
PHYSICAL REVIEW A 92, 033811 (2015)

Bright solitons of the nonautonomous cubic-quintic nonlinear Schrödinger equation with
sign-reversal nonlinearity

Shally Loomba,* Ritu Pal, and C. N. Kumar†

Department of Physics, Panjab University, Chandigarh 160014, India
(Received 18 June 2015; published 8 September 2015)

In New J. Phys. 16, 053048 (2014), Wang et al. have experimentally demonstrated the formation of bright
solitons with repulsive nonlinearity and compared their results numerically by making use of the modified
nonlinear Schrödinger equation (NLSE) with constant coefficients. We have extended their study by making the
coefficients of NLSE time dependent, as they represent more realistic scenarios and are helpful in understanding
the physics of the system in a better way. We have then analytically presented the bright soliton solutions
with repulsive nonlinearity for the variable coefficient NLSE. These results have been obtained for the small
variation of the time-dependent localized cubic and quintic nonlinearities. Additionally, we have discussed other
possibilities which may support the formation of bright solitons in yttrium iron garnet thin film strips.
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I. INTRODUCTION

The term soliton refers to a nonlinear pulse or wave
packet which travels without spreading. There are two types
of envelope solitons, called dark and bright solitons, which
propagate in the nonlinear dispersive media. The fundamental
cause of their generation is modulation instability (MI). The
basic soliton formation is described in nonlinear systems by
various nonlinear evolution equations and one-dimensional
cubic nonlinear Schrödinger equation (NLSE) is one of those
fundamental equations.

The nature of the soliton is governed by the two factors,
namely, the dispersion D and the nonlinear N parameters. The
D signifies the curvature of the frequency versus wave number
dispersion and N represents the change in the carrier frequency
with signal amplitude. In general the sign of the product
of the dispersion and the nonlinearity parameter determines
which kind of soliton is exhibited by the nonlinear medium.
It has been shown that when DN < 0, one has attractive
nonlinearity and yields the formation of bright soliton, while
for DN > 0, one has repulsive nonlinearity and admits dark
soliton formation in a nonlinear dispersive media [1,2]. The
concept of cubic NLSE has been extended as the terms such
as self-steepening, self-frequency shift, Raman scattering,
potential, and higher order dispersion terms have been added
to it in order to describe the pulse propagation in various
nonlinear systems, as in optical fibers [3], Bose-Einstein
condensates (BECs) [4], negative-index materials [5], etc.
These nonlinear equations are referred as modified NLSE
or sometimes higher order nonlinear Schrödinger equation
(HNLSE). In Ref. [6] the MI of HNLSE has been studied,
and interestingly, the existence of MI has been demonstrated
in the normal group velocity dispersion (GVD) regime in the
presence of non-Kerr quintic nonlinearity. As discussed, with
MI being the precursor of soliton generation, the analysis done
in Ref. [6] indicates the possibility of observing solitons in the
normal GVD regime, contrary to their usual observation in
anomalous GVD regime. Hong obtained the optical solitary
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wave solutions for HNLSE by including non-Kerr terms
[7]. Additionally, the band gap structure and the properties
of the lattice solitons in the presence of periodic potential
have been investigated by employing HNLSE [8]. Besides
the discussed HNLSE in one dimension (1D), the coupled
NLSE equations including cubic-quintic nonlinearity have
been thoroughly explored in various contexts. In Ref. [9]
the integrability aspect of the coupled cubic-quintic NLSE
has been studied and the role of quintic nonlinearity on the
ultra-short-pulse propagation in a non-Kerr media has been
revealed. Qi et al. have presented the soliton interactions
for the coupled system that governs the pulse propagation
in twin-core nonlinear optical fibers and wave guides by
the applying Darboux transformation [10]. Very recently, the
coupled cubic-quintic NLSE model in two dimensions (2D)
has been analyzed to understand the drag forces in fluids
and in BECs [11]. To describe more realistic phenomena, the
inhomogeneities present in the nonlinear systems have also
been considered and the governing model equation becomes
variable-coefficient NLSE (vcNLSE) and is also known as
generalized NLSE (GNLSE). A great deal of research took
place on vcNLSE and GNLSE in different fields. Serkin
et al. have thoroughly explored the NLSE with time-dependent
coefficients and revealed the interesting dynamical properties
of solitons in BECs [12–14]. Additionally, vcNLSE has also
been employed to study the controllable behavior of breathers
and rogue waves in BECs [15–20]. The variable coefficient
NLSE has not only been used in BECs but has also been
exploited in the context of nonlinear optical fibers and wave
guides [21–30].

