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All-optical simulations of nonclassical noise-induced effects in quantum optomechanics
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The key feature of optomechanics is that its basic interactions are inherently nonlinear. This feature allows
coherent and nonclassical effects such as squeezing on the mechanical mode induced by chaotic incoherent
light. Since this effect is too challenging to observe directly in the membrane-in-the-middle arrangement of
quantum optomechanics, we analyze an analogical high-order nonlinear effect and propose to simulate it all-
optically. Specifically, we exploit hybrid quantum optics based on single photon states and homodyne detection
to conditionally construct a simulator for noise-driven nonclassical effects. We show that this simulation can
confirm the presence of squeezing caused by nonlinear coupling pumped by a noisy light. Our proposal opens
the possibilities to emulate nonclassical effects challenging on the natural experimental platforms.
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I. INTRODUCTION

Quantum optics is a mature field of research that has been
proven to be an excellent experimental platform both for
modern quantum information technologies and fundamental
tests of quantum physics. One of the strong aspects of light is
its ability to be coupled to other physical systems [1]. Quantum
states of light were coupled to individual atoms or ions [2,3],
solid state systems [4–6], collective spin of an atomic cloud
[7], or a vibrational mode of a mechanical oscillator [8]. On
one hand, this ability allows the light to serve as an effective
mediator and interface between these quantum systems,
possibly at a large distances [9]. On the other hand, it helps to
cover one of its main contemporary drawbacks—the lack of
various high-order nonlinear operations for quantum states of
light. For a long time, the only achievable high-order nonlinear
transformations of quantum states of light came from the in-
teraction with discrete levels of atoms [10]. Recently, quantum
optomechanics has opened another principal possibility.

Quantum optomechanics studies the effect of coupling
between light and mechanical oscillators [8]. This coupling
is realized via a radiation pressure on a mechanical object, in
which the intensity of the light causes a change in mechanical
momentum of the oscillator.

This is a naturally occurring coupling that exhibits an
exact cubic nonlinearity which is missing at quantum level
in all-optical systems. An interesting aspect of the coupling
is that it allows conversion of an incoherent quantity—energy,
present also in thermal noise—into a coherent effect such as the
displacement. Unfortunately, this effect has not been observed
experimentally since the coupling is not strong enough
for a straightforward application. Furthermore, the coupling
becomes linear and the coherent effect driven by a noise
vanishes in the process of enhancing the coupling strength
by a high-intensity coherent light with a well-defined phase.

Observing the noise-induced coherent effects by simulating
the coupling on a different experimental platform is therefore
important to overcome these limitations. In this paper we
propose a feasible all-optical simulation of an optomechanical
coupling that enables noise-induced nonclassical effects. More
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explicitly, we simulate the noise-induced nonclassical effects
such as nonclassical squeezing induced by a thermal or a
Poissonian noise. This emulates the effects of a more chal-
lenging membrane-in-the-middle configuration of quantum
optomechanics [11–15]. This coupling bears a similarity to a
single mode cubic nonlinearity [16], of which the first steps to-
wards realization were made by observing the nonlinear cubic
state [17]. However, we are interested not only in feasible phys-
ical realization of the nonlinear coupling but also in observing
its dynamical effects. To this end we are taking advantage of
the recently proposed method of the conditional simulation
of a short-time motion of a particle in an arbitrary nonlinear
potential [18]. This method employs a sequence of elementary
X gates implemented with the standard tools of quantum
optics—single photon sources, linear optical elements, and
homodyne detections. This method can also be extended to
realize multimode non-Gaussian entangling operations [19].

The paper is organized as follows. In Sec. II, we analyze
the occurrence and the origin of noise-induced squeezing at
mechanical oscillator by the target optomechanical Hamilto-
nian. In Sec. III, we show that this effect can be simulated
optically by the first-order expansion of the evolution operator
and compare how close this simulation is to the ideal cases.
In Sec. IV we propose a feasible experimental scheme, and in
Sec. V we conclude.

