the transcendental equation for
the eigenmodes [Eq. (9)] will produce more degeneracies.

Degeneracies occur when the difference between two
single-photon modes’ eigenvalues are the same. This can be
shown by assuming a pair of two-photon modes are degenerate,

βks1 ,ki1
= βks2 ,ki2

⇒ βks1
+ βki1

= βks2
+ βki2

, (14)

then inverting to find a condition relating to the difference
between eigenvalues of single-photon modes

βks1
− βks2

= βki2
− βki1

. (15)

So, to remove degeneracies we require that all the differences
between eigenvalues of single-photon modes βks1

− βss2
are

not equal. This could be achieved by tuning the refractive
index in each waveguide to ensure Eq. (15) is violated for all
single-photon modes.

In Fig. 5, we give an example of this degeneracy breaking
for an array of five waveguides. The removal of degeneracies
can be seen by noting the nonuniform spacing of single-
photon modes propagation constants in Fig. 5(b), meaning
the condition for degeneracy [Eq. (15)] will not be fulfilled.
This shows that a small adjustment in refractive index can
remove degenerate propagation constants as well as removing
zero points from transverse modes.
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Allowing for different refractive indices in all waveguides
the propagation of biphotons is governed by the following
equation:

i
∂�ns,ni

(z)

∂z
= i

N∑
np=1

Anp
dnp

(z)ei�β(0)zδns ,np
δni ,np

−C
[
�ns,ni+1+�ns,ni−1+�ns+1,ni

+�ns−1,ni

]
+ (

δβns
+ δβni

)
�ns,ni

, (16)

where δβns
+ δβni

is the sum of the propagation constants due
to refractive index modulation in the waveguides occupied
the by signal and idler photons. We now introduce a new set
of transverse single-photon modes u(k)

n to account for the new
propagation constants in the array. These are eigenmodes of the
combined single-photon coupling and propagation operators
from Eq. (16), so for the kth mode

βku
(k)
n = −C

[
u

(k)
n+1 + u

(k)
n−1

] + δβnu
(k)
n . (17)

The two-photon wave function produced by down conver-
sion can be expressed in terms of pairs of single-photon modes
such that �ns,ni

= ∑
ks ,ki

fks ,ki
u(ks )

ns
⊗ u(ki )

ni
. Writing Eq. (16) in

terms of fks,ki
gives

i
∂fks ,ki

(z)

∂z
= iDks,ki

+ βks,ki
fks ,ki

(z). (18)

Here, βks,ki
= (βks

+ βki
) and Dks,ki

is the spatial over-
lap between the pumping and the real-space pro-
file of the two-photon mode Dks,ki

= ∑N
npnsni

Anp
u(ks )

ns
⊗

u(ki )
ni

δni ,np
δns ,np

dnp
(z)ei�β(0)z. The solution to Eq. (18) is

fks,ki
(L) = eiβks ,ki

L

N∑
np

Anp
u(ks )

np

⊗ u(ki )
np

∫ L

0
dnp

(z)ei(�β(0)−βks ,ki
)z. (19)

This is analogous to Eq. (8), but now with a new set of modes
and eigenvalues. From this equation, the two conditions to
exclusively drive any two-photon mode in any waveguide are
evident:

(1) The mode must have a unique eigenvalue βks,ki
, so that

mode can be selectively driven by poling at the resonant spatial
frequency �β(0) − βks,ki

.
(2) It must be possible to drive the mode by pumping any

waveguide, so the overlap of the mode Dks,ki
must be nonzero,

when each waveguide is driven individually.
The first condition ensures that each mode can be driven

exclusively, while the second condition ensures that this
exclusive driving can occur in any waveguide. In Fig. 5
it is shown that both criteria are satisfied for an array of
five waveguides, but only after one waveguide is given a
different refractive index to the others, so that δβn = 1 for
one waveguide in Eq. (16). These two criteria make it possible
to design a WGA to span any desired N -dimensional output
space.

