
PHYSICAL REVIEW A 92, 033817 (2015)

Spectral collapse via two-phonon interactions in trapped ions
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Two-photon processes have so far been considered only as resulting from frequency-matched second-order
expansions of light-matter interaction, with consequently small coupling strengths. However, a variety of
novel physical phenomena arises when such coupling values become comparable to the system characteristic
frequencies. Here, we propose a realistic implementation of two-photon quantum Rabi and Dicke models in
trapped-ion technologies. In this case, effective two-phonon processes can be explored in all relevant parameter
regimes. In particular, we show that an ion chain under bichromatic laser drivings exhibits a rich dynamics and
highly counterintuitive spectral features, such as interaction-induced spectral collapse.
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I. INTRODUCTION

The quantum Rabi model describes the interaction of a
two-level quantum system, a qubit, with a quantized single-
mode bosonic field. Its semiclassical limit, where a classical
field is considered, is known as the Rabi model [1]. In the
last few decades, the quantum Rabi model has been used in a
regime where the rotating-wave approximation (RWA) holds,
giving rise to the Jaynes-Cummings model [2] and describing
a plethora of experiments, mostly related to cavity quantum
electrodynamics. On the other hand, from a mathematical
point of view, an analytical solution for the spectrum of
the quantum Rabi model has been recently developed [3].
Such results have prompted a number of theoretical efforts
aimed at applying similar techniques to generalizations of the
quantum Rabi model, including anisotropic couplings [4–6],
two-photon interactions [7,8], and multiqubit extensions [9],
as is the case of the Dicke model.

In particular, the two-photon quantum Rabi model enjoys a
spectrum with highly counterintuitive features [10,11], which
appear when the coupling strength becomes comparable with
the bosonic mode frequency. In this sense, it is instructive to
compare these features with the ultrastrong [12–14] and deep-
strong [15] coupling regimes of the quantum Rabi model [16].
The two-photon Rabi model has been applied as an effective
model to describe second-order processes in different physical
setups, such as Rydberg atoms in microwave superconducting
cavities [17] and quantum dots [18,19]. However, the small
second-order coupling strengths restrict the observation of a
richer dynamics.

In trapped-ion systems [20,21], it is possible to control
the coherent interaction between the vibrations of an ion
crystal and internal electronic states, which form effective spin
degrees of freedom. This quantum technology has emerged
as one of the most promising platforms for the implemen-
tation of quantum spin models, including a few [22] or
hundreds [23] of ions. Disparate complex quantum phenomena
have been explored using trapped-ion setups, such as Ising spin

frustration [24], quantum phase transitions [25,26], and the
inhomogeneous Kibble-Zurek mechanism [27]. Furthermore,
second sidebands have been considered for laser cooling [28]
and for generating nonclassical motional states [29–31].

In this paper, we design a trapped-ion scheme in which the
two-photon Rabi and two-photon Dicke models can be realis-
tically implemented in all relevant regimes. We theoretically
show that the dynamics of the proposed system is characterized
by harmonic two-phonon oscillations or by spontaneous
generation of excitations, depending on the effective coupling
parameter. In particular, we consider cases where complete
spectral collapse—namely, the fusion of discrete energy levels
into a continuous band—can be observed.

II. THE MODEL

We consider a chain of N qubits interacting with a single
bosonic mode via two-photon interactions

H = ωa†a +
∑

n

ωn
q

2
σn

z + 1

N

∑
n

gnσ
n
x (a2 + a†2

), (1)

where � = 1; a and a† are bosonic ladder operators; σn
x

and σn
z are qubit Pauli operators; and parameters ω, ωn

q ,
and gn represent the mode frequency, the nth qubit energy
spacing, and the relative coupling strength, respectively. We
will explain below how to implement this model using current
trapped-ion technology, considering in detail the case N = 1
and discussing the scalability issues for N > 1.