II. NOISE-INDUCED SQUEEZING

Our main interest lies in operations that allow for coherent
nonclassical effects (squeezing, in particular) induced by
incoherent quantum states, such as a thermal light and a
mixture of coherent states. At the same time, we are only
interested in operations we can simulate experimentally. The
traditional optomechanical interaction Hamiltonian Ĥtrad =
�κ1n̂LX̂M , where the subscripts L and M stand for optical
and mechanical modes, is not considered as it does not lead
to the desired squeezing of the mechanical mode. We set
� = 1 for simplicity below. The interaction Hamiltonian found
in the membrane-in-the-middle configuration with Ĥmem =
�κ2n̂LX̂2

M does lead to the desired effect, but simulating it is
not feasible as the number operator n̂L = (X̂2

L + P̂ 2
L − 1)/2

contains both of the quadrature operators and is therefore
incompatible with the techniques of Refs. [18,19]. Note that
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κ1,2 are influenced by actual experimental parameters such
as the cavity decay rate and strength of optomechanical
coupling [11–15]. The dependence on number operator can be
removed by using a light with high intensity which leads to the
linearized interaction with Ĥ ∝ X̂LX̂2

M , but this linearization
also removes the possibility of the operation being driven by
an optical noise.

We can instead consider a coupling described by the
interaction Hamiltonian

Ĥtarget = χX̂2
LX̂2

M, (1)

where the strength of the coupling will be set as χ = 1
for the simplicity of description. This Hamiltonian is only
a function of position operators and thus can be simulated
efficiently. The coupling itself has a coherent phase reference
for the optical mode, but if we assume the state of light to
be incoherent and phase insensitive, the interaction behaves
in a qualitatively identical way to the naturally occurring op-
tomechanical coupling. Furthermore, in the weak-interaction
regime with interaction time t � 1, with which we will be
mainly concerned during the simulation, the two operations
are exactly identical. The defining feature of operation (1) is
the ability to squeeze the mechanical mode. A straightforward
way to see this effect is to apply the evolution operator
to the joint optomechanical system in a separable input
state ρ in = ρ in

L ⊗ ρ in
M followed by a measurement in position

quadrature XL in light mode. For a measured value xL = q, the
output state in mechanical mode is ρout

M = e−itq2X̂2
M ρ in

Meitq2X̂2
M ,

irrespectively of the initial state of the light mode (which
determines only the probability of success).

We do not need to rely on the measurement to achieve
squeezing, and the state of the mechanical mode can be
squeezed even without any measurement on the light, as the
squeezing is an inherent part of the operation represented by
the square of the respective quadrature operator. In this case,
the nature and the amount of the squeezing is determined by
the initial state of the optical mode. The reduced state of the
mechanical mode is then given as

ρout
M =

∫∫
dqdq ′e−itq2X̂2

M ρMeitq ′2X̂2
M ρL(q,q ′), (2)

where ρL(q,q ′) = 〈q|ρ in
L |q ′〉 denotes the reduced density

matrix of the optical mode in the position representation. It
is immediately apparent that a squeezing operation (accom-
panied by possible rotations in phase space) is implemented
when the light is in a position eigenstate ρ in

L = |q ′′〉L〈q ′′| which
reduces the output state to the previous one. For an arbitrary
input state of light, the situation is slightly more complex to
analyze.