This would be achieved by poling each waveguide with
N (N + 1)/2 different segments of poling. Each segment being
poled with a period 2π/(�β(0) + βks,ki

) to phase match a

particular mode. If the length of each segment is set so
that L 
 1/min(|βks,ki

− βks,ki
|), then only the mode that is

phase matched will be produced in a particular segment.
Then, by varying the relative length of each segment, any
linear combination of modes can be produced at the end of
the array. This process could be used in every waveguide,
engineering each to produce a different state ψnp

. Then, driving
the waveguides simultaneously can span the entire space
defined by the ψnp

. Since the ψnp
can now, in the absence

of degeneracies, be set to any state this means that the array
can now be engineered to be all-optically reconfigured over
any N -dimensional subspace.

So, in conclusion, waveguide arrays can be engineered to
span any N -dimensional quantum output space. However, this
will generally require some optimization of the refractive index
in each waveguide in order to remove degeneracies.

VI. INFERRING THE BIPHOTON WAVE FUNCTION
FROM CLASSICAL MEASUREMENTS

Fabrication of complex domain poling patterns in waveg-
uide array devices will no doubt involve some systematic and
random errors. Typically large numbers of devices with varied
parameters will be fabricated on a single chip, and then the
quantum properties of each device will be characterized. The
task of characterizing each device is very time consuming
due to the difficulty of the quantum correlation measurements
and the shear number of devices to be characterized. In
order to efficiently test which devices operate correctly and
which have unacceptably large fabrication errors, one can
use the “stimulated emission tomography” [24] approach
based on classical difference frequency generation (DFG) as
an alternative to measurements of the quantum correlations
caused by SPDC. This would provide a quick and efficient way
of separating defective devices from correctly operating ones.
Then, further more detailed characterization can be performed
on devices that pass the initial classical DFG testing.

Here, we show how to use classical difference frequency
generation in a waveguide array to determine the quantum
wave function that would be produced by SPDC. Sponta-
neous parametric down conversion is the quantum analog
of difference frequency generation. The key difference being
that DFG is stimulated by a specific photon state (the seed
laser) where as SPDC is stimulated via quantum vacuum
fluctuations. Remarkably, it is possible to reconstruct the
biphoton wave function that would be produced by SPDC by
carefully choosing the seed field of DFG, as is demonstrated
in Ref. [24]. We show how to apply this technique to arrays of
coupled waveguides, allowing characterization of the SPDC
wave function using classical DFG measurements.

First, we derive the equation for DFG in an array of coupled
waveguides. Then, we show how seeding the array with a
specific seed field profile allows reconstruction of an idler
field proportional to the SPDC wave function. Finally, we
demonstrate that a complex seed profile is not actually needed
to simulate SPDC. We can instead simply seed one waveguide
at a time, then add a linear combination of the output idler fields
together to achieve the same output that would be produced
by the seed with complex spatial profile. This is due to the
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linearity of idler field with respect to the seed field in the case
of negligible pump depletion.

A. Difference frequency generation in a waveguide array

The equation for the idler field produced by DFG in an
array of coupled waveguides is

i
∂Eni

∂z
= −C

[
Eni+1 + Eni−1

]
+ iE(s)

ns

∗
Anp

dnp
(z)ei�β(0)zδni ,np

δns ,np
, (20)

where we assume the fields of the pump (Anp
), and seed (E(s)

ns
)

lasers are undepleted, and also that only one waveguide (np)
is driven by the pump laser. We can solve this equation in
the same way as for the SPDC case. Using reciprocal space
defined by

Eni
=

N∑
ki=1

sin

(
πkini

N + 1

)
fki

, (21)

we get

fki
(L) = e(iβki

L)
∫ L

0
dz e[i(�β(0)−βki

)z]

× sin

(
πkinp

N + 1

)
E(s)

np

∗
Anp

dnp
(z). (22)

Here, we have introduced βki
= 2C cos[πki/(N + 1)], the

contribution of the idler photons transverse modes to the
phase-matching conditions.