We consider a setup where the qubit energy spacing ωint

represents an optical, hyperfine, or Zeeman internal transition
in a single trapped ion. The vibrational motion of the ion is
described by bosonic modes a, a†, with trap frequency ν.
Turning on a bichromatic driving, with frequencies ωr and
ωb, an effective coupling between the internal and motional
degrees of freedom is activated. In the interaction picture, the
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standard Hamiltonian [20] describing this model reads

HI =
∑
j=r,b

�j

2
{eiηj [a(t)+a†(t)]ei(ωint−ωj )t eiφj σ+ + H.c.}, (2)

where a(t) = a e−iνt . Here, �r and �b are coupling parameters
directly proportional to the driving laser amplitude, and φj

represents the phase of each laser with respect to the atom

dipole. The Lamb-Dicke parameter ηj = k
j
z

√
�

2mν
is defined

by the projection k
j
z of the j th laser field wave vector in the z

direction and by the ion mass m. We consider the system to be
in the Lamb-Dicke regime, η2(2〈n̂〉 + 1) � 1, where n̂ = a†a
is the phonon number operator.

We set the frequencies of the bichromatic driving to
be detuned from the second sidebands, ωr = ωint − 2ν + δr ,
ωb = ωint + 2ν + δb. We choose homogeneous Lamb-Dicke
parameters ηj = η, phases φj = 0, and coupling strengths
�j = � for both sideband excitations. Expanding the ex-
ponential operator in Eq. (2) to the second order in η and
performing a RWA with δj ,�j � ν, we can rewrite the
interaction picture Hamiltonian

HI = −η2�

4
[a2 e−iδr t + a†2

e−iδbt ]σ+ + H.c. (3)

The first-order correction to approximations made in deriving
Eq. (3) is given by �

2 e±i2νtσ+ + H.c., which produce spurious

excitations with negligible probability Pe = ( �
4ν

)
2
. Further cor-

rections are proportional to η� or η2 and oscillate at frequency

ν, yielding Pe = ( η�

4ν
)
2
. Hence, they are negligible in standard

trapped-ion implementations. The explicit time dependence in
Eq. (3) can be removed by going to another interaction picture
with H0 = 1

4 (δb − δr )a†a + 1
4 (δb + δr )σz, which we dub the

simulation picture. Then, the system Hamiltonian resembles
the two-phonon quantum Rabi Hamiltonian

Heff = ω a†a + ωq

2
σz − g σx(a2 + a†2

), (4)

where the effective model parameters are linked to physical
variables through ω = 1

4 (δr − δb), ωq = − 1
2 (δr + δb), and g =

η2�

4 . Remarkably, by tuning δr and δb, the two-phonon quantum
Rabi model of Eq. (4) can be implemented in all regimes.
Moreover, the N-qubit two-phonon Dicke model of Eq. (1) can
be implemented using a chain of N ions by applying a similar
method. In this case, the single bosonic mode is represented
by a collective motional mode [32] (see Appendix A).

The validity of the approximations made in deriving
Eq. (4) has been checked comparing the simulated two-photon
quantum Rabi dynamics with numerical evaluation of the
simulating trapped-ion model of Eq. (2), as shown in Fig. 1.
Standard parameters and dissipation channels of current setups
have been considered. In all plots of Fig. 1, the vibrational
frequency is ν/2π = 1 MHz, and the coupling coefficient is
�/2π = 100 kHz. The Lamb-Dicke parameter is η = 0.04 in
Figs. 1(a) and 1(b), while η = 0.02 in Fig. 1(c). Notice that
larger coupling strengths imply a more favorable ratio between
dynamics and dissipation rates. Hence, the implementation
accuracy improves for large values of g/ω, which correspond
to the most interesting coupling regimes.
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FIG. 1. (Color online) Real-time dynamics for N = 1, resonant
qubit ωq = 2ω, and effective couplings: (a) g = 0.01ω, (b) g = 0.2ω,
and (c) g = 0.4ω. The initial state is given by |g,2〉, i.e., the two-
phonon Fock state and the qubit ground state. In all plots, the red solid
line corresponds to numerical simulation of the exact Hamiltonian of
Eq. (1), while the blue dashed line is obtained simulating the full
model of Eq. (2), including qubit decay t1 = 1s, pure dephasing t2 =
30 ms, and vibrational heating of one phonon per second. In each plot,
the lower abscissa shows the time in units of ω, while the upper one
shows the evolution time of a realistic trapped-ion implementation.
In (c), the full model simulation could not be performed for a longer
time due to the fast growth of the Hilbert space.

