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We introduce the concept of supersymmetric laser arrays that consist of a main optical lattice and its
superpartner structure, and we investigate the onset of their lasing oscillations. Due to the coupling of the two
constituent lattices, their degenerate optical modes form doublets, while the extra mode associated with unbroken
supersymmetry forms a singlet state. Singlet lasing can be achieved for a wide range of design parameters,
either by introducing stronger loss in the partner lattice or by pumping only the main array. Our findings suggest
the possibility of building single-mode, high-power laser arrays and are also important for understanding light
transport dynamics in multimode parity-time symmetric photonic structures.
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I. INTRODUCTION

Supersymmetry (SUSY) was proposed as a unifying theme
that treats bosonic and fermionic particles on equal footing
[1]. Later, this notion was applied to quantum mechanics,
scattering processes, and nonlinear dynamics [2]. By noting
that SUSY transformations are not pertinent to quantum
field theory, similar concepts were also applied to quantum
cascaded lasers [3]. Recently, it was recognized that SUSY
can be employed to achieve unprecedented control over
light transport in optical guiding geometries [4] where mode
conversion in passive SUSY optical waveguide arrays has been
experimentally demonstrated [5].

Another field that has received much attention recently
is pump-induced mode selection in integrated laser systems
[6-11]. In these works, it was shown that laser emission
of certain modes can be enhanced or suppressed by using
localized pumping profiles. The operation of these devices
relies on the whereabouts of the so-called exceptional points
(EPs). These points are non-Hermitian degeneracies that
occur when two or more eigenvalues and their corresponding
eigenvectors coalesce [12]. Mathematically, they represent
algebraic branch-cut singularities at which the eigenvector
space ceases to be complete [12,13]. Recently, it was shown
that lasing near EPs can lead to laser self-termination in
coupled photonic molecules [14,15]. Interestingly, it was
found that this effect can be fully understood by using linear
coupled-mode formalism [16]. The work in Ref. [16] also
provides a means for understanding and controlling the lasing
properties of parity-time reversal (PT) symmetric photonic
molecule lasers made of multiple photonic cavities. More
recently, the concept of PT symmetry was also invoked to build
single longitudinal mode microring laser systems [17,18].
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In this context, it is interesting to note that the problem of
laser oscillations in coupled photonic structures dates back to
a few decades ago. In fact, waveguide laser arrays have been a
subject of intense investigations for the purpose of building
high-power phase-locked lasers [19-22]. However, it was
shown that their operation is dominated by multimode chaotic
emission [20]. In general, the longitudinal modes associated
with each cavity can be eliminated by using distributed Bragg
gratings (DBG) [23] or periodic PT symmetric structures
[18]. On the other hand, eliminating the transverse collective
modes of the array is a daunting job. While several methods
have been proposed to overcome this obstacle and regulate
the functionalities of these devices [24-26], controlling their
emission characteristics by using practical schemes remains
an open problem.

In this work we propose a scheme for filtering the undesired
transverse supermodes of laser arrays by using the concept of
SUSY and we analyze their optical properties at the lasing
threshold. Our analysis is based on a steady-state semiclassical
laser theory that can account for lasing frequency, threshold,
output power, as well as other properties [16,27,28]. Fully
quantum treatments [29] that are necessary for investigating
features such as the laser linewidth will be carried out else-
where. Finally, we also investigate the robustness of the pro-
posed structure against lattice disorder and nonlinear effects.

II. SINGLE-MODE LASING IN SUPERSYMMETRIC
LASER ARRAYS

Laser arrays are devices that consist of several interacting
laser cavities [19-22]. In integrated optics platforms, these
cavities are usually made of waveguides, ring resonators, or
photonic crystal cavities. In typical laser arrays, all the cavities
are pumped equally with an external power source which
results in multimode oscillations. Later, selective current
injection was proposed as a means to favor the emission of
only one mode [24]. Here we propose a different and more
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FIG. 1. (Color online) A schematic of possible physical realiza-
tions of supersymmetric laser arrays using (a) a waveguides platform
and (b) optical resonator configurations.

straightforward approach to achieve single transverse mode
operation, i.e., by engineering the non-Hermiticity of the laser
arrays to achieve mode selection through supersymmetry.