Recently, there has been a renewed interest in studying the
solitons in magnetic yttrium iron garnet (YIG) film strips. A
number of experimental studies took place in this regard and
they have successfully demonstrated the emergence of solitons
in YIG films [31–35]. They have been reported for various
magnetic field and propagation combinations such as surface
wave [36], forward-volume [37], and backward-volume wave
[31] configurations. In addition to experimental works, an-
alytical solutions [38] and numerical simulations have also
supported the occurrence of solitons in YIG films [33,35,39].
The occurrence of the dark solitons in YIG films has been
observed with repulsive [31] and attractive [33] nonlinearity.
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The existence of bright solitons with attractive nonlinearity
in YIG films was shown in 2005 [33]. Very recently, Wang
et al. have demonstrated the formation of bright solitons
with repulsive nonlinearity [39]. They have reproduced the
experimental results through numerical simulations by using
constant-coefficient modified NLSE. We are extending it and
are considering modified NLSE with variable coefficients as it
may be the starting point for a more realistic system, mentioned
above. The modified NLSE with time-dependent coefficients
is given as

iψt − D(t)

2
ψxx + N (t)|ψ |2ψ + S(t)|ψ |4ψ + ivg(t)ψx

+ iG(t)ψ = 0, (1)

where x and t are the normalized dimensionless variables.
Parameter D(t) denotes the dispersion coefficient, and N (t)
and S(t) represent the nonlinear cubic and quintic interactions.
The term proportional to vg(t) is associated with the group
velocity and G(t) describes the gain or loss term. The variants
of Eq. (1) have been employed to study the pulse propagation
in different nonlinear media [12,40–42]. In the absence of a
gain term, the model has been used to study the optical solitons
for the different types of nonlinearity such as parabolic, dual
power, etc. [43]. On replacing the variable t with z and for
vg = 0 Eq. (1) has been applied to investigate the propagation
dynamics of chirped and chirp-free self-similar solitary waves
in a soliton control system [44]. For S(t) = vg(t) = 0, the
model equation has been exploited to understand the dynamics
of topological optical solitons [45,46]. The aim of this paper is
to present the exact bright soliton solution for the vcNLSE
given by Eq. (1) for the repulsive cubic nonlinearity. The
exact analytical solutions will be obtained by using a technique
that involves the mapping of the variable coefficient modified
NLSE to the constant coefficient φ6 field equation through
the appropriate choice of ansatz. Similar methodology was
proposed by Serkin et al. to find a number of the novel
stable soliton management regimes for the variable coefficient
cubic-quintic NLSE [47].

The paper is organized as follows: In Sec. II we discuss the
methodology that has been employed to get soliton solution.
In Sec. III we present the exact form of analytical solutions
and reveal the role of various parameters on the soliton profile.
Concluding remarks and the future applications are given in
Sec. IV.

II. METHODOLOGY

We are interested to find the exact bright soliton solution
for Eq. (1). To do so we are choosing the ansatz

ψ(x,t) = ρ(t) exp[iθ (x,t)]φ[η(x,t)] (2)

with the phase θ (x,t) as

θ (x,t) = bx + c(t), (3)

where b is an arbitrary constant. The ρ(t), θ (x,t), φ[η(x,t)],
and c(t) are real functions.

On substituting Eq. (2) along with Eq. (3) in Eq. (1), it
reduces to

φηη + δφ + βφ3 + γφ5 = 0 (4)

for the following conditions:

η(x,t) = k1x + k2(t), (5)

N (t) = −βD(t)k2
1

2ρ2
, (6)

S(t) = −γD(t)k2
1

2ρ4
, (7)

G(t) = −ρt

ρ
, (8)

vg(t) = −k2t

k1
− D(t)b, (9)

ct = δD(t)k2
1

2
+ 1

2
Db2 − k2t

k1
b. (10)

δ, β, and γ are arbitrary constants while k1 and k2(t) are
associated with the width of the localized solution and its
center of mass location. Equation (1) admits a class of solutions
depending upon the nature of the cubic (N (t)) and quintic
(S(t)) nonlinearities. Since Eq. (1) has been reduced to Eq. (4)
for the set of conditions given by Eqs. (5)–(10) and Eq. (4)
can be mapped onto φ6 field equation, which is well known to
admit bright soliton, dark soliton, kink, double kink, and bell-
shaped solutions [48–50], one can obtain a variety of solutions
for Eq. (1). Being motivated by the experimental evidence on
the existence of bright solitons with repulsive nonlinearity in
YIG thin films [39] and in Bose-Einstein condensate [51], in
this paper we analytically obtain the bright soliton solutions
with repulsive nonlinearity.