The seed field will also couple into neighboring waveguides
in the array, so the transverse profile of E(s)

ns
will evolve

according to

i
∂E(s)

ns

∂z
= −C

[
E

(s)
ns+1 + E

(s)
ns−1

]
. (23)

This is easily solved using the same method as was used to
solve Eq. (20) giving

fks
(z) = fks

(0) exp

[
2iC cos

(
πks

N + 1

)
z

]
(24)

in reciprocal space, and in position space

E(s)
ns

(z) = 2

N + 1

N∑
ks=1

sin

(
πksns

N + 1

)
fks

(0)

× exp

[
2iC cos

(
πks

N + 1

)
z

]
. (25)

Now, we can substitute this profile for the seed field E(s)
ns

(z)
into the expression for the idler field (22). This gives

f
(DFG)
ki

(L) = 2

N + 1
eiβki

L

N∑
ks=1

∫ L

0
dz ei(�β(0)−βki

−βks )z

×sin

(
πkinp

N+1

)
sin

(
πksnp

N+1

)
f

(s)
ks

(0)∗Anp
dnp

(z),

(26)

with βki
= 2C cos[πki/(N + 1)] and βks

= 2C cos[πks/

(N + 1)]. Shown in Fig. 6 is an example of the propagation of

FIG. 6. (Color online) Idler field intensity (|Enins′ |2) evolution
along the waveguides in the process of difference frequency gen-
eration. The larger arrow shows the pumped waveguide np , while the
smaller arrow shows the seeded waveguide n′

s .

the idler field during DFG in the nonlinear WGA [poled with
the patterns from Fig. 3(e)]. Here, the seed field is coupled into
each waveguide in turn while the pump waveguide remains
coupled to the first waveguide. Then, the output idler fields
provide information about the quantum state that would be
produced via SPDC when pumping the first waveguide.

At this point, it is interesting to compare the classical signal
field fki

to the wave function for the SPDC case [Eq. (4)]

f
(SPDC)
ks ,ki

(L) = ei(βki
+βks )L

∫ L

0
dz ei(�β(0)−βki

−βks )z

× sin

(
πkinp

N + 1

)
sin

(
πksnp

N + 1

)
Anp

dnp
(z). (27)

Equations (27) and (26) are very similar, except in the
classical DFG case all the seed modes ks are summed over,
eliminating the correlation between signal and idler. Now, in
Eq. (26) we can set f

(s)
ks

(0) = δks ,ks′ so that the input seed
is in some eigenstate of the coupling operator. This means
that the output DFG state will be proportional to the SPDC
state f

(SPDC)
ks′ ,ki

(L). So, by making N measurements of the DFG
output for ks ′ = 1,2, . . . ,N we can construct the full SPDC
wave function f

(SPDC)
ks ,ki

(L). Also, we give the initial seed mode
a specific phase so that it matches the SPDC equation, hence,
the required seed profile is f

(s)
ks

(0) = f
(s)
0 δks ,ks′ e

(−iβks L), and
this gives

f
(DFG)
ki

(L) = 2e[i(βki
+βks )L]

N + 1

∫ L

0
dz e[i(�β(0)−βki

−βks )z]

× sin

(
πkinp

N + 1

)
sin

(
πksnp

N + 1

)
Anp

f
(s)
0 dnp

(z),

(28)

which is identical to Eq. (27) up to a constant factor 2f
(s)
0 /

(N + 1).
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FIG. 7. (Color online) Output idler field: (a) intensity (|Enins′ |2)
and (b) phase of Enins′ . Each row corresponds the seed beam being
coupled into a different waveguide ns′ .

B. Reconstruction of � (SPDC) from E(DFG)

We have shown that DFG with the seed pulse in a particular
transverse mode will be proportional to one row of the SPDC
wave function (a phase factor is also required). So, by taking
multiple measurements of DFG output, with the seed in a
different mode each time, it is possible to reconstruct the
complete quantum mechanical wave function produced by
SPDC. However, in practice it would be difficult to couple
a seed laser into a waveguide array in a specific transverse
mode.

Typically, the easiest quantity to measure would be the
output idler field produced when seeding only one waveguide
and pumping only one waveguide. We will denote the meas-
ured idler output field Enins′ , where ni is the waveguide
number the idler field is measured at and n′

s is the waveguide
that the input seed field was coupled into. Taking multiple
measurements of Enins′ , but with the seed laser coupled into
a different waveguide each time (while the pump remains
in waveguide np) will produce an N × N matrix (Fig. 7).
As we will show, this matrix provides enough information
to determine the quantum state that would be produced via
SPDC when pumping the waveguide np. We will assume that
this N × N matrix is the quantity that is actually measured,

and we will show how to reconstruct the SPDC wave function
from the measured values.

