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We examine coherent memory manipulation in a �-type medium, using the second-order solution presented
by Groves, Clader, and Eberly [J. Phys. B: At. Mol. Opt. Phys. 46, 224005 (2013)] as a guide. The analytical
solution obtained using the Darboux transformation and a nonlinear superposition principle describes complicated
soliton-pulse dynamics which, by an appropriate choice of parameters, can be simplified to a well-defined
sequence of pulses interacting with the medium. In this report, this solution is reviewed and put to test by
means of a series of numerical simulations, encompassing all the parameter space and adding the effects of
homogeneous broadening due to spontaneous emission. We find that even though the decohered results deviate
from the analytical prediction they do follow a similar trend that could be used as a guide for future experiments.
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I. INTRODUCTION

The seminal work by McCall and Hahn [1,2] showed
the relevance of a semiclassical treatment of light-matter
interactions for strong fields with intensities far above the
one-photon limit. In this regime, disagreements with quantum
electrodynamics are not noticeable. Their discovery of self-
induced transparency (SIT) showed that new kinds of interac-
tions beyond the well-known Beer’s law were possible. This
paved the way for a number of interesting phenomena such
as coherent population trapping [3], simultaneous propagation
of two solitons on different transitions [4], electromagnetically
induced transparency (EIT) [5,6], and slow and fast light [7–9],
to mention a few. There have been a number of discussions
dealing with the validity of the semiclassical theory against a
full QED treatment (see for example [10]), but no one argues
about its utility. Even today we continue to reap the benefits
from this “incomplete” theory.

Some of these phenomena have been used to achieve light
storage and manipulation [11]. Light can be slowed up to
the point where it stops and is stored in the medium [12].
Then it can be regenerated as was observed in [13]. Some
other schemes have been employed such as a combination
of EIT and four-wave mixing in hot atomic vapor [14]. The
main potential application of the storage and retrieval of light
is towards quantum memories. Quantum optical systems are
desirable for this purpose as they have small decoherence and
short interaction times [9]. Here we test the fidelity of the
complicated atom-pulse dynamics given by the second-order
solution derived in [15] to one of the major sources of
decoherence: spontaneous emission.

The interaction of strong electromagnetic fields with atomic
systems leads to nonlinear dynamics, which makes it difficult
to solve analytically, but it is worth the effort. The SIT solution
to the Maxwell-Bloch equation for a two- level atom made
clear the importance of the pulse area for the interaction. This
is defined as

θ (x,t) =
∫ t

−∞
�(x,t)dt. (1)
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When one takes the limit of infinite time we get the entire
area of the given pulse which follows the predictions of the
area theorem, namely, the pulse area tends to the closest even
multiple of π . This results from the smoothing properties
of Doppler broadening [16] by taking the average over the
corresponding inhomogeneous distribution function of the
atomic part in the evolution equation for the field. Here we
further explore the usage of nonlinear optical interaction for
light storage and memory manipulation in a �-type system (see
Fig. 1) of ultracold atoms, where it is appropriate to neglect
the effects of collisional and Doppler broadening.

II. MATHEMATICAL MODEL

We consider the interaction of two fields with a � system
in two-photon resonance with each field addressing a different
atomic transition as shown in Fig. 1. Each field interacts with
the atomic system via the dipole moment operator which only

links levels 1 to 3 and 2 to 3; �̂d = �d13|1〉〈3| + �d23|2〉〈3| +
�d31|3〉〈1| + �d32|3〉〈2|. We write the fields in carrier-envelope
form

�E(x,t) = �E13(x,t)ei(k13x−ω13t)

+ �E23(x,t)ei(k23x−ω23t) + c.c., (2)

where ω13 and ω23 are the field frequencies, k13 and k23

the vacuum wave numbers, and �E13(x,t) and �E23(x,t) the
slowly varying field envelopes. We assume that the envelopes
change slowly over many cycles of the optical frequency, thus
justifying the slow-varying envelope approximation (SVEA).
Following [15] we refer to the 1-3 field as the signal pulse
and the 2-3 field as the control pulse. In the rotating-wave
approximation (RWA) the bare frequencies ω13 and ω23 are
eliminated in favor of �, their common detuning, and the total
Hamiltonian takes the form