The squeezing effect is seen in the covariance matrix of
the output state in the mechanical mode. The matrix elements
can be obtained as �ij = (〈ξiξj + ξj ξi〉)/2 − 〈ξi〉〈ξj 〉, where
ξ = (X̂M,P̂M ) represents the vector of quadrature operators.
An easy way to analyze this squeezing effect is by working in
Heisenberg representation where the operators are expressed
by transformation relations

X̂L → X̂L, X̂M → X̂M,

P̂L → P̂L + 2tX̂LX̂2
M, P̂M → P̂M + 2tX̂MX̂2

L. (3)

In terms of moments of the initial state, the covariance matrix
elements are therefore expressed as

�11 = var(X̂M ),

�12 = cov(X̂M,P̂M ) + 2t
〈
X̂2

L

〉
var(X̂M ),

�22 = var(P̂M ) + 2t
〈
X̂2

L

〉
cov(X̂M,P̂M )

+ 4t2
〈
X̂2

L

〉2
var(X̂M ) + 4t2var

(
X̂2

L

)〈
X̂2

M

〉
, (4)

where var(Q̂) = 〈Q̂2〉 − 〈Q̂〉2 and cov(X̂,P̂ ) = (〈X̂P̂ +
P̂ X̂〉)/2 − 〈X̂〉〈P̂ 〉 represent the variance and the covariance
of the respective quadrature operators. As expected, when
the mode of light is in a state with strong coherence (either
a high-amplitude coherent state or a displaced quadrature
eigenstate), 〈X̂4

L〉 = 〈X̂2
L〉2 = 〈X̂L〉4 and the whole process be-

comes again a parametric squeezing process with Hamiltonian
H = 〈X̂L〉2X̂2

M as the last term of �22 in (4) representing the
fluctuations added in the PM quadrature vanishes. However,
a remarkable property of the Hamiltonian (1) is that the
squeezing can also appear when the light mode is in a state
without a classical phase reference for which 〈XL〉 = 0. A
natural example of such a state is a thermal state, but (4)
shows that the optimal state for squeezing would have the
smallest added noise for the minimal value of XL-quadrature
excess kurtosis K = 〈X4

L〉/〈X2
L〉2 − 3, the characterization of

flatness of the distribution, for a given energy n = 2〈X2
L〉 − 1

which depends only on var(XL) for states without classical co-
herence. The minimal value of kurtosis is Kmin = −2 leading
to 〈X4

L〉 = 〈X2
L〉2 or var(X2

L) = 0. Such a state would allow us
to achieve a perfect Gaussian squeezing operation without any
added noise in PL quadrature, even though the state of light
describes essentially a white noise with a flat distribution.
Such states are impossible to prepare for continuous variable
systems described by an infinite dimensional Hilbert space.
Fortunately, even when the kurtosis is not minimal a low
kurtosis still is beneficial. We can see in (4) that the excess
kurtosis manifests as additive fluctuations in quadrature PM

and in that quadrature alone.
In the following analysis two kinds of noisy states in the

light mode are considered explicitly. The first one is the thermal
state of light with a Bose-Einstein photon statistics, whose den-
sity matrix in Fock basis is given by ρth = ∑∞

n=0
nn

(n+1)n+1 |n〉〈n|
with the mean energy n. It is the prime example of a noisy
Gaussian light, and its kurtosis is K = 0 for all values of
n. The second kind of state is a classical phase-insensitive
mixture of coherent states with a positive mean amplitude α

and density matrix

ρcoh[α] = 1

2π

∫ 2π

0
dφ|αeiφ〉〈αeiφ |. (5)

This state has Poissonian photon statistics and its kurtosis is

K = 6n2 + 12n + 3

4n2 + 4n + 1
− 3, (6)

where n = α2. This is the lowest kurtosis achievable by a
phase-insensitive classical state with a given energy n. It does
not reach the lower bound of −2 but approaches −3/2 in the
limit of n → ∞. See the Appendix for further details.
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III. APPROXIMATING THE OPERATION

The ideal unitary operator of eitX2
LX2

M is not feasible even
with the current state-of-the-art technologies, but with the
help of quantum optics we can realize an approximation by
a finite expansion similarly as in Refs. [18,19]. This finite
approximation is given by a first-order Taylor expansion of
the ideal unitary operator or the conditional transformation
described by the operator