III. REAL-TIME DYNAMICS

Depending on the ratio between the normalized coupling
strength g and the mode frequency ω, the model of Eq. (1) ex-
hibits qualitatively different behaviors. Two parameter regimes
can be identified accordingly. For the sake of simplicity,
we will consider the homogeneous coupling case gn = g,
ωn

q = ωq , for every n, and we will focus on the resonant or
near-resonant case ωq ≈ 2ω.

In accordance with the quantum Rabi model, we define
the strong-coupling (SC) regime by the condition g/ω � 1.
Under this restriction, the RWA can be applied to the coupling
terms, replacing each direct interaction g

∑
n σ n

x (a2 + a†2
)

with g
∑

n (σn
+a2 + σn

−a†2
), where we defined the raising and
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lowering single-qubit operators σn
± = (σn

x ± iσ n
y )/2. When

the RWA is valid, the system satisfies a continuous symme-
try, identified by the operator ζ = a†a + 2

∑
n σ n

+σn
−, which

makes the model superintegrable [3]. In the SC regime, the
interaction leads to two-photon excitation transfers between
the bosonic field and the qubits, as shown in Fig. 1(a).
Jaynes-Cummings-like collapses and revivals of population
inversion are also expected to appear [33,34].

As the ratio g/ω increases, the intuitive dynamics of the
SC regime disappears, and excitations are not conserved [see
Figs. 1(b) and 1(c)]. When the normalized coupling approaches
the value g ∼ 0.1ω, the RWA cannot be performed, and the
full quantum Rabi model must be taken into account. We
define the ultrastrong-coupling (USC) regime as the parameter
region for which 0.1 � g/ω < 0.5. An analytical solution for
the system eigenstates has been derived in [7]. However, this
approach relies basically on a numerical instability related
to the presence of dominant and minimal solutions of an
associated three-term recurrence relation [35] and gives no
qualitative insight into the behavior of the spectrum close to
the collapse point. While continued-fraction techniques are
applicable in principle [35], only a few low-lying levels can
be computed, and the method fails again in approaching the
critical coupling (see below). While the G function derived
in [36] allows for the desired understanding of the qualitative
features of the collapse, its mathematical justification is still
incomplete. On the other hand, direct numerical simulation
becomes challenging close to collapse due to the large number
of excitations involved. Especially, the dynamics of the two-
photon Dicke model is demanding for classical numerical
techniques.

In the SC-USC transition, the continuous symmetry ζ

breaks down to a Z4 discrete symmetry identified by the
operator

� = (−1)N
N⊗

n=1

σn
z exp

(
i
π

2
a†a

)
. (5)

We will call � the generalized parity operator, in analogy
with the standard quantum Rabi model [3]. Four invariant
Hilbert subspaces are identified by the four eigenvalues
λ = {1,−1,i,−i} of �. Hence, for any coupling strength,
the symmetry � restricts the dynamics to generalized-parity
chains, shown in Fig. 2(a) for N = 1,2.

When the normalized coupling g approaches g = ω/2
[see Fig 3(c)], the dynamics is dominated by the interaction
term, and it is characterized by photon production. Finally,
when g > ω/2, the Hamiltonian is not bounded from below.
However, it still provides a well-defined dynamics when
applied for a limited time, like the usual displacement or
squeezing operators.