Ĥ = −�

2

⎛
⎝ 0 0 �∗

13
0 0 �∗

23
�13 �23 −2�

⎞
⎠, (3)

where we defined the Rabi frequencies, �13(x,t) = 2 �d31 ·
�E13(x,t)/� and �23(x,t) = 2 �d32 · �E23(x,t)/�, and the detuning
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FIG. 1. (Color online) Three-level atom in a � configuration
interacting with two fields in two-photon resonance via the common
detuning �, with spontaneous emission �3 from the excited state.

� = (E3 − E1)/� − ω13 = (E3 − E2)/� − ω23 (Ei corre-
sponds to the energy of level |i〉). The dynamics of the system
are dictated by the von Neumann equation for the density
matrix of the atomic sample:

i�
∂ρ̂

∂t
= [Ĥ ,ρ̂], (4)

and by Maxwell’s wave equation in the SVEA for the field
evolution

(
∂

∂x
+ 1

c

∂

∂t

)
�13 = iμ13ρ31 (5a)

and (
∂

∂x
+ 1

c

∂

∂t

)
�23 = iμ23ρ32. (5b)

Here we defined the atom-field coupling parameters μj3 =
Nωj3|dj3|2/�ε0c with j = 1, 2.

We consider the case of coherent short pulses for which it
is justified to neglect homogeneous relaxation processes due
to the fast interaction with the medium. This gives us a set of
eight nonlinear partial differential equations that need to be
solved simultaneously. As has been shown by Park and Shin
[17] and Clader and Eberly [18] for the case of two-photon
resonance and equal atom-field coupling parameters, μ13 =
μ23 = μ, the system of equations given by Eqs. (4) and (5)
become integrable and thus can be solved by methods such as
inverse scattering [19], the Bäcklund transformation [20], and
the Darboux transformation [21,22]. This can be easily shown
by the introduction of the constant matrix

Ŵ = i|3〉〈3| =
⎛
⎝0 0 0

0 0 0
0 0 i

⎞
⎠, (6)

so that Eqs. (4) and (5) in the traveling-wave coordinates T =
t − x/c and Z = x can be expressed as

i�
∂ρ̂

∂T
= [Ĥ ,ρ̂] (7a)

FIG. 2. (Color online) Pulse evolution dictated by the second-
order analytical solution obtained by Groves et al. [15]. Appropriate
parameters were chosen so that the intricate analytical solution could
be simplified into a well-defined sequence of pulses, composed of
two steps (separated by the ellipsis). In the first step, at t/τa = −10,

a 2π signal pulse comes in; and as it interacts with the medium, it
gives way to a control pulse while storing its information at κax1 = 0.
During the storage process, which takes place between t/τa = −7.5
and 2.5, the areas of the individual pulses are no longer equal to 2π

but the total pulse area [see Eq. (9)] remains constant and equal to
2π . At t/τa = 2.5 we can see that the initial 2π signal pulse is gone
and has been taken over by a 2π control pulse propagating away
at the speed of light. The second step starts at t/τa = 12.5 as a 2π

control pulse comes in and collides with the information imprint left
by the signal pulse. During the collision, which takes place between
times t/τa = 15 and 22.5, the initial signal pulse is retrieved and
redeposited at κax2 = 3, effectively pushing the imprint farther into
the medium. Here again, during the interaction the total pulse area is
conserved and equal to 2π . When the re-encoding has taken place,
the control pulse recovers its original pulse area of 2π and propagates
away at the speed of light. The corresponding imprint is depicted in
Fig. 3.

and

∂Ĥ

∂Z
= −�μ

2
[Ŵ ,ρ̂]. (7b)

By combining these two equations it is clear that the Lax
equation

∂ZÛ − ∂T V̂ + [Û ,V̂ ] = 0 (8)

is satisfied, where the Lax operators are defined as Û =
−(i/�)Ĥ − λŴ and V̂ = (iμ/2λ)ρ̂, and λ is a constant known
as the spectral parameter. This effectively shows that the
Maxwell-Bloch equations (7) are integrable.