Ô = 1̂ − itX̂2
LX̂2

M. (7)

We note that the parameter t is a value chosen to simulate the
interaction time. The transformed state is then given by

ρout = Ôρ inÔ†

Tr[Ôρ inÔ†]
. (8)

We again look at the resulting covariance matrix to analyze
the squeezing in this state. However, the probabilistic nature
of the operation Ô is making the covariance matrix elements’
dependence on the initial state highly complex. Therefore, for
the sake of simplicity, we shall consider the mechanical mode
to be initially in a state with zero mean values of the quadrature
operators [20] which include the ground state and the thermal
states. The covariance matrix elements in these cases are

�11 = 1

N

[
var(XM ) + t2

〈
X4

L

〉〈
X6

M

〉]
,

�12 = 1

N

[
cov(XM,PM ) + 2t

〈
X2

L

〉〈
X2

M

〉

+ t2

2

〈
X2

L

〉〈
X2

M (XMPM + PMXM )X2
M

〉]
, (9)

�22 = 1

N

[
var(PM ) + 2t

〈
X2

L

〉
cov(XM,PM )

+ t2
〈
X4

L

〉〈
X2

MP 2
MX2

M

〉]
,

where N = 1 + t2〈X4
L〉〈X4

M〉 is the normalization coefficient.
We can see that the effect is close to ideal squeezing for the
minimal kurtosis state for short interaction time t � 1, and
any excess kurtosis manifests as additive noise in quadratures
XM and PM .

Let us assess the quality of this finite approximation.
The finite nature of the approximation makes it suitable
only for states with weak excitation, so we begin with the
mechanical mode initially in a vacuum state. The mechanical
mode is expected to be approximately in a squeezed state
expressed as |0〉 + t/2

√
2|2〉 after the operation Ô with a

suitable phase shift U (φ) = ei(φ+π/2)n̂, where t is considered
small. For a realistic noisy state of the light mode, the
mechanical mode ends up in a mixed squeezed state of the
form as in (2), so we need to compare the density matrices
in the Fock representation ρij = 〈i|ρout

M |j 〉. Note that the
presence of off-diagonal elements is a necessary condition for
squeezing, since any mixture of the Fock states cannot have
either off-diagonal term or squeezing. The most confirmative
evidence for squeezing in weakly excited states is the presence
of off-diagonal terms ρ20 and the absence of the terms ρ11.
The comparison of the Fock distributions between ideal
operation and the approximate one in Fig. 1 shows a good
qualitative match and the absence of the all terms with an

FIG. 1. (Color online) Reduced Fock representation in mechan-
ical mode 〈m|U (φ)ρMU †(φ)|n〉 at t = 0.1 after phase rotations
U (φ) = ei(φ+π/2)n̂ for [(a) and (b)] vacuum light, [(c) and (d)]
phase-randomized coherent light with α = √

0.4, and [(e) and (f)]
thermal light with n̄ = 0.4. The output states in mechanical mode for
[(a), (c), and (e)] ideal and [(b), (d), and (f)] approximate operation are
shown to be close to the state |0〉 + it

2 X̂2|0〉 ≈ |0〉 + it

2
√

2
|2〉 for small

values of t � 1. The phase rotation applied after ideal operation is
φ = 0.717 and 0.823 after approximate operation for vacuum light
and 0.675 and 0.85 for phase-randomized coherent light and thermal
light. The output state from vacuum light and from thermal light
with n̄ = 0.4 are close to the squeezed state of S[r = −0.0501]|0〉
and S[r = −0.0905]|0〉, respectively. The vacuum components are
all suppressed for visualization.

odd number of photons. For a quantitative assessment, the
standardized matrix elements defined as

R20 = ρ20√
ρ00ρ22

(10)

can be compared which, for both modes initially in the vacuum
state, are given as Rid