IV. THE SPECTRUM

The eigenspectrum of the Hamiltonian in Eq. (1) is shown
in Figs. 3(a) and 3(c) for N = 1 and N = 3, respectively.
Different markers are used to identify the generalized parity
� of each Hamiltonian eigenvector [see Eq. (5)]. In the SC
regime, the spectrum is characterized by the linear dependence
of the energy splittings, observed for small values of g. On the
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FIG. 2. (Color online) (a) Generalized-parity chains for N =
1,2. For simplicity, for N = 2, only one generalized-parity subspace
is shown. (b) Quantum state fidelity between the system state |φ(t)〉
and the target eigenstates |ψg

n 〉 during adiabatic evolution. The
Hamiltonian at t = 0 is given by Eq. (1), with N = 1, ωq/ω = 1.9,
and g = 0. During the adiabatic process, the coupling strength is
linearly increased until reaching the value g/ω = 0.49. For the blue
circles, the initial state is given by the ground state |φ(t = 0)〉 =
|ψg=0

0 〉. For black crosses, |φ(t = 0)〉 = |ψg=0
1 〉, while for the red solid

line, |φ(t = 0)〉 = |ψg=0
4 〉. The color code indicates generalized parity

as in Fig. 3(a). Notice that, due to generalized parity conservation,
the fourth excited eigenstate |ψg=0

4 〉 of the decoupled Hamiltonian is
transformed into the third one |ψg

3 〉 of the full Hamiltonian.

contrary, in the USC regime the spectrum is characterized by
level crossings known as Juddian points, allowing for closed-
form isolated solutions [11] in the single-qubit case.

The most interesting spectral features appear when the
normalized coupling g approaches the value ω/2. In this case,
the energy spacing between the system eigenenergies asymp-
totically vanishes, and the average photon number for the first
excited eigenstates diverges [see Fig. 3(b)]. When g = ω/2,
the discrete spectrum collapses into a continuous band, and its
eigenfunctions are not normalizable (see Appendix B). Beyond
that value, the Hamiltonian is unbounded from below [10,11].
This can be shown by rewriting the bosonic components of
Hamiltonian of Eq. (1) in terms of the effective position
and momentum operators of a particle of mass m, defined

as x̂ =
√

1
2mω

(a + a†) and p̂ = i
√

mω
2 (a − a†). Therefore, we

obtain

H = mω

2

[
(ω−2gŜx)

p̂2

m2ω2
+(ω + 2g Ŝx)x̂2

]
+ ωq

2

∑
n

σ n
z ,

(6)

where Ŝx = 1
N

∑
n σ n

x . Notice that Ŝx can take values included
in the interval 〈Sx〉 ∈ [−1,1]. Hence, the parameter (ω + 2g)
establishes the shape of the effective potential. For g < ω/2,
the particle experiences an always-positive quadratic potential.
For g = ω/2, there are qubit states which turn the potential
flat, and the spectrum collapses, like for a free particle (see
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FIG. 3. (Color online) Spectral properties of the Hamiltonian (1),
in units of ω, for ωq = 1.9 as a function of the coupling strength g.
For g > 0.5, the spectrum is unbounded from below. (a) Spectrum
for N = 1. Different markers identify the generalized parity of each
eigenstate: green circles for p = 1, red crosses for p = i, blue stars
for p = −1, and black dots for p = −i. (b) Average photon number
for the ground and first two excited states for N = 1. (c) Spectrum
for N = 3. For clarity, the generalized parity of the eigenstates is not
shown.

Appendix B). Finally, when g > ω/2, the effective quadratic
potential can be positive, for 〈Ŝx〉 < −ω/2g, or negative, for
〈Ŝx〉 > ω/2g. Therefore, the Hamiltonian (6) has neither an
upper nor a lower bound.

V. MEASUREMENT TECHNIQUE

A key experimental signature of the spectral collapse [see
Fig. 3(a)] can be obtained by measuring the system eigenener-
gies [37] when g approaches 0.5ω. Such a measurement could
be done via the quantum-phase-estimation algorithm [38]. A
more straightforward method consists of directly generating
the system eigenstates [39] by means of the adiabatic protocol
shown in Fig. 2(b). When g = 0, the eigenstates |ψg=0

n 〉 of
the Hamiltonian in Eq. (1) have an analytical form and can
be easily generated [40]. Then, adiabatically increasing g, the

eigenstates |ψg
n 〉 of the full model can be produced. Notice

that generalized-parity conservation protects the adiabatic
switching at level crossings [see Fig. 2(b)].