The solution obtained in [15] is a second-order solution
obtained from the nonlinear superposition of two first-order
solutions, which in turn were obtained by means of the
Darboux transformation from the trivial solution of a quiescent
medium, ρ̂ = |1〉〈1|, and no fields, �13 = �23 = 0. With an
appropriate choice of parameters, this complicated solution
can be reduced to a well-defined sequence of pulses interacting
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with the medium (see Fig. 2), transferring information back
and forth.

As was done in [18] we will define the total pulse area as

θtot =
√

|θ13|2 + |θ23|2, (9)

and we have that θtot = 2π for the two first-order solutions.
This concept can be extended to the second-order solution by
applying it to the pulses in each step of the sequence, as long
as they are sufficiently separated, as in Fig. 2 where the two
steps are separated by an ellipsis. We will label the parameters
pertaining to different steps of the sequence of pulses by the
letters a and b. For the first step, in the limit t/τa � −1 we have
a SIT-like signal pulse propagating, driving population from
the ground state |1〉 into the excited state |3〉 and coherently
driving it back, thus obtaining the characteristic 2π pulse
shaped as an hyperbolic secant. As the control pulse is only
zero in the limit of infinite negative time, some of the excited
population is coherently driven into the ground state |2〉, thus
amplifying the seed of the control pulse and depleting the
signal pulse. During this transfer the signal pulse encodes its
information into the ground-state elements ρ11, ρ22, and ρ12 of
the density matrix. This encoding we refer to as an “imprint”.
After the storage process is over we get a 2π control pulse
propagating away at the speed of light as it is decoupled from
the medium. Both signal and control pulses have a duration
of τa , and they are time matched. Therefore the ratio between
their Rabi frequencies is independent of time and given by

�a
13(x,t)

�a
23(x,t)

= e−κa (x−x1), (10)

where the absorption coefficient is given by κa = μτa/2, since
we are neglecting the effects of Doppler broadening, and x1

is the location of the imprint. This relation shows us how
we should map the analytical solution to appropriate initial
conditions for the numerical computation. It is easy to see that
by integrating the previous equation with respect to T and by
considering that our medium starts at x = 0, we can get x1 in
terms of the pulse areas:

κax1 = ln

(
θa

13(x = 0)

θa
23(x = 0)

)
. (11)

For the second step we start with a 2π control pulse of
duration τb decoupled from the medium. When this control
pulse collides with the imprint, the signal pulse is retrieved
which, upon interaction with the medium, stores its informa-
tion in a displaced location. When the re-encoding has taken
place, the control pulse recovers its original pulse area of 2π

and propagates away at the speed of light. The end result is the
displacement of the imprint farther into the medium with a π

phase shift for ρ12 if τb < τa . The displacement is controlled
by the phase-lag parameter defined as

δab = κax2 − κax1 = ln

∣∣∣∣τa + τb

τa − τb

∣∣∣∣, (12)

where x2 is the new location of the imprint. Note that the
addition of Doppler broadening would affect the definition
of the absorption coefficient and thus change the group
velocity of the pulses in the medium as was shown in [18],
but the storage procedure would carry through. The results of

FIG. 3. (Color online) Information encoding into a � system:
Imprint as it has been encoded in the ground-state density matrix
elements before (continuous lines) and after (dashed lines) the
displacement. The imprint was generated by the pulse sequence
depicted in Fig. 2, the snapshots were taken at times t/τa = 5 for
the initial imprint and t/τa = 25 for the displaced one.

creation and displacement of the imprint are shown in Fig. 3.
Continuous lines show the first imprinted density matrix
elements, and the dashed lines show their displacements.