We denote the k-space form of Enins′ as f
(meas.)
ki ,ns′

(L), where ki

is the transverse mode of the output idler field, and ns ′ remains
as the waveguide number that the seed laser is coupled to.
The expression for f

(meas.)
ki ,ns′

(L) can be found from Eq. (26) by
setting the initial seed profile to E(s)

ns
(0) = δns ,ns′ so that only

waveguide ns ′ is seeded. This gives

f
(meas)
ki ,ns′

(L) = 2

N + 1
e(iβki

L)

×
N∑

ks=1

sin

(
πkinp

N + 1

)
sin

(
πksnp

N + 1

)
sin

(
πksns ′

N + 1

)

×
∫ L

0
dz e[i(�β(0)−βki

−βks )z]Anp
dnp

(z). (29)

Note that setting E(s)
ns

(0) = δns ,ns′ implies that the seed
magnitude and phase remain the same when changing the seed
laser to different waveguides ns ′ to measure different elements
of f

(meas)
ki ,ns′

(L). In general, it is not necessary to keep the intensity
and phase the same, but any variations must be known to
reconstruct the SPDC wave function. Here, we assume for
simplicity that the phase and intensity of the seed remains
constant regardless of which waveguide is seeded.

Now, once the idler output has been measured with the seed
in each of the N waveguides, the SPDC wave function can
be mathematically reconstructed from the measured values.
This gives a reconstructed function f

(recon.)
ki ,ks′

(L) which is
proportional to the SPDC wave function in Eq. (27):

f
(recon)
ki ,ks′

(L) = e
(iβk

s′ L)
N∑

ns′ =1

sin

(
πns ′ks ′

N + 1

)
f

(meas)
ki

(L). (30)

Here, we add together a superposition on the measured
outputs, weighted by a sin function, and multiplied by a phase
factor e

(iβk
s′ L). The ks ′ argument determines which column

of the SPDC wave function is reconstructed. To confirm that
f

(recon)
ki ,ks′

(L) is a reconstruction of the SPDC wave function, we

substitute in the full equation for f
(meas)
ki ,ns′

(L), then simplify

f
(recon)
ki ,ks′

(L) = e
(iβk

s′ L)
N∑

ns′ =1

sin

(
πns ′ks ′

N + 1

)
2

N + 1
e(iβki

L)

×
N∑

ks=1

sin

(
πkinp

N + 1

)
sin

(
πksnp

N + 1

)
sin

(
πksns ′

N + 1

)

×
∫ L

0
dz e[i(�β(0)−βki

−βks )z]Anp
dnp

(z) (31)

summing over the seeded waveguide number ns ′ :

f
(recon)
ki ,ks′

(L) = e
(iβk

s′ L) 2

N + 1
e(iβki

L)

×
N∑

ks′=1

sin

(
πkinp

N + 1

)
sin

(
πks ′np

N + 1

)

×
∫ L

0
dz e

[i(�β(0)−βki
−βk

s′ )z]
Anp

dnp
(z). (32)

033819-9



TITCHENER, SOLNTSEV, AND SUKHORUKOV PHYSICAL REVIEW A 92, 033819 (2015)

FIG. 8. (Color online) Reconstructed (a) intensity and (b) phase
of the wave function �nins

, using the transformation in Eq. (34) on
the DFG output given in Fig. 7.

This is proportional to the expression for the down-converted
wave function in Eq. (27). The same transformation can be
applied to the real-space version of the DFG output

E
(recon)
niks′

= e
(iβk

s′ L)
N∑

ns′ =1

sin

(
πns ′ks ′

N + 1

)
E(meas)

nins′ . (33)

Then, the real-space SPDC wave function can be recovered
by transforming back from ks ′ space to ns space

E(recon)
nins′ =

N∑
ks′ =1

sin

(
πnsks ′

N + 1

)
e

(iβk
s′ L)

N∑
ns′ =1

sin

(
πns ′ks ′

N + 1

)
E(DFG)

nins′

∝ �(SPDC)
nins′ . (34)

This transformation is implemented in Fig. 8 to recover the
quantum state produced by pumping the first waveguide of
the proposed device. It would be straightforward to generalize
this procedure to the case of inhomogeneous refractive indices
considered in Sec. IV, so fast classical characterization could
also be applied to arrays with varied refractive indices.