Figures 1(a) and 1(b) depict two different realizations of
the proposed structure in both optical waveguide and cavity
platforms. In contrast to previous studies in laser arrays,
our proposed device consists of an optical lattice A; and a
spectrally engineered auxiliary array A, that serves as a non-
Hermitian loss element to suppress the unwanted transverse
modes. In order to explain the principle of operation, we
assume that the main array A; is made of N coupled identical
cavities, each having the same linear mode. The coupling lifts
the N-fold degeneracy and results in N linear supermodes
of different frequencies. These modes can contribute to the
lasing process [22], and this multimode character is the
main reason for the chaotic emission in laser arrays [20].
In order to achieve stable steady-state lasing, all but one
of these N linear modes must be eliminated (we will refer
to them as E modes) to allow only one remaining mode
(L mode) to participate in the lasing action. Thus, in order
for the auxiliary array A, to achieve this required task, it
should provide three functionalities: (1) it should increase the
thresholds of the undesired £ modes of A;; (2) it should
exhibit minimum influence on the desired L mode, and (3)
it should not introduce other linear modes of lower threshold.
While different optimization techniques might be invoked to
achieve these goals, discrete supersymmetry (DSUSY) [4]
provides a straightforward solution without the complications
and constraints of numerical optimization.

More specifically, by applying the DSUSY prescription as
described in Appendix A, we design the auxiliary array A, such
that it has N-1 linear modes that have the same frequencies as
the E modes of the main array A; [see Fig. 2(a)] but with
stronger loss. By coupling these two arrays, for example,
through their innermost cavities as shown in Fig. 1, the £
modes of A; and their counterparts of A, form N-1 doublet
states as shown in Fig. 2(b), and more importantly, these
doublets have a stronger loss than the desired L mode; the
latter does not couple to the auxiliary array and forms a singlet
state. This singlet state lases when the pump power reaches its
threshold, which is below those of the doublet states.

Before we analyze the system described in Fig. 1, we
note that our proposed structure is conceptually different from
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FIG. 2. (Color online) Conceptual demonstration of singlet las-
ing using a supersymmetric array. (a) A schematic of the individual
spectra of an optical array and its superpartner that does not share
the singlet state (with highest frequency). (b) The spectrum of the
combined system. It consists of a set of doublets and one singlet.
When optical loss is added to the superpartner lattice, supermode
coupled-mode theory (SCMT) predicts that the singlet state (dashed
line) will exhibit the lowest lasing threshold.

those that rely on the typical Vernier effect [30]. In the latter,
two cavities of different free spectral ranges are coupled, and
frequency-mismatched resonances of these two cavities are
eliminated by destructive interference. On the other hand, the
suppressed modes in the design presented here are due to
their increased thresholds, caused in turn by an additional loss
introduced in a partner array, and interference does not play
arole. The supersymmetry enables us to apply this additional
loss to any chosen set of modes in the main array, without
affecting the remaining one that becomes the singlet lasing
mode. Hence it allows for unprecedented control over the
single-mode operation regime.

III. LINEAR THRESHOLD ANALYSIS
AND NUMERICAL SIMULATIONS

In order to investigate the lasing properties of the SUSY
array structure proposed in the previous section, we employ the
linear threshold analysis and we consider specific numerical
examples. Conceptually, any laser system is composed of
certain geometries that exhibit loss, gain, and feedback. In the
absence of the gain, the complex eigenvalues of the system
exist in the lower half of the complex plane, and any initial
excitation will decay exponentially with time. As the gain
is increased gradually, the eigenvalues are pulled toward the
real axis. The linear threshold of each mode is defined as the
gain value at which the eigenfrequency of this mode becomes
real, which results in a steady-state laser oscillation. Once the
linear thresholds of all possible lasing modes are considered,
the value of the smallest one gives the actual lasing threshold,
and its difference with the next smallest threshold is a good
measure of how strong the gain can be increased before more
than one lasing mode is excited. In other words, this difference
gives an estimate of the range of gain value for single-mode
operation. This treatment is a good approximation and has
been widely used [22] because the laser is a linear system
at the actual (first) threshold, at which the lasing intensity is
zero. Nonlinear interactions will be treated in Sec. VL.
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Achieving single-mode operation thus requires one to either
pull only one mode preferably to the real axis as the gain
increases while leaving other modes intact, or to push the
undesired modes further down in the complex eigenvalue space
by adding additional loss channels, which can be described as
“selective Q-spoiling.” While techniques based on selective
mode pumping follow the first approach, our proposal here
highlights the second strategy by introducing extra optical loss
in the auxiliary array, for example, by depositing metallic films
on top of its constitute cavities, which convert light intensity
into heat. An alternative route for obtaining similar effects is
to use deep Bragg gratings [31] that introduce optical losses by
coupling light efficiently to the continuum radiation without
producing excessive heat.