Having reviewed the main results of the analytical solution
we now address the question of how these ideas can be used
for storage and retrieval of optical pulses. The first step is to
consider media of finite length and use Eq. (11) to determine
the pulses’ input areas in order to store the signal pulse at
the desired location. This location must be chosen so that
most of the imprint fits inside the medium for optimal infor-
mation storage. Signal pulse storage takes place as described
by the dynamics of the first step in the sequence of pulses,
where the control pulse overtakes the signal pulse. Now that
we have the information stored inside the medium we want
to be able to retrieve it. To do this we inject a second control
pulse of area 2π and duration such that according to Eq. (12)
the imprint is pushed outside the medium. When the control
pulse collides with the imprint it retrieves the signal pulse
that was stored in the medium, as described by the second
step in the sequence. According to the previous results, the
signal pulse travels until it reaches the location where the
imprint is supposed to be re-encoded. However, this never
takes place because the location lies outside the medium. Thus
by frustrating the signal-pulse restorage by means of the end
face of the medium we are able to retrieve it. Of course this
retrieval can be done in any number of steps, displacing the
imprint closer to the end face before retrieving it.

III. NUMERICAL RESULTS

A. Initial considerations

The analytical solution is fairly restrictive because it
assumes an infinite medium and 2π pulses with asymptotic
hyperbolic secant shape with infinitely long tails. Additionally,
we have neglected the effects of homogeneous relaxation
phenomena and the atom-field coupling parameters were kept
equal. Since we are considering the propagation of pulses in
an ultracold atomic system, we can safely omit the effects of
collisional and Doppler broadening, but spontaneous emission
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�3 is still present and could have a noticeable effect. We modify
the von Neumann equation (7a) to account for this:

∂ρ11

∂T
= i

2
�∗

13ρ31 − i

2
�13ρ13 + �3

2
ρ33, (13a)

∂ρ22

∂T
= i

2
�∗

23ρ32 − i

2
�23ρ23 + �3

2
ρ33, (13b)

∂ρ33

∂T
= − i

2
�∗

13ρ31 + i

2
�13ρ13 − i

2
�∗

23ρ32 + i

2
�23ρ23

−�3ρ33, (13c)

∂ρ12

∂T
= i

2
�∗

13ρ32 − i

2
�23ρ13, (13d)

∂ρ13

∂T
= i�ρ13 − i

2
�∗

23ρ12 + i

2
�∗

13(ρ33 − ρ11) − �3

2
ρ13,

(13e)

∂ρ23

∂T
= i�ρ23 − i

2
�∗

13ρ21 + i

2
�∗

23(ρ33 − ρ22) − �3

2
ρ23,

(13f)

and for the field,

∂�13

∂Z
= iμ13ρ31, (14a)

∂�23

∂Z
= iμ23ρ32. (14b)

The time and length scales are respectively defined in terms
of the duration and absorption coefficient associated with the
first signal pulse. We abandon the idealized conditions of
infinitely long media and pulses by considering a medium ten
absorption lengths long (unless otherwise noted) and setting
the Rabi frequencies to zero when |τa�| < 10−5. For each
simulation we will consider three cases: hyperbolic-secant-
shaped pulses with no decay channels, Gaussian-shaped pulses
with no decay channels, and hyperbolic-secant-shaped pulses
with decay channels. This allows the effects of shape and
homogeneous broadening to be studied separately. The shape
of the pulses we will use throughout are

� = θ

πτ
sech

(
T

τ

)
(15a)

and

� = θ√
2πτ

e
− T 2

2τ2 . (15b)

For the simulations, we consider a sample of 87Rb using
the D2 line and consider a pulse duration such that τa�3 =
0.01, so τa ≈ 0.26 ns. For the atom-field coupling parameters
we have that μ23/μ13 = 0.999 98 [23]. From these estimates
we clearly see that the approximations made in order to get
the analytical solution were justified. Nonetheless we need to
study their effects to determine whether these pulse dynamics
are an experimentally realizable scenario. For simplicity the
detuning is taken to be zero. Another thing worth noting is that
we cannot choose an arbitrary pulse duration because we need
to be able to resolve the hyperfine splitting of the ground state
but not of the excited state in order to have a � system. For
the case of Rb we have the condition that 0.15 < τa < 2 ns.