C. Characterization procedure

We have shown that a complete set of intensity and phase
measurements of the DFG output of a device can be used to
fully reconstruct the SPDC wave function. This will allow
for quicker characterization of large numbers of devices.
However, this procedure will require measurements of phase
difference between light in adjacent waveguides which will
be much more difficult than intensity measurements. Hence,
a good first step for characterization would be to measure the
intensity in each waveguide produced by DFG and compare
this with the intensity predicted by Eq. (29) using the target
fabrication parameters. Then, if the intensity measurements
are in reasonable agreement with the target values, phase
measurements could be taken to reconstruct the complete
SPDC wave function. If the reconstructed wave function
matches that target SPDC wave function, then finally quantum
correlation measurements of down-converted photons can be
used to confirm the quantum properties of the device.

This three-tiered characterization procedure will allow the
majority of defective devices to be quickly identified and
discarded using classical measurement techniques. Hence, the
photonic chips passing such classical quality control will be
suitable for operation in the quantum regime.

VII. FABRICATION TOLERANCES

The fabrication of a nonlinear waveguide array can be
thought of as involving two steps. First, the coupled modes of
the waveguide array must be created by engineering the linear
properties of the device. Then, the nonlinear poling pattern is
imprinted on the array, allowing the waveguide modes to be
driven via SPDC. Both these steps will introduce some error
into the device, so the output states will deviate from the target
Bell states somewhat. In this section, we analyze the effect of
these errors and propose ways to compensate for the errors. We
find that errors in the structural properties of the array could
be mitigated by altering the poling pattern in the array and we
also show how to make the poling pattern itself more robust to
fabrication errors.

First, we consider errors in the fabrication of the coupled
waveguides that make up the waveguide array. These errors
will typically be structural errors, such as errors in the inter-
waveguide coupling rates, errors in the propagation constants
of waveguides, or linear photon losses. These errors will all
perturb the form of the supermodes of the waveguide array,
resulting in errors in the output wave function. For example,
we plot the fidelity of the output states in the presence of errors
in the interwaveguide coupling rates in Fig. 9. This shows the
fidelity decreases when the coupling rate is varied by only
about 5%. Therefore, it could be challenging to fabricate a
waveguide array with appropriate coupling rates to realize
high-fidelity quantum states from this device.

Depending on the exact fabrication procedure used to create
the device, the errors mentioned above could be mitigated by
using the nonlinear poling pattern of the array to compensate.
This would require the waveguides to be fabricated before
the poling structure is applied to the nonlinear material, as
in Ref. [25]. This way, errors in the waveguide array can be
characterized before the poling pattern is created. Structural
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FIG. 9. (Color online) Plot of the fidelity between a target Bell
state and the realized state in the presence of Gaussian errors in the
coupling rates between waveguides (standard deviation σC) and in the
location of the domain boundaries of the poling structure (standard
deviation σd ). (a) A domain poling structure with period equal to
the coherence length, (b) poling period equal to twice the coherence
length.

errors would perturb the supermodes of the WGA, thus
the poling pattern must be adjusted to drive this new set
of eigenmodes to the target output state. The mathematical
method used to design the device can be adjusted to use the
new set of modes rather than the typical modes considered
earlier in Eq. (7). We denote the new eigenmodes by ν(k) and
the corresponding changes in propagation constant by δβks

.
Adjusting Eq. (7) to account for the new modes gives

fks,ki
(L) = eiβks ki

L

N∑
np=1

Anp
ν(ks )

np
ν(ki )

np

×
M∑

j=1

Dnp
(zj )

∫ zj+1

zj

e−i(βks ki
+δβks +δβki

)zdz . (35)

Now, this equation can be inverted to solve for the
aggregate nonlinearities Dnp

(zj ), thus giving the poling pattern
required to produce the target wave function fks,ki

(L) in the
presence of structural errors. This applies even for errors
to the propagation constants with an imaginary component,

corresponding to linear losses [26]. Therefore, linear errors
that can be predicted or determined by measurement could be
eliminated by incorporating their effect on the system into the
design of poling pattern.