III. EXACT ANALYTICAL SOLUTIONS

A. Bright soliton solution with repulsive cubic nonlinearity and
attractive quintic nonlinearity

As discussed, in order to obtain the analytical solutions
for Eq. (1), we have mapped it to Eq. (4) and introduced
the three arbitrary constants β, γ , and δ. It is clear from
Eqs. (6) and (7) that β and γ are associated with the cubic
and quintic nonlinearities, respectively. In this work we are
looking for bright solitons with repulsive cubic nonlinearity
and attractive quintic nonlinearity so it automatically fixes their
sign as β < 0 and γ > 0 for the negative sign of dispersion. δ

can be positive or negative. Now we present the bright soliton
solutions corresponding to the cases δ > 0, δ < 0, and δ = 0.

Case I. For δ > 0, Eq. (1) admits bright soliton of the
following form:

ψ(x,t) = ρ(t)p
√

1 + sech[qη] exp[iθ (x,t)], (11)

where p2 = − 8δ
5β

, q2 = 4δ
5 , and γ = 15β2

64δ
with γ > 0 and

β < 0. The phases θ and η are given by Eqs. (3) and (5),
respectively. We have plotted the intensity profile of bright
soliton and the corresponding gain and nonlinear parameters in
Figs. 1 and 2 for the two cases. The two different choices have
been made through the different forms of dispersion parameter
D(t). Clearly, the variations of the nonlinear terms N (t) and
S(t) are very small and exist only in a small time window,
while they get saturated at larger times. On comparing Figs. 1
and 2, we infer that under the influence of the same gain G(t)
the variation of the nonlinear terms can be controlled or tuned
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FIG. 1. (Color online) (a) Intensity profile of bright soliton, (b)
gain profile, (c) profile of cubic nonlinearity, and (d) profile of
quintic nonlinearity. The other parameters are β = −0.35,δ = 1,
ρ = sech[t], D = −sech5[t], k1 = 0.4, k2 = t , b = 1.

through D(t). Thus one can observe the bright soliton with
repulsive nonlinearity by suitably tuning these parameters.

It is worth mentioning that if we choose ρ to be constant,
then Eq. (8) reveals that it leads to the vanishing of the gain
term. The corresponding intensity plot of the bright soliton
and the profiles of the nonlinear terms have been plotted in
Fig. 3. We can conclude that the absence of gain term not only
decreases the amplitude of the bright soliton but also causes
it to appear on a constant background in contrast to Figs. 1
and 2. Moreover, switching off the gain term leads to the
modifications of the profiles of nonlinear terms. In addition
to ρ, if we make the dispersion term constant, then Eq. (1)
will reduce to the NLSE given in Ref. [39] with the gain term
absent.

FIG. 2. (Color online) (a) Intensity profile of bright soliton, (b)
gain profile, (c) profile of cubic nonlinearity, and (d) profile of
quintic nonlinearity. The other parameters are β = −0.35,δ = 1,
ρ = sech[t], D = − exp[−t2], k1 = 0.4, k2 = t , b = 1.

FIG. 3. (Color online) (a) Intensity profile of bright soliton, (b)
profile of cubic nonlinearity, and (c) profile of quintic nonlinearity.
The other parameters are β = −0.5,δ = 1, ρ = 1, D = − exp[−t2],
k1 = 0.5, k2 = t , b = 1.