We could have considered Cs atoms to attain smaller values
for τa�3 by using shorter pulses, down to 0.1 ns [24]. Or if
we want to use longer pulses, we could use K but with the
compromise of a larger value for τa�3 (>0.03) [25]. Note
that the important quantity is τa�3 and not just �3, because
what matters here is how long the spontaneous decay time is
with respect to the interaction time between the pulses and the
atomic system.

B. Location of initial imprint

First, we consider how the shape and finiteness of the
pulses, as well as the effects of homogeneous relaxation,
affect the location of the first imprint. The results of the
numerical simulations are summarized in Fig. 4. For the
dependence on the control pulse area, Fig. 4(a), we notice that
the hyperbolic-secant-shaped pulse completely overlaps the
curve given by the theory. We see that the effect of spontaneous
emission is to lower the curve very slightly while maintaining
the same shape. The Gaussian-shaped pulse clearly deviates
from the expected behavior, but keeps a predictable trend and in
the grand scheme has the same dependence, i.e., the location
of the imprint increases when the control pulse area decreases.
The effects of spontaneous emission on the Gaussian-shaped
pulse curve are analogous to those of the hyperbolic-secant-
shaped pulse, namely, to lower the curve while keeping the
same type of dependence (the data for this case are not
presented for the sake of clarity in the figures).

The analytical solution sets the total pulse area of each
step of the process equal to 2π , but we are free to change
that in the simulations. From an experimental point of view,
it is important to know this dependence, since it might be
difficult to control the area of the pulses with much precision.
Setting the ratio of the signal to control pulse area such that
Eq. (11) predicts an imprint location of κax1 = 5, we vary the
total pulse area [see Fig. 4(b)]. We find that for all three cases
there appears to be a linear dependence with similar positive
slope, �(κax1)/�θa

tot ≈ 5/π for the hyperbolic-secant-shaped
and �(κax1)/�θa

tot ≈ 6.5/π for the Gaussian-shaped pulses.
Here we only consider small variations inherent to any realistic
experimental scenario and so this behavior cannot be extrapo-
lated to arbitrarily large and small pulse areas. In particular, if
we consider areas smaller than π then the pulses are not strong
enough to promote the necessary population transfer for the
initial SIT propagation and then the transfer from signal to
control pulses. For pulse areas larger than 3π we would get
pulse breakup and thus a different kind of interaction.

Another restriction from the solution is that signal and
control pulses are time matched (this might not be ideal for
an experiment because one would have to change the duration
of the control pulses between consecutive steps). Relaxing
this condition we find a behavior similar to the previous
case [see Fig. 4(c)]: the imprint location increases with the
duration of the control pulse. Once again all three cases seem
to have similar positive slopes, �(κax1)/�(τc/τs) ≈ 0.5 for
the hyperbolic secants and �(κax1)/�(τc/τs) ≈ 0.73 for the
Gaussian. It is also worth mentioning that the shape of the
imprint is the same as the one predicted theoretically (Fig. 3)
for the two cases where the pulses are hyperbolic secants, but
for the Gaussian-shaped pulse it is approximately 1.4 times
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FIG. 4. (Color online) Location of the initial imprint: (a) as a function of the control pulse area with a 2π signal pulse, (b) as a function of
the total pulse area keeping the ratio of the pulses’ areas constant so that the predicted location is κax1 = 5, and (c) as a function of the duration
of the control pulse with a 2π signal pulse and a predicted location of κax1 = 5. These plots compare the location of the initial imprint for
four different cases. The black solid line is the formula given by the analytical solution, Eq. (11). The three plots with the markers represent
the results of the numerical simulations for which we considered a medium ten absorption lengths long, finite pulses taking � = 0 when
|τa�| < 10−5, and an initial 2π signal pulse. The plot with blue circle markers represents the case of a hyperbolic-secant pulse shape with
τa�3 = 0, the one with green upside down triangle markers adds the effects of spontaneous emission to the previous one with τa�3 = 0.01,
and finally the plot with red square markers considers a Gaussian-shaped pulse with τa�3 = 0.

wider. This is a consequence of the reshaping of the Gaussian
pulse to a corresponding hyperbolic-secant-shaped pulse with
slightly different time duration.

