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Stability conditions for one-dimensional optical solitons in cubic-quintic-septimal media
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Conditions for stable propagation of one-dimensional bright spatial solitons in media exhibiting optical
nonlinearities up to the seventh order are investigated. The results show well-defined stability regions even when
all the nonlinear terms are focusing. Conditions for onset of the supercritical collapse of the optical beam are
identified too. A variational approximation (VA) is used to predict dependence of the soliton’s propagation constant
on the norm, and the respective stability regions are identified using the Vakhitov-Kolokolov criterion. Analytical
results obtained by means of the VA are corroborated by numerical simulations of the cubic-quintic-septimal
nonlinear Schrödinger equation.
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I. INTRODUCTION

Optical spatial solitons are self-trapped light beams whose
shape and transverse dimension remain invariant in the
course of propagation, due to the balance between diffraction
and nonlinearity [1]. Different physical mechanisms may
contribute to the generation of spatial solitons in nonlinear
(NL) media [2]. Currently, the studies of spatial solitons
constitute a very active field, with a potential for applications
to photonics and optical communications [2–5]. In particular,
it is well established that focusing Kerr-type media support
the stable propagation of bright solitons in one transverse
dimension [(1+1)D] [6]. Usually, the soliton’s dynamics
is described by the cubic nonlinear Schrödinger equation
(C-NLSE), which gives rise to the commonly known stable
solution with the hyperbolic-secant envelope shape. Unstable
soliton propagation is observed in (1+1)D when the system
exhibits higher-order nonlinearities (HONs) [7]. For example,
in focusing quintic NL media the diffraction effect is not
sufficient to balance the self-focusing, and consequently the
beam is subject to critical collapse [8]. However, the inclusion
of higher-order dissipative terms can suppress the collapse. In
two transverse dimensions [(2 + 1)D], the stationary soliton
solutions of the C-NLSE (Townes’ solitons) are extremely un-
stable against propagation [9]. Therefore they are not observed
in the usual Kerr media [10], although stable propagation
can be observed when refractive and/or dissipative HONs are
considered.

Large HONs were reported in various physical settings
[11], playing an important role for the understanding of
filamentation [12], harmonic conical diffraction [13], and other
transverse NL phenomena [14–16]. In particular, as mentioned
above, HONs may help to stabilize the propagation of spatial
solitons. The theoretical analysis shows that the formation of
(1+1)D spatial solitons depends on the sign and magnitude
of the third- and fifth-order NL terms [17]. In (2 + 1)D,
stable soliton solution of the cubic-quintic NL Schrödinger
equation (CQ-NLSE) was predicted by considering the compe-
tition between focusing third-order and defocusing fifth-order
nonlinearities [18]. The experimental observation of stable
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(2 + 1)D fundamental solitons in cubic-quintic media, includ-
ing a dissipative effect due to the three-photon absorption, was
recently reported [19].

Several works dealt with the stable propagation of solitons
in media with other modifications of cubic-quintic nonlin-
earities [20]. In addition to the cubic and quintic terms,
septimal nonlinearity may also play an important role for
the propagation of spatial solitons. Recently, (2 + 1)D bright
spatial solitons were reported in metal colloids exhibiting
quintic-septimal (focusing-defocusing) nonlinearity. Their be-
havior was modeled by the quintic-septimal NL Schrödinger
equation (QS-NLSE) with dissipative terms [21].The nonlin-
earity management of NL systems, i.e., adjustment of the
strength of the nonlinear terms, may allow controlled interplay
between different NL terms, which leads to enhancement or
suppression of specific HONs [14,15,21,22]. In particular,
a quintic medium with suppressed cubic nonlinearity was
created in metal colloids by varying the volume fraction
of silver nanoparticles (NPs) in acetone [14]. Based on a
similar procedure of nonlinearity management, a septimal
medium was obtained by inducing a destructive interplay
between cubic and quintic nonlinearities [15]. The availability
of the management technique, which was experimentally
demonstrated in Refs. [14,15], justifies the theoretical effort to
study the respective mathematical models.