Once a given eigenstate has been prepared, its energy
can be inferred by measuring the expected value of the
Hamiltonian in Eq. (1). We consider separately the measure-
ment of each Hamiltonian term. The measurement of σn

z is
standard in trapped-ion setups and is done with fluorescence
techniques [20]. The measurement of the phonon number
expectation value was already proposed in Ref. [41]. Notice
that operators σn

z and a†a commute with all transformations
performed in the derivation of the model. The expectation
value of the interaction term gσn

x (a2 + a†2
) can be mapped

into the value of the first time derivative of 〈σn
z 〉 at mea-

surement time t = 0, with the system evolving under Hm =
ωa†a + ωq

2 σn
z − gσn

y (a2 + a†2
). This Hamiltonian is com-

posed of a part A = ωa†a + ωq

2 σn
z which commutes with σn

z ,

[A,σn
z ] = 0, and a part B = −gσn

y (a2 + a†2
) which anticom-

mutes with σn
z , {B,σn

z } = 0, yielding 〈ei(A+B)t σ n
z e−i(A+B)t 〉 =

〈ei(A+B)t e−i(A−B)t σ n
z 〉. The time derivative of this expression

at t = 0 is given by 〈[i(A + B) − i(A − B)]σn
z 〉 = 2i〈Bσn

z 〉,
which is proportional to the expectation value of the interaction
term of Hamiltonian in Eq. (4), ∂t 〈eiHmtσ n

z e−iHmt 〉|t=0 =
2〈gσn

x (a2 + a†2
)〉. The evolution under Hamiltonian Hm in

the simulation picture is implemented in the same way as the
Hamiltonian in Eq. (4), but selecting the laser phases φj to
be π

2 . Moreover, expectation values for the generalized-parity
operator � in Eq. (5) can be extracted following the techniques
described in Appendix C.

VI. DISCUSSION

We have introduced a trapped-ion scheme which allows
one to experimentally investigate two-photon interactions
in unexplored regimes of light-matter coupling, replacing
photons in the model by trapped-ion phonons. It provides
a feasible method to observe an interaction-induced spectral
collapse in a two-phonon quantum Rabi model, approaching
recent mathematical and physical results with current quantum
technologies. Furthermore, the proposed scheme provides a
scalable quantum simulator of a complex quantum system,
which is difficult to approach with classical numerical simula-
tions even for a small number of qubits due to the large number
of phonons involved in the dynamics.
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APPENDIX A: IMPLEMENTATION OF THE
TWO-PHOTON DICKE MODEL WITH COLLECTIVE

MOTION OF N TRAPPED IONS

In the main text, we showed how a two-photon Rabi model
can be implemented using the vibrational degree of freedom of
a single ion coupled to one of its internal electronic transitions
by means of laser-induced interactions. Here, we show how
the N -qubit two-photon Dicke model,

H = ωa†a +
∑

n

ωn
q

2
σn

z + 1

N

∑
n

gnσ
n
x (a2 + a†2

), (A1)

can be implemented in a chain of N ions, generalizing
such a method. The N qubits are represented by an internal
electronic transition of each ion, while the bosonic mode is
given by a collective motional mode of the ion chain. The
two-phonon interactions are induced by a bichromatic laser
driving with the same frequency-matching conditions used for
the single-qubit case. The drivings can be implemented by
shining two longitudinal lasers coupled to the whole chain or
by addressing the ions individually with transversal beams.
The former solution is much less demanding, but it may
introduce inhomogeneities in the coupling for very large ion
chains; the latter allows complete control over individual
coupling strengths.