C. Displacement of the imprint

Now that we know we can imprint the information of
the signal pulse into the atomic system given nonidealized
conditions, we have to study the next step of the pulse
sequence: the displacement of the imprint. To do this, we select
the initial pulse area of the control pulse for each case using
the results from the previous section, so that the initial imprint

is made at κax1 = 3 combined with a 2π signal pulse. Then
we vary the control pulse duration and find the new position
of the imprint. The results are summarized in Fig. 5(a).

As predicted by the theory, the closer τb is to τa , the
more the imprint is displaced. Additionally, the new imprint
is identical to the initial one except for a π phase shift
when the control pulse duration is smaller than the signal
pulse. We also notice that the different parameters affect the
displacement in a similar way regarding the location of the
initial imprint. The hyperbolic-secant-shaped pulse closely
follows the behavior dictated by Eq. (12), while the addition
of decay causes a decrease in the displacement. However, the

FIG. 5. (Color online) Displacement of the imprint δab = κa(x2 − x1) as a function of (a) the duration of the second control pulse, (b) the
control pulse area, and (c) the location of the initial imprint. We consider the same three cases as those described in Fig. 4, represented by the
same markers. For (a) and (b) we considered an initial 2π signal pulse with the necessary pulse area of the corresponding control pulse so that
the location of the first imprint is at κax1 = 3. Then for (a) we kept the area of the second control pulse equal to 2π . The dashed light gray line
marks the end of the medium and the black solid line is the result predicted by Eq. (12). For (c) we considered a longer medium, 15 absorption
lengths long, and we chose the control pulse duration so that we had a displacement of δab = 3 when the initial imprint was at κax1 = 3.
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Gaussian-shaped pulse causes a displacement that is typically
larger than that given by the analytical solution (here again
the effects of spontaneous emission for the Gaussian-shaped
pulse are analogous to those of the hyperbolic-secant-shaped
pulse). The biggest difference from the theoretical prediction
is that there is an upper limit in how much the imprint can be
moved (this is true for all three cases). This will define how
close the imprint must be to the end face so that the signal
pulse can be retrieved. Another feature is that if we consider
the case τb > τa we get similar results but the imprint does not
present the π phase shift. This might be desirable if we want
the retrieved signal pulse to have the same phase as the original
(as we will see in the next section), but one must be careful
because homogeneous relaxation will affect the displacement
even more if the pulses interact with the medium for a longer
time.

We also explore the dependence of the displacement with
respect to the control pulse area θb

23 as noted before, a parameter
not accessible from the analytical solution. As shown in
Fig. 5(b), the results are quite surprising. We find that the
displacement increases as we decrease the pulse area, until
it reaches a maximum (these are hidden by the plateaus
which represent that the imprint has been pushed outside the
medium) and then starts decreasing again. For all three cases,
the “optimal” pulse area is actually less than the 2π predicted
by the theory, and not only do we have maxima for these
smaller areas but also the displacement can be much greater
than the one predicted in Eq. (12).

There is also some dependence on the first imprint location,
and there are two possible tendencies as shown in Fig. 5(c).
The first is an increase in the displacement as we increase x1

until it reaches a steady value. This behavior is obtained when
there are no decay channels and is due to the finiteness of
the medium which cuts off part of the information deposited
by the signal pulse, so the closer we get to the center of the
medium the more room there is for the imprint to be made. As
for the Gaussian-shaped pulse, it is affected the most because
the imprint is wider. When we consider spontaneous emission,
another process takes over: The further into the medium the
first imprint is made, the less it will be displaced by the second
control pulse. This can be understood by the fact that the
longer it takes to deposit the information of the signal pulse,
the longer the decay is effective, provoking some information
loss and this ultimately leads to less displacement.