20 = 0.588 for the ideal interaction and
R

ap
20 = 0.578 for the approximate one at t = 0.1 with the

superscript id(ap) stands for ideal (approximate) case. For light
in a thermal state with n = 0.4 the values are Rid

20 = 0.599 and
R

ap
20 = 0.580, while for the light in the subnormal kurtosis

mixture of phase randomized coherent states with n = 0.4
they are Rid

20 = 0.637 and R
ap
20 = 0.623. This result shows a

good agreement between the ideal and the approximate case,
although a stronger squeezing effect comes from the optimal
kurtosis state. The off-diagonal terms for Fock states higher
than |2〉 are missing in approximations, as they can not be
simulated by the first-order expansion in (7), but they do not
affect the squeezing significantly for small n̄.
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Another aspect of comparison relies on the phonon structure
of the resulting state of the mechanical mode. Since the output
states are squeezed, the phonons should exhibit a behavior
akin to photon bunching. This bunching can be observed by
looking at the second-order autocorrelation function g(2)(0) =
〈a†2a2〉/〈a†a〉2. For classical coherent states we have g(2)(0) =
1, while classical thermal states exhibit g(2)(0) = 2 as long as
their energy is nonzero. On the other hand, the nonclassical
squeezed states possess an autocorrelation function that can
reach a value arbitrarily larger than g(2)(0) = 2 when the state
is pure enough. For a large squeezing, the g(2)(0) converges to 3
regardless of the thermal noise. In our scenario with the optical
and the mechanical mode initially in a vacuum state, the ideal
interaction at t = 0.1 creates state with g(2)(0) = 161, while
the approximate one leads to g(2)(0) = 133 at the same mo-
ment. These high numbers confirm the presence of the bunch-
ing effect on phonons as well as the high purity of the state.

The squeezing imparted on the mechanical mode generally
grows with the mean energy of the optical mode regardless of
the actual input states and interaction time and the dependence
on them is quantified as following. The obtained squeezing
is best characterized in terms of the minimal and maximal
squeezed variances that are denoted by V− and V+ defined
respectively as

V∓ = 1
2

[
�11 + �22 ∓

√
(�11 − �22)2 + 4�2

12

]
, (11)

where the covariance matrix elements are from (4) for the ideal
case and from (9) for the approximate one. The explicit form
of the least variance in the mechanical mode after an ideal
interaction with a thermal light is given as

V th
− = 3t2(2n̄ + 1)2 + 2 −

√
9t4(2n̄ + 1)4 + 4t2(2n̄ + 1)2

2
(12)

and that after the ideal interaction with a phase-randomized
coherent light with help of (4) and (A2) as

V coh
− = 1

4 [3t2(2n̄2 + 4n̄ + 1) + 2

−
√

9t4(2n̄2 + 4n̄ + 1)2 + 4t2(2n̄ + 1)2]. (13)

The explicit forms for the approximate operation are calculated
equivalently but are more complex than for the ideal operation.
In Fig. 2, these minimal variances are plotted relative to the
initial mean energy of the light mode and the interaction time.
Generally, both the mean energy n and the duration of the
interaction t increase the squeezing manifested by the initial
decreasing of V−’s. This noise-driven generation of squeezing
is the main result of our simulation, which confirms the
presence of the nonlinear effects in the approximative method.
The phase-insensitive mixture of coherent states does indeed
produce a higher squeezing than the corresponding thermal
state with the same number of photons due to the kurtosis
effect. The validity of the approximation holds for optical
mode energies up to n ≈ 1 for the mechanical mode initially
in a vacuum state at a very short interaction time t = 0.05. At
double the time t = 0.1, the approximation holds only up to
n ≈ 0.2. The longest time that can be faithfully approximated
is around t ≈ 0.15 when both modes are initially in a vacuum
state. The operation still performs a squeezing even when
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FIG. 2. (Color online) The noise reduction expressed as the ratio
of the initial and squeezed minimal variances V−/V−(0) relative to the
initial mean energy n in the light mode [(a), (c) and (d)] and interaction
time t [(b), (d), and (f)]. Solid curves follow the approximation,
while dashed curves represent the ideal unitary interaction. Each set
of lines, differentiated by color, refers to a different parameter, as
given explicitly in the figures. In panels (a) and (b) the mechanical
mode is initially in a vacuum state, while the optical mode is in a
thermal state with mean energy n. In panels (c) and (d) the mechanical
mode is initially in a vacuum state while the optical mode is in a
phase-insensitive mixture of coherent states. In panels (e) and (f)
both the modes are initially in a thermal state with mean energy n.