Case II. For δ < 0, Eq. (1) exhibits the other kind of bright
soliton which is given as

ψ(x,t) = ρ(t)
P sech[Qη]√

1 − R tanh2[Qη]
exp[iθ (x,t)], (12)

where Q2 = −δ, P 2 = 2(1+R)δ
β

, and γ = 3β2R

4δ(1+R)2 with β < 0,
γ > 0, and R < −1. η is given by Eq. (5) and the phase θ can
be obtained by using Eq. (3). The intensity of bright soliton
and the profile of the gain and the nonlinear terms are shown
in Fig. 4. It is interesting to mention that the solution given in

FIG. 4. (Color online) (a) Intensity profile of bright soliton, (b)
gain profile, (c) profile of cubic nonlinearity, and (d) profile of quintic
nonlinearity. The other parameters are β = −0.35,δ = −1.5, ρ =
sech[t], D = − exp[−t2], k1 = 0.4, k2 = t , b = 1.
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FIG. 5. (Color online) (a) Intensity profile of bright soliton, (b)
gain profile, (c) profile of cubic nonlinearity, and (d) profile of quintic
nonlinearity. The other parameters are β = −1,γ = 1, ρ = 1.1 +
0.5 cos[t], D = − exp[−t2], k1 = 0.5, k2 = t , b = 1.

Eq. (12) also exists for the following cases:

0 < R < 1, δ < 0, β > 0, γ < 0, (13)

− 1 < R < 0, δ < 0, β > 0, γ > 0. (14)

The set of conditions mentioned in Eq. (13) refers to the case of
attractive cubic nonlinearity and repulsive quintic nonlinearity
while the conditions given in Eq. (14) depict the case where
both nonlinearities are attractive in nature. Thus by suitably
choosing the value of R one can have bright solitons for
the different combinations of the nonlinear terms. We have
discussed the existence of bright solitons for the cases when δ

is positive and negative. For the sake of completeness we also
report the form of the analytical solution permitted by Eq. (1)
when δ = 0.

Case III. For δ = 0, Eq. (1) possesses the following
algebraic solution for the repulsive cubic nonlinearity and
attractive quintic nonlinearity

ψ(x,t) = ρ(t)
1√

A + Bη2
exp[iθ (x,t)], (15)

where A = − 2γ

3β
, B = − β

2 , with γ > 0 and β < 0. η is given
by Eq. (5). The exact form of the phase θ can be worked out by
solving Eq. (3). The intensity profile and the other parameters
like G(t), N (t), and S(t) have been plotted in Fig. 5. The profile
of the nonlinear terms is similar to that in Fig. 1 but instead
of a single soliton [Fig. 1(a)] we get periodic emergence of
solitons due to the presence of periodic gain.

B. Bright soliton in the absence of cubic nonlinearity

If we exclude the cubic nonlinearity term N (t) by putting
β = 0, then Eq. (1) possesses the bright soliton solution of the
form

ψ(x,t) = ρ(t)p1

√
sech[q1η] exp[iθ (x,t)], (16)

FIG. 6. (Color online) (a) Intensity profile of bright soliton, (b)
gain profile, and (c) profile of quintic nonlinearity. The other
parameters are γ = 0.1,δ = −1, ρ = sech[t], D = sech5[t], k1 =
0.4, k2 = t , b = 1.

where p1 = (− 3δ
γ

)1/4, q2
1 = −4δ, with δ < 0 and γ > 0. η can

be obtained from Eq. (5). The exact form of the phases θ and
η can be worked out by using Eqs. (3) and (5), respectively.

In Fig. 6(a) we have plotted the intensity of bright soliton.
The profiles of the gain and the quintic nonlinearity have been
shown in Figs. 6(b) and 6(c), respectively. Clearly, here the
sign of the dispersion term D(t) is positive and the variation
of quintic nonlinearity S(t) is negative, which reflects the
case of attractive nonlinearity. So here we have demonstrated
that the bright soliton can exist even in the absence of cubic
nonlinearity, provided the system is under the influence of
attractive quintic nonlinearity.

C. Bright soliton in the absence of quintic nonlinearity

If we eliminate the quintic term by putting γ = 0 Eq. (1) still
supports the bright soliton solution of the form

ψ(x,t) = ρ(t)p2sech[
√

q2η] exp[iθ (x,t)], (17)

where p2 =
√

−2δ
β

, q2 = √−δ with δ < 0 and β > 0. Here,

η is given by Eq. (5). The exact form of the phase θ can be
worked out by using Eq. (3). The intensity of the bright soliton
is shown in Fig. 7(a). The gain and the nonlinearity parameter
are drawn in Figs. 7(b) and 7(c), respectively. We have found
that the periodic gain yields the periodic occurrence of bright
solitons on a constant background. Again, the existence of the
bright soliton in the absence of quintic nonlinearity has been
supported by attractive cubic nonlinearity.