A special case, which was studied, thus far, only theoret-
ically, is critical collapse in focusing quintic media in the
absence of the third-order nonlinearity. The corresponding
model is provided by the quintic NL Schrödinger equation
(Q-NLSE), which displays a degenerate family of 1D Townes’
solitons [23]. The addition of an external potential allows
one to arrest the beam collapse in one [23] and two [24]
transverse dimensions. In focusing cubic-quintic media, the
cubic nonlinearity lifts the degeneracy that is characteristic of
the Townes’ solitons, making the solitons’ propagation stable
against small perturbations [25]. Another case of interest is
the study of the spatial-soliton propagation in septimal media.
A highly unstable behavior, due to the high degree of the
seventh-order nonlinearity, is expected, and hence HONs can
give rise to a supercritical collapse of the beam. Thus, the
study of the cubic-quintic-septimal NL model is relevant to
complement the previous studies, and it can suggest additional
possibilities for experiments.
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In this work, conditions for the stable propagation of
(1+1)D spatial solitons in media exhibiting nonlinearities
up to the seventh order are analyzed. Section II presents
the analytical model, based on the cubic-quintic-septimal
NL Schrödinger equation (CQS-NLSE), for the description
of the (1+1)D spatial-soliton propagation. A variational
approximation (VA), based on the raised-sech ansatz [26],
and the Vakhitov-Kolokolov (VK) stability criterion [27] are
used to identify stability and instability regions of the soliton
propagation. Section III demonstrates the evolution of stable
and unstable fundamental solitons produced by numerical
simulations of the (1+1)D CQS-NLSE, which corroborate the
analytical predictions reported in Sec. II. A summary of the
results is presented in Sec. IV.

II. THE ANALYTICAL APPROXIMATION FOR THE
CUBIC-QUINTIC-SEPTIMAL MODEL

The normalized (1+1)D CQS-NLSE, which describes light
propagation with one transverse dimension, in a medium
exhibiting nonlinearities up to the seventh order, is

i
∂ψ

∂z
+ 1

2

∂2ψ

∂x2
+ g3ψ |ψ |2 + g5ψ |ψ |4 + ψ |ψ |6 = 0, (1)

where ψ = ψ(x,z) is the normalized field amplitude, while g3,
g5 and g7 ≡ +1 represent the strengths of the third, quintic, and
septimal NL terms, respectively. The dimensionless variables
x and z are the transverse and propagation coordinates. The
stability of the spatial solitons was studied by varying g3 and
g5. We stress that the models in which the magnitudes of g3, g5,
and g7 are comparable, or, in some cases, g7 is dominant, do
not violate the convergence principle of the power-series ex-
pansion. A clear example of that was observed experimentally
in the NL behavior of metal-dielectric nanocomposites, and
theoretically analyzed using the generalized Maxwell-Garnett
model [14,15].

Stationary solutions of Eq. (1) with a real propagation
constant k have the form of ψ(x,z) = eikzφ(x), with the real
function φ = φ(x) obeying the stationary equation

0 = −kφ + 1

2

d2φ

dx2
+ g3φ

3 + g5φ
5 + φ7. (2)

An effective potential energy U can be defined by casting
Eq. (2) into the form of ∂2φ/∂x2 = −∂U/∂φ. Therefore, the
corresponding Lagrangian density L = (φ′)2

/2 − U is given
by

L = 1
2 (φ′)2 + kφ2 − 1

2g3φ
4 − 1

3g5φ
6 − 1

4φ8. (3)

As in the case of the Q-NLSE, Eq. (1) is nonintegrable;
hence the VA is necessary to predict conditions for stable
soliton propagation. Taking into regard the commonly known
fact that, for the ordinary cubic nonlinearity, the exact solution
for the (1+1)D C-NLSE is φ(x) ∝ sech(

√
2kx), we here adopt

the raised-sech ansatz [26]

φ(x) = � [sech(
√

2kx)]α, (4)

where � and α are variational parameters. This ansatz allows
one to control the beam’s radius by changing the parameter α.

The total power P = ∫ ∞
−∞ [φ(x)]2dx of ansatz (4) is

P = �2
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1
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)
]
, (5)

where � is the Gamma-function. Then, by substituting the
raised-sech ansatz into Eq. (3) and integrating over the 1D
space, the following expression for the effective Lagrangian is
obtained:
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The respective Euler-Lagrange equations for the variational
parameters, ∂L/∂P = 0 and ∂L/∂α = 0, lead to the following
system of equations:
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where �′ is the derivative of the Gamma-function. Due to their
complexity, Eqs. (7) and (8) had to be solved numerically.