the approximation is not perfect, witnessed by the largest
noise reduction of −0.45 dB achieved at t ≈ 0.35. When both
modes are plugged initially with the same thermal states at
equilibrium, both the approximation and the squeezing itself
break down much more rapidly. For example, the largest value
of the mean energy for squeezing below the shot noise is
n ≈ 0.08. By comparing Figs. 2(a) and 2(c) for thermal lights
and Figs. 2(b) and 2(d) for phase-randomized coherent lights
we can also see that amplitude fluctuations in thermal light do
not significantly affect the observed squeezing effects.

Now an important question is how large squeezing we may
get either ideally or approximately. To answer this question
we find the minimal value of the least variances Vmin =
mint [V−(t)] at any given mean energy n̄ of the light mode
over the entire domain of t . Figure 3 shows the dependence
of Vmin on the average energy n̄ for both the thermal light
and the phase-insensitive mixture of coherent light with the
mechanical mode initially in a vacuum state. Immediately
we see that the minimal achievable variance for the thermal
lights is not dependent on average photon number in input
state of light. As a consequence, any thermal state (including
the vacuum) can generate at most 1.76 dB of squeezing
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FIG. 3. Optimum least variance Vmin relative to t drawn against
the average photon number n̄ for (a) thermal light and (b) phase-
randomized coherent light. Solid lines represent the finite approxi-
mation while the dashed lines denote the ideal case. The coherent
light can induce a larger squeezing due to a smaller kurtosis.

(Vmin = 1/3). This follows from relations (4) and (9), where
t always appears with the same power as 〈X2

L〉 or 〈X4
L〉1/2 for

both ideal and approximate operation, so we can always find
the same Vmin at the instance when n̄t is large enough. The
situation differs for the phase-insensitive mixture of coherent
states, which in the limit of infinite energy the least variance
approaches the optimal value of 1/6 equivalent to 4.7 dB of
squeezing by the ideal operation. The minimum least variance
is given as Vmin = n̄2+4n̄+1

6n̄2+12n̄+3 and we reach the aforementioned
value of 1/6 in the limit n → ∞. Let us stress here that our
aim is not to generate large squeezing but to demonstrate the
generation of squeezing driven by a noise.

We note that the mechanical squeezing by vacuum states
in the optical mode is counterintuitive for the naturally
occuring Hamiltonian Hmem = n̂LX̂2

M . The difference between
this natural Hamiltonian and the simulating approximation
Htarget = X̂2

LX̂2
M when the light is in a thermal state is a

constant offset term of 1/2 arising from the operator relation
n̂L = (X̂2

L + P̂ 2
L − 1)/2. This relation can be translated for

a thermal light into an relation in averages as 〈n̂L〉 =
(〈X̂2

L〉 + 〈P̂ 2
L〉 − 1)/2 = 〈X̂2

L〉 − 1/2. The last offset term 1/2
is the cause of the squeezing by vacuum light for the target
Hamiltonian while no squeezing can be expected in the natural
optomechanics setup from the vacuum state of light.