We have found that if one of the nonlinear terms, either
cubic or quintic, is switched off, then the bright soliton exists
only for attractive nonlinearity. On the other hand, one can
observe the bright soliton with repulsive nonlinearity only
if both nonlinear terms, cubic and quintic, are simultane-
ously present. This is happening because the quintic term
(S(t)|ψ |4ψ) overcomes the cubic term (N (t)|ψ |2ψ), which
in turn leads to a repulsive to attractive nonlinear transition
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FIG. 7. (Color online) (a) Intensity profile of bright soliton, (b)
gain profile, and (c) profile of cubic nonlinearity. The other parameters
are β = 0.5,δ = −1, ρ = 1.1 + 0.7 cos[t], D = 1, k1 = 0.2, k2 = t ,
b = 1.

and the formation of a bright soliton. As the variation of
the coefficients is very small, our analytical results support
the formation of bright solitons with repulsive nonlinearity in
magnetic thin films [39]. Additionally, we have also predicted
the other possible combinations of the cubic and quintic
nonlinear terms that can support bright solitons.

IV. CONCLUSION

We have shown the existence of bright solitons for the
variable coefficient modified NLSE. The exact solutions have
been obtained by choosing an ansatz which maps the vcNLSE
to the φ6 field equation for certain conditions among the

equation parameters. The explicit forms of the solutions have
been presented by borrowing the solutions of the φ6 field
equation and inserting them in the chosen ansatz. In principle,
our results are valid for any well-defined functional form of the
distributive parameters and their specific forms can be chosen
depending upon the system under study. In this work we have
considered the localized parameters whose variation with time
is very small so that they can be mapped to study the solitons in
YIG thin films. Our analytical results support the formation of
bright solitons with repulsive nonlinearity, which has recently
been demonstrated experimentally in Ref. [39].

We have analytically revealed the role of nonlinear pa-
rameters on the formation of bright solitons in YIG thin
films and their occurrence in the same have already been
supported experimentally [39]. The next possibility is to study
the applications of solitons in optical nonlinear logic gates
in YIG thin films. Recently, a number of experimental works
have shown utility of spatial solitons in constructing optical
logic gates in different nonlinear media such as in azobenzene
liquid crystalline cells [52], nematic liquid crystals [53], 85Rb
vapors [54], etc. Additionally, in Ref. [55] the existence of
solitons has been demonstrated by taking into account the
fifth-seventh (focusing-defocusing) refractive nonlinearities.
The applications of solitons in logic gates have not only
been studied experimentally but also have been explored
numerically by using NLSE [56–59]. In order to discuss
the soliton logic gates in YIG films analytically, we need to
consider the soliton interactions. To incorporate that we require
two-soliton solutions for Eq. (1). This work is currently in
progress.
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063835 (2014).

[56] J. Scheuer and M. Orenstein, J. Opt. Soc. Am. B 22, 1260 (2005).
[57] Y. Kubota and T. Odagaki, Adv. App. Phys. 1, 29 (2013).
[58] M. Xu, Y. Li, T. Zhang, J. Luo, J. Ji, and S. Yang, Opt. Exp. 22,