In order to confirm the validity of our approach, we
consider a concrete example of an optical array made of five
cavities having the same resonant frequency w, and a uniform
intercavity coupling coefficient . The auxiliary SUSY partner
of this structure can be constructed by using DSUSY as
described in Appendix A, and the desired L mode is chosen
to be the fundamental mode with the highest frequency. Next
we assume that intracoupling between the main and auxiliary
array is given by «’/& = 0.2 while the loss coefficient of
the SUSY array is taken to be y, =y +y,, where y =
0.06 ¥, and y, represents the original loss of the individual
cavities, as described in detail in the next section. Figure 3(a)
depicts the normalized complex eigenvalue spectrum of this
composite structure as obtained from the exact discrete system
(blue triangles) when the applied uniform gain value across
both arrays is equal to y,. As expected, only the singlet
eigenmode reaches the lasing threshold (i.e., the real axis
of the complex eigenvalue plane), and the doublet states
are pushed down away from the real axis, indicating their
higher thresholds. This behavior, denoted schematically by the
dashed line in Fig. 2(b), is in direct contrast with the spectral

PHYSICAL REVIEW A 92, 033818 (2015)

our strategy succeeds in achieving single transverse mode
lasing in a straightforward manner that does not require any
special fabrication technology or complex nonuniform current
injection schemes.

We further confirm these conclusions by investigating the
temporal dynamics of proposed geometry under an initial
arbitrary noise distribution as shown in Fig. 3(b). Clearly, as
time evolves, all the higher-order optical eigenmodes suffer
from dissipation and only the optical power obtained by
projecting the initial noise distribution on the fundamental
supermode survives. Note that only the main array A; is
shown in Fig. 3(b) since the signal in the superpartner structure
remains very weak during evolution.

As we have shown, both spectral analysis and temporal dy-
namics for the above example confirm single-mode operation
of laser arrays when a SUSY partner structure is introduced as
an additional loss channel for the undesired £ modes without
affecting the desired L mode. Therefore, our approach can have
a significant impact on both the fundamental science aspect
and industry applications of laser arrays. Below we present
the analytical results of the SUSY arrays and compare them
with the numerical simulations presented above.

IV. ANALYTICAL RESULTS: SUPERMODE COUPLED
EQUATIONS FOR SUSY ARRAYS

In order to gain better understanding of the numerical linear
threshold analysis presented above, we develop a supermode
coupled-mode theory (SCMT) that treats the interaction
between the supermodes of both arrays rather than dealing with
the evanescent coupling between individual cavities. In this
context, we note that the strength of the interaction between
the supermodes is governed rather by their spatial overlap,
which varies from one doublet to another.

We start our anglysis by denoting the eigenvectors of the
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FIG. 3. (Color online) (a) Eigenvalue spectrum of a supersymmetric array when «’/& = 0.2 and y/k = 0.06, where & is the uniform
coupling coefficients between the cavities of the original array, «’ is the coupling constant between the innermost channels of the main lattice
and its superpartner, while y is the uniform optical loss coefficient of the superpartner structure A,. Results obtained using exact diagonalization
of the discrete system and from supermode coupled-mode theory (SCMT) are compared on the same figure. (b) Temporal evolution of an initial
arbitrary optical intensity distribution in this SUSY array. As expected, only the fundamental eigenmode of A; survives as time lapses. Only