Figure 1 shows results obtained by numerical solution of
the full stationary version of the CQS-NLSE, Eq. (2) (circles
and triangles), and produced by the VA (dashed lines), i.e., by
the numerical solution of Eqs. (7) and (8). The red line and
circles illustrate the dependence of the propagation constant
k on the soliton’s power P for the septimal-only medium
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FIG. 1. (Color online) The soliton propagation constant k versus
the total power P for media with suppressed third-order nonlinearity
(g3 = 0). Discrete points correspond to the solution of Eq. (2) with
g5 = 0 (circles) and g5 = 1 (triangles). Dashed lines were obtained
using the variational approximation.

(g3 = 0, g5 = 0), while the blue line and the triangles display
the same for a quintic-septimal medium (g3 = 0, g5 �= 0). The
soliton’s stability regions were identified on the basis of the VK
stability criterion [27] ∂P/∂k > 0. For the two cases shown in
Fig. 1 we observe ∂P /∂k < 0, indicating that the spatial soliton
is unstable in the septimal-only and quintic-septimal media.
We recall that the quintic-only medium also gives rise to the
instability [9]. In the present case, the addition of the positive
seventh-order term leads to additional strong self-focusing,
which may result in a supercritical collapse, as shown below.

FIG. 2. (Color online) Dependence of the soliton propagation
constant k on the total power P obtained from solution of Eq. (2)
and from the variational approximation for media with g3 = 1 and
g5 = −1 (red line and circles), g5 = 0 (blue line and triangles), and
g5 = 1 (black line and squares). Solid (dashed) lines represent stable
(unstable) solitons, as per the VK criterion.

FIG. 3. (Color online) The maximum power Pmax admitting the
stable soliton propagation in media, as per the VK criterion, with
the focusing cubic nonlinearity (g3 = 1) and different values of the
quintic coefficient g5.

By contrast, when the focusing cubic nonlinearity is also
present (g3 > 0), regions of stability are observed for different
values of g5, as shown in Fig. 2, where the third- and seventh-
order nonlinearities are fixed to be g3 = +1 and g7 = +1,
respectively. In that figure, solid (dashed) lines correspond to
regions of stable (unstable) soliton propagation, identified by
∂P/∂k > 0 (∂P/∂k < 0). Also, it is possible to observe that
the maximum power Pmax for the stable soliton propagation
in media with g5 = −1 (red line and circles) is larger than in
the medium with g5 = 0 (blue line and triangles), and larger
too than in the medium with g5 = +1 (black line and squares).
The negative (defocusing) fifth-order nonlinearity balances the
self-focusing effect, enlarging the stability region, while the
positive (focusing) fifth-order term accelerates the onset
of the critical self-focusing.

To extend these conclusions, numerical solutions of
Eqs. (2), (7), and (8) were obtained for various values of g5

between −1.5 and +1.5, with fixed g3 = +1. For each value of
g5, the maximum power Pmax which allows the stable soliton
propagation was found. Figure 3 shows that, with the growth of
the quintic nonlinearity (going from negative to positive, i.e.,
from defocusing to focusing), the stability region for the soliton
propagation is reduced. Therefore, large negative values of g5

help to stabilize the soliton, while large positive values of g5

promote the onset of the collapse, even at low powers.
From the analysis of Figs. 1–3, we conclude that the VA

using the raised-sech ansatz adequately describes the spatial
soliton propagation in media exhibiting nonlinearities up to
the seventh order.

III. NUMERICAL SIMULATIONS OF THE (1+1)D
CUBIC-QUINTIC-SEPTIMAL NONLINEAR

SCHRÖDINGER EQUATION

The beam propagation in the present model was simulated
by solving numerically the full CQS-NLSE, Eq. (1), using the
split-step compact finite-difference method [28]. Stability and
instability regions, predicted by the VA with the help of the
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FIG. 4. (Color online) The supercritical collapse of the beam
produced by numerical solutions of the CQS-NLSE in media with
the third-order nonlinearity suppressed (g3 = 0) and (a) g5 = 0; (b)
g5 = 1. Here and in Fig. 5, the region after the onset of the collapse is
not displayed, as simulations of the present model are not sufficient
for tracing the postcollapse evolution.