8349 (2014).
[59] A. G. Coelho, M. B. C. Costa, A. C. Ferreira, M. G. da Silva,

M. L. Lyra, and A. S. B. Sombra, J. Light. Tech. 31, 731 (2013).

033811-6

http://dx.doi.org/10.1016/j.physleta.2014.05.028
http://dx.doi.org/10.1016/j.physleta.2014.05.028
http://dx.doi.org/10.1016/j.physleta.2014.05.028
http://dx.doi.org/10.1016/j.physleta.2014.05.028
http://dx.doi.org/10.1016/j.optcom.2014.03.043
http://dx.doi.org/10.1016/j.optcom.2014.03.043
http://dx.doi.org/10.1016/j.optcom.2014.03.043
http://dx.doi.org/10.1016/j.optcom.2014.03.043
http://dx.doi.org/10.1364/OL.32.001659
http://dx.doi.org/10.1364/OL.32.001659
http://dx.doi.org/10.1364/OL.32.001659
http://dx.doi.org/10.1364/OL.32.001659
http://dx.doi.org/10.1007/s11071-012-0616-7
http://dx.doi.org/10.1007/s11071-012-0616-7
http://dx.doi.org/10.1007/s11071-012-0616-7
http://dx.doi.org/10.1007/s11071-012-0616-7
http://dx.doi.org/10.1016/j.optcom.2011.03.033
http://dx.doi.org/10.1016/j.optcom.2011.03.033
http://dx.doi.org/10.1016/j.optcom.2011.03.033
http://dx.doi.org/10.1016/j.optcom.2011.03.033
http://dx.doi.org/10.1103/PhysRevE.64.056604
http://dx.doi.org/10.1103/PhysRevE.64.056604
http://dx.doi.org/10.1103/PhysRevE.64.056604
http://dx.doi.org/10.1103/PhysRevE.64.056604
http://dx.doi.org/10.1016/j.physleta.2008.04.057
http://dx.doi.org/10.1016/j.physleta.2008.04.057
http://dx.doi.org/10.1016/j.physleta.2008.04.057
http://dx.doi.org/10.1016/j.physleta.2008.04.057
http://dx.doi.org/10.1103/PhysRevLett.90.113902
http://dx.doi.org/10.1103/PhysRevLett.90.113902
http://dx.doi.org/10.1103/PhysRevLett.90.113902
http://dx.doi.org/10.1103/PhysRevLett.90.113902
http://dx.doi.org/10.1016/j.optcom.2012.12.088
http://dx.doi.org/10.1016/j.optcom.2012.12.088
http://dx.doi.org/10.1016/j.optcom.2012.12.088
http://dx.doi.org/10.1016/j.optcom.2012.12.088
http://dx.doi.org/10.1103/PhysRevLett.70.1707
http://dx.doi.org/10.1103/PhysRevLett.70.1707
http://dx.doi.org/10.1103/PhysRevLett.70.1707
http://dx.doi.org/10.1103/PhysRevLett.70.1707
http://dx.doi.org/10.1103/PhysRevLett.93.157207
http://dx.doi.org/10.1103/PhysRevLett.93.157207
http://dx.doi.org/10.1103/PhysRevLett.93.157207
http://dx.doi.org/10.1103/PhysRevLett.93.157207
http://dx.doi.org/10.1103/PhysRevB.71.174440
http://dx.doi.org/10.1103/PhysRevB.71.174440
http://dx.doi.org/10.1103/PhysRevB.71.174440
http://dx.doi.org/10.1103/PhysRevB.71.174440
http://dx.doi.org/10.1103/PhysRevLett.80.4301
http://dx.doi.org/10.1103/PhysRevLett.80.4301
http://dx.doi.org/10.1103/PhysRevLett.80.4301
http://dx.doi.org/10.1103/PhysRevLett.80.4301
http://dx.doi.org/10.1103/PhysRevB.91.174418
http://dx.doi.org/10.1103/PhysRevB.91.174418
http://dx.doi.org/10.1103/PhysRevB.91.174418
http://dx.doi.org/10.1103/PhysRevB.91.174418
http://dx.doi.org/10.1016/0038-1098(90)90471-M
http://dx.doi.org/10.1016/0038-1098(90)90471-M
http://dx.doi.org/10.1016/0038-1098(90)90471-M
http://dx.doi.org/10.1016/0038-1098(90)90471-M
http://dx.doi.org/10.1103/PhysRevLett.59.481
http://dx.doi.org/10.1103/PhysRevLett.59.481
http://dx.doi.org/10.1103/PhysRevLett.59.481
http://dx.doi.org/10.1103/PhysRevLett.59.481
http://dx.doi.org/10.1063/1.365155
http://dx.doi.org/10.1063/1.365155
http://dx.doi.org/10.1063/1.365155
http://dx.doi.org/10.1063/1.365155
http://dx.doi.org/10.1088/1367-2630/16/5/053048
http://dx.doi.org/10.1088/1367-2630/16/5/053048