the optical cavities of the array A, are depicted.
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m and [ take the values 1<m <N and 1 <I <N -1,
respectively. Here, N is the total number of optical cavities
of the main lattice and the superscript 7 denotes matrix
transpose. If the spectrum of the SUSY array is constructed as
described in Appendix A where the fundamental optical mode
does not have a superpartner mode, the optical tunneling can
be assumed to occur only between ‘7l+1 and (71. By denoting
the coupling coefficients between the innermost cavities as
%iven by «’, we find that the overlap between the supermodes
Viy1 and I}Z is given by k; = vy y &' u;, where the
magnitudes of the eigenvectors have been normalized to unity.
The SCMT between the degenerate eigenstates of both arrays
(the ones that form a doublet) now takes the following form:

dViq
dt

[ —wVig1 — U =0,

1
.dU; . M
17 —woUy+iy U —kVig =0.

Here V;41 and U; are scalar quantities that represent the
rgodal amplitude associated with the two eigenvectors V;,; and
U,, respectively, while wy is their resonant frequency. We note
that each of the (2N — 1) cavities in the array can support more
than one w; in general, but here we focus on the single-mode
case where only one of them is relevant, which can be achieved
using DBG [23] or periodic PT symmetric structures [18]. In
Eq. (1), we have also introduced the y term to account for a
uniform and stronger optical loss in the superpartner lattice
as described in Sec. II. The original homogenous loss of the
individual cavities can be neglected at first in our analysis,
since it can be included simply as an imaginary part of wy,
which causes the same threshold increase of all modes. We
come back to this issue later when discussing the quantitative
difference between the thresholds of the singlet state and the
doublet states.

The eigenvalues associated with Eq. (1) that vary as
exp(—i Q1) are given by QF = [w; £V} —(g)z] — L.
Clearly two distinct regimes can be identified for the eigenval-
ues depending on the ratio between «; and y. When «;/y >
0.5, any two resonances belonging to the same doublet will
have the same resonant lifetime 2/y and their frequency split
is givenby AQ = Q — Q =2,/k? — (%)2. In this regime,
doublet states are formed as symmetric and antisymmetric
superposition of the supermodes of the two individual lattices,
and hence both have similar intensity distributions. On the
other hand, when «;/y < 0.5, the two eigenmodes share the
same resonant frequency while their resonance bandwidth
(Im{ Qli}) becomes different and their intensity distribution
becomes strongly localized in either the main array or its
superpartner structure. This phase transition is known as
spontaneous PT symmetry breaking [32—42]. The onset of this
transition at the point x;/y = 0.5 is marked by an exceptional
point [12,13]. Note that according to the above model, the
singlet eigenmode will always have zero loss. On the other
hand, the loss factor of any of the doublets remains finite and
approaches zero only in the limit when «;/y < 1. This im-
mediately suggests that the singlet supermode exhibits lower
lasing threshold than any other eigenmode in the spectrum.
Figure 3(a) depicts the eigenvalue spectrum of the array
considered in Sec. II by using SCMT, as shown by the red dots.
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Evidently good agreement between the exact diagonalization
and the SCMT is observed in most cases. Note also that
SCMT predicts the nonuniform splitting of the doublets.
However, some small discrepancies between both calculations
do exist, as indicated by the closed dashed curves. We show in
Appendix B that this is an outcome of nonresonant interactions
using the Brillouin-Wigner (BW) perturbation method [43].
These results thus quantify and confirm the possibility of
achieving lasing action only in the singlet state by applying
a uniform optical gain to all the cavities. To calculate the
lowest threshold of the doublet states in comparison with the
singlet, we denote the initial material and radiation loss in every
individual cavity in both lattices by yy. By adding the extra loss
y to the superpartner structure as described in Sec. II, its total
loss becomes y + yp. Evidently, yy increases the thresholds
of all modes in the SUSY array by the same amount. The
singlet state reaches threshold when the applied gain, denoted
by gs, equals yy. The lower threshold for a pair of doublet
states Qli, denoted by g; and calculated using SCMT in the
absence of nonlinear interactions, is given by g; = Yo + % -