VK criterion, were verified by using the raised-sech ansatz,
given by Eq. (4), as the input for the direct simulations.

Figure 4 exhibits the beam’s collapse in the medium
without third-order nonlinearity, after a very small propagation
distance. Figure 4(a) corresponds to the beam propagation
in the septimal-only medium (g3 = g5 = 0), for the soli-
ton propagation constant k = 1, with the respective values
P = 1.51 and α = 1.97 obtained from Eqs. (7) and (8).
Strong self-focusing is observed at z ≈ 1.3, resulting in the
formation of jets induced by the seventh-order nonlinearity
(the supercritical collapse). A still faster collapse is observed
by adding the focusing quintic term (g3 = 0, g5 = +1), which
additionally contributes to the development of the collapse,
as shown in Fig. 4(b). The values of k = 1, P = 1.23, and
α = 1.90, predicted by the VA, were used to construct the input
beam for the simulations of the quintic-septimal medium. In
both cases, unstable propagation of spatial solitons is observed
due to the dominant role of the septimal nonlinearity, in
agreement with Fig. 1.

Figure 5 shows the predicted beam propagation in the
cubic-quintic-septimal medium, for different values of k.
Figures 5(a)–5(d) exhibit a stable family of solitons obtained
by solving the CQS-NLSE with g3 = +1 and g5 = +1.
For values of k and P below the limit values for the
stable propagation (kmax, Pmax) = (1.19, 1.11), it is possible
to observe the formation of periodically oscillating breathers,
probably due to a small inaccuracy of the input with respect
to the exact wave form. On the other hand, Figs. 5(e) and 5(f)
show the collapse for (k = 1.5, P = 1.11) and (k = 2.0, P =
1.10), respectively. Thus, the stability boundaries, predicted
by the VA in combination with the VK criterion, enable the
identification of the stability boundaries, which separate the
formation of the fundamental soliton and the collapse, with
good accuracy.

Additional simulations of Eq. (1) were performed to
confirm the predictions of the VA. In particular, similar results

FIG. 5. (Color online) The evolution of stable and unstable
fundamental solitons in the focusing cubic-quintic-septimal me-
dia (g3 = 1, g5 = 1) with values of (k, P, α) taken as (a)
(10−4, 0.05, 1.47), (b) (0.05, 0.63, 1.48), (c) (0.3, 1.0, 1.60), (d)
(1, 1.11, 1.69), (e) (1.5, 1.11, 1.70), and (f) (2, 1.10, 1.77).

were obtained for the media with (g3 = +1, g5 = −1) and
(g3 = +1, g5 = 0), in agreement with Fig. 2.

From the experimental point of view, suitable conditions
for observing stability regions, as well as the critical and
supercritical collapse, may be provided by the nonlinearity
management procedure reported in Refs. [14,15,21]. In par-
ticular, HONs were observed with peak powers of a few
kilowatts, using picosecond pulses at 532 nm in colloids with
volume fractions of silver nanoparticles in the range of 10−5

to 10−4. Experiments in the infrared will help to expand the
relevant parameter space, as one may flip the signs of the
nonlinear refractive indices of different orders by varying
the detuning with respect to the surface-plasmon resonance
in the nanoparticles. Thus, taking into regard nonlinearity
parameters reported in Refs. [14,15,21] and the perspective
of further experiments with different laser wavelengths and
pulse durations, it should be quite realistic to reach conditions
for the observation of the effects predicted in the present work,
using planar waveguides filled with silver colloids.

IV. SUMMARY

We have reported the detailed analysis of conditions for
the stable propagation of (1+1)D spatial solitons in media
exhibiting nonlinearities up to the seventh order. Stability and
instability regions were identified using a combination of the
variational approximation and Vakhitov-Kolokolov criterion.
Regions of stable soliton propagation were identified for
media exhibiting focusing cubic and septimal terms, with
either sign of the quintic term. The analytical results were
verified by numerical simulations of the full underlying
NLSE with the cubic-quintic-septimal nonlinearity, which
show close agreement with the predictions of the VA. The
direct simulations corroborate that the unstable solitons suffer
catastrophic self-focusing, as it might be naturally expected.
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