http://dx.doi.org/10.1088/1367-2630/16/5/053048
http://dx.doi.org/10.1088/1367-2630/16/5/053048
http://dx.doi.org/10.1103/PhysRevE.79.025602
http://dx.doi.org/10.1103/PhysRevE.79.025602
http://dx.doi.org/10.1103/PhysRevE.79.025602
http://dx.doi.org/10.1103/PhysRevE.79.025602
http://dx.doi.org/10.2528/PIERL09070804
http://dx.doi.org/10.2528/PIERL09070804
http://dx.doi.org/10.2528/PIERL09070804
http://dx.doi.org/10.2528/PIERL09070804
http://dx.doi.org/10.1016/j.physleta.2009.11.030
http://dx.doi.org/10.1016/j.physleta.2009.11.030
http://dx.doi.org/10.1016/j.physleta.2009.11.030
http://dx.doi.org/10.1016/j.physleta.2009.11.030
http://dx.doi.org/10.1016/j.cnsns.2009.09.029
http://dx.doi.org/10.1016/j.cnsns.2009.09.029
http://dx.doi.org/10.1016/j.cnsns.2009.09.029
http://dx.doi.org/10.1016/j.cnsns.2009.09.029
http://dx.doi.org/10.1016/j.optcom.2009.11.082
http://dx.doi.org/10.1016/j.optcom.2009.11.082
http://dx.doi.org/10.1016/j.optcom.2009.11.082
http://dx.doi.org/10.1016/j.optcom.2009.11.082
http://dx.doi.org/10.1016/j.cnsns.2008.12.014
http://dx.doi.org/10.1016/j.cnsns.2008.12.014
http://dx.doi.org/10.1016/j.cnsns.2008.12.014
http://dx.doi.org/10.1016/j.cnsns.2008.12.014
http://dx.doi.org/10.1007/s10773-008-9800-4
http://dx.doi.org/10.1007/s10773-008-9800-4
http://dx.doi.org/10.1007/s10773-008-9800-4
http://dx.doi.org/10.1007/s10773-008-9800-4
http://dx.doi.org/10.1117/12.424706
http://dx.doi.org/10.1117/12.424706
http://dx.doi.org/10.1117/12.424706
http://dx.doi.org/10.1117/12.424706
http://dx.doi.org/10.1103/PhysRevD.12.1606
http://dx.doi.org/10.1103/PhysRevD.12.1606
http://dx.doi.org/10.1103/PhysRevD.12.1606
http://dx.doi.org/10.1103/PhysRevD.12.1606
http://dx.doi.org/10.1007/BF02847222
http://dx.doi.org/10.1007/BF02847222
http://dx.doi.org/10.1007/BF02847222
http://dx.doi.org/10.1007/BF02847222
http://dx.doi.org/10.1103/PhysRevA.84.063830
http://dx.doi.org/10.1103/PhysRevA.84.063830
http://dx.doi.org/10.1103/PhysRevA.84.063830
http://dx.doi.org/10.1103/PhysRevA.84.063830
http://dx.doi.org/10.1103/PhysRevLett.92.230401
http://dx.doi.org/10.1103/PhysRevLett.92.230401
http://dx.doi.org/10.1103/PhysRevLett.92.230401
http://dx.doi.org/10.1103/PhysRevLett.92.230401
http://dx.doi.org/10.1109/LPT.2006.875318
http://dx.doi.org/10.1109/LPT.2006.875318
http://dx.doi.org/10.1109/LPT.2006.875318
http://dx.doi.org/10.1109/LPT.2006.875318
http://dx.doi.org/10.1063/1.1519101
http://dx.doi.org/10.1063/1.1519101
http://dx.doi.org/10.1063/1.1519101
http://dx.doi.org/10.1063/1.1519101
http://dx.doi.org/10.1103/PhysRevA.90.063806
http://dx.doi.org/10.1103/PhysRevA.90.063806
http://dx.doi.org/10.1103/PhysRevA.90.063806
http://dx.doi.org/10.1103/PhysRevA.90.063806
http://dx.doi.org/10.1103/PhysRevA.90.063835
http://dx.doi.org/10.1103/PhysRevA.90.063835
http://dx.doi.org/10.1103/PhysRevA.90.063835
http://dx.doi.org/10.1103/PhysRevA.90.063835
http://dx.doi.org/10.1364/JOSAB.22.001260
http://dx.doi.org/10.1364/JOSAB.22.001260
http://dx.doi.org/10.1364/JOSAB.22.001260
http://dx.doi.org/10.1364/JOSAB.22.001260
http://dx.doi.org/10.1364/OE.22.008349
http://dx.doi.org/10.1364/OE.22.008349
http://dx.doi.org/10.1364/OE.22.008349
http://dx.doi.org/10.1364/OE.22.008349
http://dx.doi.org/10.1109/JLT.2012.2232641
http://dx.doi.org/10.1109/JLT.2012.2232641
http://dx.doi.org/10.1109/JLT.2012.2232641
http://dx.doi.org/10.1109/JLT.2012.2232641