\/W in the PT broken phase and g; = yy + % in the PT
symmetric phase. For a given structure (and hence «;), clearly

gi1(y) reaches its maximum value right at the EP when y =
2k; = yEP. Under these favorable conditions for suppressing
the doublet modes from lasing, the maximum ratio of the
lowest doublet threshold and the singlet threshold is given by
14 % From this analysis, it is clear that a strong coupling
k; and a low loss yy in the main array facilitates a significant
single-mode lasing action. As we noted before, using this linear
analysis to predict the lasing threshold is a well-established
technique and has been verified before in literature [16,22].
However, in order to simulate emission dynamics beyond the
lowest lasing threshold, one has to resort to more complicated
nonlinear models. Nevertheless, it is reasonable to expect that
in a SUSY array the saturated gain medium in the main lattice
will further suppress the doublet states from lasing [27].

Finally, we note that the loss parameters y, and y depend on
the individual mode of each cavity that make up the composite
supermodes of the whole array. These parameters can vary
significantly for different individual cavity modes in the same
cavity, including in a wave-chaotic cavity [44]. We have
also neglected the effects arising from the so-classed external
coupling between cavities, which can change the effective loss
of the supermodes in the main array before the SUSY array is
introduced [45].

V. ROBUSTNESS AGAINST ARRAY DISORDER

It is very well known that disorder effects can have a
profound influence on the structure of the eigenmodes and the
energy exchange dynamics in continuous and discrete systems
[46]. Processes such Anderson localization [47] and transition
between ballistic and diffusive propagation have been observed
in discrete waveguide arrays [48]. In this section we investigate
the robustness of our proposed supersymmetric laser array
against these disorder effects. In order to do so, we have
introduced a random disorder on the coupling parameters and
resonant frequencies of all the array elements in steps ranging
from +1% up to £20% in units of ¥. These random values
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FIG. 4. (Color online) The effect of the disorder on the maximum
possible gain value before the second mode starts to lase, when
the disorder is introduced to the coupling coefficients only or the
resonant frequency only, are indicated by the blue dotted (middle)
line and the green dashed line, respectively. The combined effects are
shown by the red solid curve. The figure of merit is defined as the
relative spacing between the gain threshold of the first and second
lasing modes in the disordered case compared to the ideal case, i.e.,

th_,th
W. The system still displays a good range of single-mode
1 752 Jideal
operation at disorder levels of up to 10% of the value of #. The current
fabrication technique allows for building waveguide or cavity arrays

with such accuracy.

were picked from a uniform distribution, and an averaging
of a hundred different realizations was computed for each
step. In Fig. 4, the blue dotted (middle) line depicts the
results when the disorder is introduced only in the coupling
coefficients (off-diagonal elements of the discrete Hamilto-
nian), which correspond to fabrication errors in the distance
between the waveguides. The green dashed curve in the same
figure represents the case when the disorder is introduced
in the diagonal element of the Hamiltonian, corresponding to
the resonant frequencies which result from fabrication errors
in the waveguide length. Finally, the combined effect of both
transverse and longitudinal disorders is shown by the red solid
line. The figure of merit in Fig. 4 is defined as the difference
between the lasing threshold of the first and second lasing

modes in the disordered case relative to the ideal case, i.e.,
(g [Ih —8 éh )diorder

(g1 8" Jigeal

by the figure of merit drops linearly as a function of the
disorder parameter. However, as indicated by our simulations,
a considerable single-mode operation domain can be still
achieved even when the disorder parameter is £/10. Given
the precise fabrication techniques available these days [49],
it is not a difficult task to fabricate these structures with the
necessary accuracy for optimal operation.