In order to guarantee that the model in Eq. (A1) is faithfully
implemented, the bichromatic driving must not excite un-
wanted motional modes. In our proposal, the frequencies of the
red and blue drivings ωr/b satisfy the relation |ωr/b − ωint| =
2ν + δr/b, where δr/b are small detunings that can be neglected
for the present discussion. We recall that ν is the bosonic
mode frequency and ωint is the qubit energy spacing. To be
definite, we take the motion of the center of mass of the
ion chain as the relevant bosonic mode. Then, the closest
collective motional mode is the breathing mode [32], with
frequency ν2 = √

3ν. An undesired interaction between the
internal electronic transitions and the breathing mode could
appear if |ωr/b − ωint| is close to ν2 or 2ν2, corresponding
to the first and second sidebands, respectively. In our case,
the drivings are detuned by �1 = |ωr/b − ωint| − ν2 ≈ 0.27ν

from the first sideband and �2 = |ωr/b − ωint| − 2ν2 ≈ 1.46ν

from the second sideband. Given that the frequency ν is much
larger than the coupling strength �, such detunings make those
unwanted processes safely negligible.

APPENDIX B: PROPERTIES OF THE WAVE FUNCTIONS
BELOW AND ABOVE THE COLLAPSE POINT

The presence of the collapse point at g = ω/2 can be
inferred rigorously by studying the asymptotic behavior of the
formal solutions to the time-independent Schrödinger equation
Hψ = Eψ . We consider now the simplest case N = 1. Using
the representation of the model in the Bargmann space B of
analytic functions [42], the Schrödinger equation for ψ(z)
in the invariant subspace with generalized-parity eigenvalue
� = +1 reads

gψ ′′(z) + ωzψ ′(z) + gz2ψ(z) + ωq

2
ψ(iz) = Eψ(z), (B1)

where the prime denotes differentiation with respect to the
complex variable z. This nonlocal linear differential equation

of the second order, connecting the values of ψ at the points
z and iz, may be transformed to a local equation of the fourth
order,

ψ (4)(z) + [(2 − ω̄2)z2 + 2ω̄]ψ ′′(z) + [4 + 2ω̄Ē − ω̄2]zψ ′(z)

+ [z4 − 2ω̄z2 + 2 − Ē2 + �2]ψ(z) = 0, (B2)

where we have used the abbreviations ω̄ = ω/g, � = ωq/(2g),
Ē = E/g. Equation (B2) has no singular points in the complex
plane except at z = ∞, where it exhibits an unramified
irregular singular point of s-rank three [43]. That means that
the so-called normal solutions have the asymptotic expansion

ψ(z) = e
γ

2 z2+αzzρ(c0 + c1z
−1 + c2z

−2 + · · · ) (B3)

for z → ∞. Functions of this type are normalizable (and
belong therefore to B) only if the complex parameter γ , a
characteristic exponent of the second kind, satisfies |γ | < 1.
In our case, the possible γ ’s are the solutions of the biquadratic
equation

x4 + x2(2 − ω̄2) + 1 = 0. (B4)

It follows

γ1,2 = ω̄

2
±

√
ω̄2

4
− 1, γ3,4 = − ω̄

2
±

√
ω̄2

4
− 1. (B5)

For ω̄/2 > 1, all solutions are real. For |γ1| = |γ4| > 1, we
have |γ2| = |γ3| < 1. In this case, there exist normalizable
solutions if γ2 or γ3 appears in Eq. (B3). The condition for the
absence of the other characteristic exponents γ1,4 in the formal
solution of Eq. (B2) is the spectral condition determining the
parameter E in the eigenvalue problem Hψ = Eψ . It follows
that for g < ω/2, a discrete series of normalizable solutions to
Eq. (B1) may be found, and the spectrum is therefore a pure
point spectrum.