The main limiting factor to the achievable squeezing is the
impurity of the generated state in mechanical mode arising
from an entanglement between the light and the mechanical
modes over the course of the interaction. For the initial ground
state in mechanical mode, the impurity can be quantified by the
deviation of the uncertainty product V−V+ from its value of 1/4
for pure Gaussian states or 
 = V−V+ − 1/4. We can relate
this impurity with the noise term in �22 [or var(X2

L)] as follows.
From (11) the product of variances are given as the determinant
of the covariance matrix V−V+ = �11�22 − �2

12. As the
covariance matrix can be decomposed into the parametric
squeezing σij and a noise c as (σ11 σ12

σ12 σ22 + c), the impurity is
given simply as 
 = cσ11. Considering σ11 is fixed in our case,
we can safely say that the variance c = 2t2var(X2

L) is the direct
cause of the increase in uncertainty. The impurities relative to
the duration of the interaction and the energy of the light mode
is shown in Fig. 4, and we notice that it monotonously increases
by more input photons and interaction time regardless of the
initial states in light mode and the thermal light imposes
the noise effect more strongly. Now as var(X2

L) = (1 + 4n̄ +

FIG. 4. (Color online) Impurities for (a) thermal light and (b)
phase-randomized light. Curves for (white) ideal and (gray) approxi-
mate operations are compared. We notice that the thermal light shows
a larger impurity due to a larger kurtosis.

4n̄2)/2 for the thermal state and var(X2
L) = (1 + 4n̄ + n̄2)/2

for the coherent state are related to the kurtosis, the larger noise
effect by a thermal state is explained clearly. The impurity of
the state is faithfully reflect by the approximation for small
parameters n̄ < 0.5 and t < 0.1.

IV. EXPERIMENTAL SIMULATION OF THE COUPLING

A practical scheme for experimental implementation is
necessary to study the effect of the nonlinear optomechanical
coupling in the all-optical regime. The full unitary operation
is beyond the capabilities of contemporary state-of-the-art
experiments, but the first-order approximation in (7) can be im-
plemented with X gates introduced in Ref. [18]. This method is
based on employing nonclassical ancillas together with weakly
reflective beam splitters and projective homodyne detections.
For example, if the ancillary mode in a superposition of zero
and one photon c0|0〉 + c1|1〉 is mixed at the beam splitters
with the signal and then measured by the homodyne detection,
a successful measurement heralds realization of an operation
c01̂ + c1X̂.

The nonlinear coupling (7) can be decomposed into a
sequence of two mode operations

Ô = (1 + (−it)1/2X̂1X̂2)(1 − (−it)1/2X̂1X̂2). (14)

The individual nonlocal operations jointly described by 1 +
cX̂1X̂2 can be realized by use of the above-mentioned method
when starting from a two-mode ancillary state |00〉 + c′|11〉
to implement two local X gates on the two modes of the
signal, as illustrated in Fig. 5(a). Realistic beam splitters with
transmissivity T implement an operation

exp
[−(1 − T 2)

(
a2

1 + a2
2

)]
× T n̂1+n̂2 (1 + 2c′(1 − T 2)/T 2X̂1X̂2), (15)

which approximates Ô in the limit of T → 1 with a suitable
resource state with c′ = ±(−it)1/2T 2/[2(1 − T 2)].

We also have a reliable way of preparing the required
resource state. One way of preparation employs a commonly
used two-mode squeezed vacuum state subject to quantum
scissors, but there exists a more experimentally feasible path.
We can start from a pair of single photons each generated by
spontaneous parametric down-conversion and heralded by a
single-photon measurement of the idler as in Fig. 5(b). Each
of these single photons is then split on a beam splitter with
transmissivity T ′ and two of the four resulting modes are mixed
together on another balanced beam splitter. These interacting
modes are then measured by a pair of homodyne detectors and
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FIG. 5. (Color online) (a) Our scheme for achieving an first-order
approximative operation in (7). BS, beam splitter; HD, homodyne
detection. (b) A scheme for generating the required two-photon
entangled ancillas from two separate single photons.