. We note that the device performance defined

VI. NONLINEAR EFFECTS

In Sec. III we discuss the linear threshold analysis of the
proposed supersymmetric laser array. As we mentioned earlier,
strong nonlinear interactions between the first lasing mode
and the competing ones can increase the range of single-mode
lasing in terms of the applied gain g;. In order to confirm this
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FIG. 5. (Color online) (a) Increased range of single-mode opera-
tion due to nonlinear spatial hole burning interactions. The system is
the same as in Fig. 3, and we have considered a uniform loss yy = y /5
in all cavities. The top solid line shows the singlet state, and the other
two solid lines show the doublet pair next to it in frequency. The dotted
line indicates the effective gain of the lower-loss one of them in the
absence of nonlinear interactions. The vertical dashed line marks the
threshold of the singlet state. (b) Spatial profile of the lower-loss
doublet state when g; = O(top) and y (bottom).

SUSY partner

statement, here we consider spatial hole burning interactions
and show that it can indeed increase this range considerably.
Intuitively, this can be understood by recalling that the applied
gain is partially depleted by the lasing mode: the stronger the
laser intensity in a given cavity, the more depleted the applied
gain becomes in that cavity. This saturation can be modeled
by ﬁ, where W; is the (complex-valued) field amplitude of
the lasi1’1g mode in the ith cavity. As an example, we consider
the case of y = 5y, where we find the nonlinear effects to be
strong. We calculate W; as a function of the applied gain g
by using the techniques developed in the steady-state ab-initio
laser theory (SALT) [27,28]. In these calculations, we assumed
uniform pumping across both arrays. Our analysis shows
that the lasing threshold of the singlet state is reached when
gs = Yo, the uniform loss assumed for both the main array and
its SUSY partner array. When the applied gain is increased
beyond this threshold value (gy; > yp), the corresponding
eigenvalue of the lasing mode stays real [see the topmost green
line in Fig. 5(a)]. On the other hand, the next competing mode
will not start to lase until its eigenvalue also reaches the real
axis. According to the results of the linear analysis shown in
Fig. 3, the next lasing mode corresponds to one of the doublet
states (indicated by the green arrow). If the nonlinear effects
were absent, this state would start lasing at g; & 1.53yy, as
indicated by the dotted blue line in Fig. 5(a). However, when
the spatial hole burning interactions are taken into account,
the saturated gain increases the threshold of this doublet state
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considerably, as can be seen from the solid blue curve in
Fig. 5(a). Moreover, soon after the first mode starts lasing,
the gain saturation becomes so strong that the effective gain
felt by this mode even decreases with g, before it eventually
increases again as g, is further increased. During the latter
process, the mode intensity becomes enhanced in the SUSY
partner array that exhibits stronger loss [see Fig. 5(b)]. This
behavior delays the onset of this doublet state, and it does not
lase even when the applied gain is five times the threshold of the
first lasing mode. For completeness we also show the behavior
of the second mode of this doublet state [red line in Fig. 5(a)].
A similar trend is also observed for the other doublet states (not
shown), which verifies the robustness of singlet-mode lasing
against nonlinear effects in our proposed structure.

Finally, we would like to comment on the feasibility of the
proposed structure for high-power applications. In general,
nonlinear Kerr interactions inside single cavities can lead to
effects such as filamentation [50]. The advantage of using laser
arrays is that the total optical power is distributed between
several resonators and hence the Kerr nonlinear interactions
are reduced compared to that of a single element laser having
the same output power. We also note that all the technologies
that are used to suppress filamentation in single-cavity lasers
can be applied to laser arrays.

VII. DISCUSSION AND CONCLUSION

The SCMT presented above provides a consistent picture
with our physical intuition. For certain design parameters,
however, exceptions take place where the lasing mode having
the lowest threshold turns out to be a doublet state. This
finding is exemplified in Fig. 6, where the singlet state has
the second highest frequency. As we show in Appendix B
using the Brillouin-Wigner perturbation method [43], these
rare exceptions are due to nonresonant interactions between
multiple supermodes in the main array and the auxiliary
array, a feature that was previously overlooked in the study
of supersymmetric optical structures. We note, however, that
in the scenario presented in Fig. 6, the singlet state is one of
the higher-order modes while the first lasing state is still the
fundamental mode. If the fundamental mode is chosen to be
the singlet state, our simulations show that the rare exceptions
mentioned above do not arise. Given that lasing emission from
the fundamental optical mode is usually preferable in realistic
systems, these rare exceptions do not pose any challenge.