D. Retrieval of the signal pulse

One of the most important effects of the boundaries in the
medium is to cut off the pulse transfer process of the analytical
solution, thus providing a way to retrieve the initial signal
pulse. To quantify the accuracy of the retrieval process we
define the retrieval efficiency as

η = I out
13

I in
13

=
∫ ∣∣�out

13

∣∣2
dt∫ ∣∣�in

13

∣∣2
dt

. (16)

Clearly this quantity only gives information about the output
signal pulse intensity but does not take into account any
possible reshaping of the pulse. To account for this we calculate
the correlation coefficient r between the input and output signal

TABLE I. Retrieval efficiency and correlation coefficient for one-
and two-step processes.

1 step 2 steps

Case η r η r

Sech 98% 1.0000 98% 1.0000
Decay 65% 0.9998 66% 0.9998
Gaussian 94% 0.9940 94% 0.9941

pulses. This is particularly important for the Gaussian-shaped
pulses which are reshaped into hyperbolic secants as they
propagate through the medium. This has already been noted
in the case of atomic vapors at room temperature [18,26].
From the previous sections it should be clear that the retrieval
process can take place in any number of steps, but for the sake
of clarity we will treat only two cases: two- and three-step
retrieval. Additionally, we will only consider control pulses of
areas equal to 2π and of duration times equal to or smaller
than that of the initial signal pulse for the displacement and
retrieval steps.

Let us first consider the one-step process. Here we want to
make the imprint somewhere in the medium such that it can
be retrieved without having to move it closer to the boundary
(this limit is set by the case where we consider homogeneous
relaxation). For this we consider the necessary pulse areas
for each case so that the initial imprint is made at κax1 = 8,
and for the second step we consider a control pulse with the
same duration as the signal pulse, giving us the maximum
displacement. For the two-step process we will make the
initial imprint at κax1 = 5, then tailor the time duration of
the following control pulse so that we displace the imprint by
δab = 3 and finally push the imprint outside the medium by
means of another control pulse of duration equal to the original
signal pulse. The results are summarized in Table I. We notice
that when no decay is present, the efficiency is high (larger
than 90%) but as soon as homogeneous relaxation is added it
drops to 65% for one-step and 66% for two-step processes.
As for the correlation coefficient, it is fairly close to unity
in all cases, indicating that the shape of the pulse is mostly
preserved throughout the storage and retrieval procedure. The
Gaussian-shaped pulses are the ones that have the lowest r

values as could have been expected because of the reshaping
during propagation. In any case, we are able to retrieve a good
portion of the initial signal pulse and see that this does not
depend on the number of steps involved. In the one-step case,
the retrieved signal pulse has a π phase shift with respect
to the original. The correct phase can be obtained by inverting
the initial storing control pulse or by increasing the duration
of the second control pulse as discussed in Sec. III C. In the
two-step process, the signal pulse comes out with the same
phase due to the π phase shift in the displacement step.

IV. CONCLUSIONS

In this report we have shown that previously predicted
memory manipulation by means of idealized atomic pulse
dynamics is plausible even in nonidealized conditions. The
shape of the pulse and the effects of spontaneous emission
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have an impact on the quantitative results but the storage and
retrieval of the signal pulse are achieved in all cases. We have
quantified the deviations in each case and even shown some
features that could add more control to the process and lift
some restrictions. The length of the medium has no effect on
the memory manipulation, but should be chosen so that most
of the information can be deposited into the medium. This may
no longer be true if we consider the reflection of the pulses at
the end face.

Another aspect that we noticed throughout this work, and
that has been noted elsewhere, is the stability against the
total pulse area. When considering pulses of different area
than 2π , be it bigger or smaller, the pulses are reshaped
as they propagate in an effort to obtain a 2π total area.
This is completely analogous to the predictions of the area

theorem [1,2] for a homogeneously broadened two-level atom.
Additionally, we can ask which is the appropriate extension
of the total pulse area for higher order solutions, particularly
when the two first-order solutions overlap.

We can also think of extending this analysis to more
complicated pulse sequences. This would be the same
as simulating higher-order solutions of the Maxwell-Bloch
equations obtained by further applications of the nonlinear
superposition rule. This could possibly pave the way for
making multiple imprints belonging to different signal pulses
and then manipulating them by means of control pulses.
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