Another important source of error will come from the poling
structure itself, so we also consider the effect of errors in the
poling pattern on the fidelity of the output wave function.
We assume that errors in the poling pattern take the form
of random shifts in the position of each domain wall. To
model this, we add Gaussian noise to the poling structure,
perturbing each domain wall by a random amount, with
standard deviation denoted σd (μm). The relationship between
the standard deviation of the poling pattern σd and the resulting
fidelity of the output state are shown in Fig. 9(a). We see
that high-fidelity operation can be achieved, despite Gaussian
errors in the domain pattern of around 500 nm.

Now, we consider how to make the poling pattern more
robust to errors in the position of domain walls. First, it
is important to realize that there are many different poling
patterns that will produce the same output wave function. The
important quantity is the aggregate nonlinearity of the poling
pattern; this was defined earlier in Eq. (5) as

Dnp
(z) = 1

�

∫ �

0
ei�β(0)τ dnp

(τ )dτ, (36)

and represents the average amount of “down-converted wave
function” produced over one coherence length � = 2π/�β(0).
This can be generalized to allow longer poling periods by
integrating over an integer number of coherence lengths. The
aggregate nonlinearity for a poling pattern with period Q�

and arbitrary duty cycle is

Dnp
(z) = 2

πQ
exp

(
iπQl

�

)
sin

(
πQl

�

)
. (37)

By increasing the poling period to an integer multiple of
the phase-matching period, there will be an increase in sizes of
ferroelectric domains required in the poling structure, therefore
the structure will be easier to fabricate, and furthermore errors
in the domain boundary positions will have less detrimental
effects. The cost of this increased ease of fabrication will be a
decrease in the efficiency of the SPDC process. A plot of the
fidelity of the device using a poling pattern with period equal to
twice the coherence length is shown in Fig. 9(b). This shows
that the device can produce a target state with high fidelity
despite the position of every domain boundary in the poling
structure having a standard deviation of over 1 μm.

Finally, increasing the poling period solves another prob-
lem: it prevents the need for arbitrarily small domain sizes.
This can be seen in Eq. (37), when the poling period is twice
the coherence length (so Q = 2) the aggregate nonlinearity
will vary from 0 to its maximum value as the duty cycle is
varied from 50% (l/� = 0.5) to 25% (l/� = 0.25). Thus, the
whole range of aggregate nonlinearities can be realized with
a minimum domain size of 0.25�. For a typical coherence
length of 18.4 μm, with poling period at the second harmonic
(� = 32.8 μm), this would give a minimum domain size of
9.2 μm. This domain size is well within the current limits of
domain poling techniques.
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To summarize, there are a number of methods that can
be used to make the device more robust to errors. Linear
errors can be characterized, and then mitigated by appropriate
design of the poling structure. Furthermore, the accuracy of
the poling structure can be increased by using longer poling
periods that are integer multiples of the phase-matching length,
effectively gaining accuracy at the expense of the efficiency of
the down-conversion process. Finally, using a poling structure
with poling period equal to twice the phase-matching period
will only require a minimum domain size of approximately
9 μm. This is well within the limits of current technologies,
therefore, the design will be possible to realize with current
fabrication techniques.

VIII. CONCLUSIONS

In conclusion, we have shown how to create all-optically-
reconfigurable linear combinations of the set of two-photon
Bell states in an integrated device. The device consists of four
χ (2) nonlinear coupled waveguides with special poling patterns

in each waveguide. Since linear combinations of the Bell states
span the set of all two-qubit states, the device can produce and
switch between all two-qubit states simply by varying classical
driving lasers. Moreover, the χ (2) poling technique developed
here can be applied to enable the production of any set of
biphoton states, not just the four Bell states demonstrated in
this work. This opens the door for the design of a variety
of all-optically-reconfigurable entangled photon sources, with
output quantum spaces tailored to specific technological
applications. We have also shown that the device is robust
to a number of sources of error, and could be fabricated with
existing techniques. Finally, we demonstrate a procedure to
quickly characterize the performance of such a device using
only classical optics.
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