when these measurements yield values x1 = 0 and p2 = 0, the
remaining two modes are prepared in the desired state:

〈μ|UBS(T ′|10〉 + R′|01〉)12(R′|10〉 + T ′|01〉)34

= 〈μ|{T ′2|1〉1(|10〉 + |01〉)23|0〉4 + T ′2|1〉1|00〉23|1〉4

+ RT ′|0〉1(|10〉 − |01〉)23|1〉4

+ RR′|0〉1(|20〉 − |02〉)23|0〉4}
∝ T ′2|11〉14 + R′2|00〉14, (16)

where 〈μ| = 〈x = 0|2〈p = 0|3 represents the joint measure-
ment and UBS = 2−â†â/2e−√

2b̂†âe
√

2b̂â†
2b̂†b̂/2 stands for the

unitary operator of the balanced beam splitter.
If single-photon ancillas are not perfect and represented

by a mixed state p|1〉〈1| + (1 − p)|0〉〈0| with a probability
0 � p � 1, the operation performed by this scheme would
end up as a mixture of several operations, only one of
which corresponding to the perfect single-photon ancillas
applies the operation 1 + itX̂2

LX̂2
M , the source of the desired

squeezing. We find the minimum value pmin = 0.95 above
which our scheme achieves a squeezing below shot noise level
V−(t) � 0.5 at some range of parameters t .

V. CONCLUSION

Many interesting nonclassical effects arise due to high-
order nonlinear interactions in regimes which are still chal-
lenging to reach directly. Quantum optics has been pioneering

in testing physical effects at a proof-of-principle level. In this
paper we have proposed an all-optical method for simulating
a special kind of highly nonlinear optomechanical coupling
driven purely by a noise of light. The coupling we have
considered is peculiar in that it allows us to generate a strong
nonclassical coherent effect, a squeezing, from a noisy optical
pump. We have analyzed the effects and the limits both for
the ideal operation and the feasible finite approximation that
can be readily realized. This work is the first step towards
understanding nonlinear optomechanical couplings that go
well beyond the traditional linearized model.
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APPENDIX: OPTIMAL KURTOSIS STATES

In the following we are going to search for a completely
noisy quantum state that has the optimal possible value of
kurtosis for its energy. By completely noisy quantum state we
consider a state that is classical but without a determined phase.
Such a state can always be expressed as a classical mixture of
phase-randomized coherent states:

1

2π

∑
k

ck

∫ 2π

0
dφ|αke

iφ〉〈αke
iφ|, (A1)

where ck are probabilities for which
∑

k ck = 1 and |αk〉
denotes coherent states with discrete amplitudes αk’s. We
have chosen the discrete mixture for the sake of clarity,
but the argument can be straightforwardly generalized for
a continuous mixture. The second and fourth quadrature
moments for state (A1) can be found as

〈X2〉 = 2
∑

k ck|αk|2 + 1

2
,

〈X4〉 = 6
∑

k ck|αk|4 + 12
∑

k ck|αk|2 + 3

4
. (A2)

Therefore we can minimize the kurtosis by minimizing the
term

∑
ck|αk|4 while keeping the energy E = ∑

k ck|αk|2
fixed. If we take values |αk|2 as belonging to a random variable
Y with probabilities given by the coefficients ck , then we can
express the term we are interested in as∑

k

ck|αk|4 = 〈Y 2〉 = 〈Y 〉2 + var(Y ). (A3)

From here it can be easily seen that the kurtosis is minimized
when the mixture (A1) is composed only of states with the
same amplitude, because then and only then will the term
var(Y ) be zero. The optimal kurtosis is thus obtained for
a phase-randomized mixture of coherent states of the form
ρL = ∫ 2π

0 dφ|αeiφ〉〈αeiφ | with an amplitude α2 = n. For this
state, the kurtosis is

K = 6α4 + 12α2 + 3

4α4 + 4α2 + 1
− 3. (A4)
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