In presenting the scheme and analysis of SUSY arrays
above, we have assumed a uniformly applied gain in both
the main and auxiliary arrays while introducing a stronger
loss in the latter. Another alternative to favor lasing in the
singlet state is to uniformly pump only the main array, without
the need to introduce additional loss to the auxiliary array.
In this case, the threshold of the singlet state remains the
same at g; = )y, since it does not couple to the superpartner
lattice. On the other hand, the eigenfrequencies of the doublet
states as obtained by using the SCMT are now given by

SZI“‘L =[w, — iy ,/K,z — (%)2] + %i. Clearly, when yy < «;
the doublet reaches their lasing threshold at g; = 2y and

remains in the PT symmetric phase. Otherwise (i.e., when
Yo > k1), the pair starts to lase in the PT broken phase and
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FIG. 6. (Color online) (a) Eigenvalue distribution of a supersym-
metric array made of nine resonators (five of which belong to A;)
designed to eliminate the second-order eigenmode of A; from the
spectrum of A,. In this example, «’/& = 0.2 and y /& = 0.5. The
doublet state indicated by the dashed line reaches the lasing point
before the singlet state, in contrary to what one would expect. This
counterintuitive result is confirmed in (b), where an initial state made
of an equal superposition of the five eigenmodes of A; (middle panel)
evolves to the doublet eigenstates (upper panel) instead of the singlet
(lower panel). Panel (c) presents the time-dependent dynamics for the
projection coefficients C, (1), defined by ¢(1) = Z;V:l C,(1) X_/;, in the
main array. C,(t =0) = l/\[S for all n.

their lower threshold is given by g = yp + ';—10 < 2y [16].
Thus, for a given loss coefficient y; in every individual cavity
of both arrays, operation in the PT symmetric phase is more
favorable to suppress lasing in the doublet states, achievable by
making k; greater than . Within this scenario, the maximum
ratio of the lower doublet threshold and the singlet threshold
in the linear analysis is then exactly 2.

In conclusion, we have introduced the concept of SUSY
laser arrays that are capable of supporting laser oscillations
in the singlet states only. If each cavity of the SUSY
array supports only a single resonant frequency [18,23],
then single-mode lasing is possible in the corresponding
singlet state. We have also shown that under certain operation
conditions, anomalous lasing can occur where one of the
doublet eigenmodes exhibits a lower lasing threshold than the
singlet state due to nonresonant interactions.
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APPENDIX A: CONSTRUCTION OF A
SUPERSYMMETRIC PARTNER ARRAY

In order to construct the supersymmetric auxiliary lattice,
we note that the Hamiltonian of the main array A; can be
described by a discrete N x N tridiagonal Hamiltonian matrix

H® whose elements are given by H) = w, and H'"_ | =

n,n nn+l =
H,EL) 1., = K. The Hamiltonian of its superpartner structure that

does not contain the mth mode of A; can be constructed
through discrete SUSY transformation [4,5], and it is given
by H? = (RQ + wn Div-1) = (QTHP Q)y_1), where wy,
is the eigenfrequency of the mth mode of A; and [ is the unit
matrix of dimensions N x N. The subscript indicates that H®
is constructed by selecting only the upper-left block diagonal
matrix of dimensions (N — 1) x (N — 1) of the larger matrix
in the parentheses after isolating the zero mth eigenvalue at the
last row and column. Here Q and R are the QR factorization
matrices of HV — w,, I [51].

APPENDIX B: BRILLOUIN-WIGNER PERTURBATION
ANALYSIS FOR SUSY ARRAYS AND NONRESONANT
INTERACTIONS

In order to understand the difference of the numerical
simulation and SCMT in Fig. 3(a), and more importantly, the

J

o0
Q?eW=Q/+ZS-,

S| = WITHIWJ,

(W H W) (WEH W)

=Y

Quew _ ¢
m#l ! m

(W H W,

m) (Wi H

PHYSICAL REVIEW A 92, 033818 (2015)

change of lasing order briefly mentioned in the conclusion
section of the main text, we analyze the SUSY array using a
perturbation theory. We start by writing the total Hamiltonian
of the system in the following form:

Hy = H, + Hj,

| Hi 0 |0 Z
H, = |:0 Hz] and H1_|:ZT Oi|. B1)

InEq. (B1), H, is the unperturbed Hamiltonian and is part of
a closed algebra [2], while H; is a Hermitian perturbation that
couples the main array A to its superpartner lattice A,. Z is in
general an N x (N — 1) matrix (N = 5 in the examples given
in the main text), with zy ; = «’ and zero entries otherwise. In
principle, one can apply the usual Rayleigh-Schrodinger (RS)
perturbation theory [52] to study the eigenvalues and eigen-
modes of H,. However, the procedure is complicated by the
multiple twofold degeneracies associated with H,. A powerful
alternative is to employ Brillouin-Wigner (BW) perturbation
method [43]. While both RS and BW perturbation methods
agree to first order, the BW method offers more accurate results
for higher-order calculations with the need for any special
treatments for degenerate eigenstates. These advantages come
at the expense of solving polynomial equations in order to
obtain the perturbed eigenvalues. In particular, the expression
for the new eigenvalues using the BW method takes the form

’

(3 W)

S=2 2.0

my#l myF#El m; ;él

new _

where €2,, and Wm are the unperturbed eigenvalues and
eigenvectors of H,, respectively, and €2}V is the new perturbed
eigenfrequency associated with the /th mode. The subscripts
m; in the summation for the S; terms run over all the modes
of the systems except the indicated ones. As we have noted,
the spectrum of H, contains multiple double degeneracies.
Thus the eigenvector bases are not unique. Here we use the

bases [ V“ ] and [O”‘] where the subscripts /;  run over all the

modes of Hl,z, respectlvely, and Vzl and Ul2 are their associated
eigenvectors. Here 6,,X1 is a column vector of dimensions
n x 1. In these bases, the first-order correction 7 in the above
formula is zero for our problem. Interestingly, if we restrict our
perturbation expansion to a second-order approximation and
we retain only the resonant term in the summation of 7; (i.e.,
the term that satisfies Re{€2; — 2,,} = 0), Eq. (B2) reduces

) (Qnew

VVQ)- -
o , (B2)

(@ = )

(

to the SCMT and the two eigenfrequencies Qli described
above emerge naturally as solutions of a quadratic equation.
However, in order to proceed beyond the SCMT, one has to
consider the full polynomial equation with all its possible
solutions. These solutions can be found graphically or by
using any of the well-developed numerical techniques. Among
this family of solutions, only those that represent relatively
small perturbation over the unperturbed eigenmode should be
retained while the others must be discarded.

A simpler procedure for finding the relevant solutions
can be obtained by noting that in our particular SUSY
configuration, the strongest contributions to the expansion
(B2) arise from the interaction between resonant modes. By
neglecting terms higher than 7, and substituting ;" = €,
in every term in the right-hand side of 7, except the resonant
one, we arrive at a quadratic equation whose two solutions are
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given by
Q+Q,+46
Qv — 1+ 82 +
2
s (8-
. [|(WIH W) +<f) . (B3
o
where the complex parameter § =}, , % char-

acterizes the second-order interaction between nonresonant
SUSY eigenstates while the resonant eigenvalue €2, satisfies
the relation Re{<2; — 2,} = 0. We verify formula (B3) by
first revisiting the example of Fig. 3. Recall that in con-

PHYSICAL REVIEW A 92, 033818 (2015)

tradiction with the exact diagonalization of the full discrete
Hamiltonian, SCMT did not account for PT spontaneous
symmetry breaking of some of the doublets in the spectrum,
as highlighted by the dashed closed curves in Fig. 3(a).
Equation (B3), on the other hand, correctly predicts the onset
of PT phase transition in both cases. Finally, by applying the
BW perturbation analysis of Eq. (B3) to the example associated
with Fig. 6, we find that BW analysis remarkably reproduces
the unexpectedly anomalous spectrum with high accuracy. It
is thus clear that the counterintuitive shuffling of the orders of
the lasing modes indicated schematically in Fig. 6(a) is a direct
outcome of the nonresonant interactions between the modes
[42].
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