On the other hand, for ω̄/2 < 1, all γj are located on the unit
circle with γ1 = γ ∗

2 ,γ3 = γ ∗
4 . Because, then, no normalizable

solutions of Eq. (B2) exist, the spectrum of the (probably
self-adjoint) operator H must be continuous for g > ω/2, i.e.,
above the collapse point. The exponents γ1 and γ2 (γ3 and γ4)
join at 1 (−1) for g = ω/2. The exponent γ = 1 belongs to the
Bargmann representation of plane waves. Indeed, the plane-
wave states φq(x) = (2π )−1/2 exp(iqx) in the rigged extension
of L2(R) [44], satisfying the orthogonality relation 〈φq |φq ′ 〉 =
δ(q − q ′), are mapped by the isomorphism I between L2(R)
and B onto the functions

I[φq](z) = π−1/4e− 1
2 q2+ 1

2 z2+i
√

2qz; (B6)

they correspond therefore to γ = 1. It is yet unknown whether
at the collapse point g = ω/2, the generalized eigenfunctions
of H have plane-wave characteristics for ωq = 0 or which
properties of these functions appear above this point, where
the spectrum is unbounded from below.

APPENDIX C: GENERALIZED-PARITY MEASUREMENT

The generalized-parity operator, defined as � =
(−1)N

⊗N
n=1 σn

z exp{i π
2 n}, with n = a†a, is a non-Hermitian

operator that can be explicitly written as the sum of its real
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and imaginary parts,

� = (−1)N
N⊗

n=1

σn
z cos

(
π

2
a†a

)

+ i(−1)N
N⊗

n=1

σn
z sin

(
π

2
a†a

)
. (C1)

For simplicity, we will focus on the N = 1 case, but the
procedure is straightforwardly extendible to any N . We will
show how to measure the expectation value of operators of the
form

exp{±in σi φ}σj , (C2)

where σi,j are a pair of anticommuting Pauli matrices,
{σi,σj } = 0, and φ is a continuous real parameter. One can then
reconstruct the real and imaginary parts of the generalized-
parity operator, as a composition of observables in Eq. (C2)
for different signs and values of i,j ,

Re(�) = −1

2

{
exp

(
inσx

π

2

)
σz + exp

(
− inσx

π

2

)
σz

}
,

(C3)

Im(�) = 1

2

{
exp

(
inσx

π

2

)
σy − exp

(
− inσx

π

2

)
σy

}
.

(C4)

The strategy to retrieve the expectation value of observables
in Eq. (C2) will be based on the following property of
anticommuting matrices A and B: eABe−A = e2AB = Be−2A.
Based on this, the expectation value of the observables in
Eq. (C2) can be mapped onto the expectation value of σj

when the system has previously evolved under Hamiltonian

H = ±nσi for a time t∗ = φ/2,

〈ψ | exp{±in σi φ}σj |ψ〉 = 〈ψ(t∗)|σj |ψ(t∗)〉, (C5)

where |ψ(t)〉 = e−inσi t |ψ〉. The expectation value of any Pauli
matrix is accessible in trapped-ion setups, σz by fluorescence
techniques and σx,y by applying rotations prior to the measure-
ment of σz. The point then is how to generate the dynamics of
Hamiltonian H = ±nσi . For that, we propose to implement a
highly detuned simultaneous red and blue sideband interaction,

H = �0η

2
(a + a†)σ+eiδt eiϕ + H.c., (C6)

where ϕ is the phase of the laser with respect to the dipole
moment of the ion. This Hamiltonian can be effectively
approximated to the second-order Hamiltonian,

Heff = 1

δ

(
�0η

2

)2

(2n + 1)σze
iϕ, (C7)

when δ � η�0/2. The laser phase will allow us to select
the sign of the Hamiltonian. Of course, one would need to
be careful and maintain δ in a regime where δ � ν, with ν

being the trapping frequency, to guarantee that higher-order
resonances are not excited. Finally, in order to get rid of
the undesired extra term σz in Hamiltonian (C7), one needs
to implement one more evolution under the Hamiltonian
H = −(1/2)�0ησz. This evolution can be generated by means
of a highly detuned carrier transition. So far, we have given a
protocol to generate the Hamiltonian H = ±nσz. In order to
generate Hamiltonians H = ±nσy , one would need to modify
the evolution with two local qubit rotations,

e±inσy t = eiσxπ/4e±inσzt e−iσxπ/4. (C8)

Similarly, for Hamiltonian H = ±nσx one would need to
perform rotations around σy .
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