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Photonic-Fock-state scattering in a waveguide-QED system and their correlation functions
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We investigate the problem of arbitrary photonic-Fock-state scattering in a waveguide-QED system which
consists of a one-dimensional waveguide coupled to a two-level system. By imposing the open boundary
conditions that directly describe the physical settings, we construct a complete set of eigenstates of the system, and
elucidate the mathematical structures of the eigenstates. In particular, we show that the eigenstates include a set of
multiphoton extended states and multiphoton bound states, formed by all possible partitions of the photon number
N . The total number of the eigenstates is exactly described by the integer number partition function Z(N ). Using
the set of eigenstates, we form the scattering matrix, which facilitates the calculations of the scattered photon
states, for the scattering processes. With the scattered photon states, we compute the photon correlation functions
that manifestly exhibit the bunching and antibunching behaviors in the scattered photon states. As a concrete
example, we discuss in detail with a focus on the three-photon Fock state. Such a capability to generate photonic
entanglement from unentangled Fock states will have broad applications in quantum information processing.

DOI: 10.1103/PhysRevA.92.033803 PACS number(s): 42.50.Pq, 32.80.−t, 03.65.Nk, 72.10.Fk

I. INTRODUCTION

There has been greatly growing interest in engineering
the photon correlations in photonic Fock states, which are
multiphoton states of a traveling wave packet that contains a
definite number of photons and is characterized by a temporal
or spectral profile. This interest stems partly from the advent of
the experimental capability of controlled generation of multi-
photon Fock states in a solid-state system (the photon number
N � 6 in current experiments [1]). When the photonic wave
function of the Fock state is not a product state of the wave
functions of the constituent individual photons, the photons are
entangled. We call such states entangled photonic Fock states.
Entangled photonic Fock states are potentially useful in many
applications. For example, entangled N -photon bound states,
of which the wave function decays exponentially when the
relative distance between any pair of photons increases, could
exhibit photonic bunching and an effective wavelength that
is N times smaller than that of individual photons [2]. Such
entangled states could achieve deep subwavelength optical
lithography [3,4] and super resolution in optical imaging [5,6].
On the other hand, entangled photonic Fock states which ex-
hibit antibunching behavior and sub-Possionian statistics pro-
vide ultraquiet photon sources with sub-shot-noise power level
and also make possible single-photon sources for quantum
information processing [7,8]. Nonetheless, a comprehensive
theoretical description in solid-state quantum electrodynamics
(QED) systems on how the photon entanglement emerges
in photonic Fock states by scattering means has not been
presented before. One of the sources of difficulty is the proper
treatment of the boundary conditions in an infinite system for
the optical fields of interest. Conventionally, a periodic or hard-
wall boundary condition has been employed to truncate the
system size to make the computation region finite. Although
computationally convenient, those boundary conditions do not
describe the correct physical settings in an infinite physical
system. Furthermore, due to the mathematical complexity,
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the exact solutions of the scattering problems were postulated
using the Bethe ansatz [9], instead of being derived directly.
Not until very recently, have approaches using open boundary
conditions been employed to investigate the two-photon Fock-
state scattering problems [10,11]. These approaches do not
assume the Bethe anstaz as a priori assumptions. However,
the direct generalizations of these approaches to describe
the N -photon Fock-state (N > 2) scattering problems are
subtle, mainly due to the emergence of multiple photonic
threshold bound states [12]. In this study, we provide a
detailed investigation for the N -photon Fock-state scattering
problems in a waveguide-QED system which consists of a
one-dimensional waveguide coupled to a two-level atom. Such
a system provides the simplest realization for the photon-
atom interactions in waveguide-QED systems. Notably, the
fermionic degree of freedom in the atom induces interplay be-
tween the photons, which fundamentally changes the collective
photon transport properties. Specifically, without relying on
any ansatz, we employ the open boundary conditions to solve
the N -photon Fock-state scattering processes by explicitly
constructing a complete set of eigenstates of the system.
The constructed eigenstates contain very rich mathematical
structures. For instance, for the three-photon Fock state, there
are in total three types of eigenstates with different physical
nature: a three-photon extended state, a three-photon threshold
bound state, and a hybrid state that is linear superposition of
a three-photon bound state and a product state of a two-bound
state and an extended state. For the general case of the
N -photon Fock state, we show that the total number of different
types of eigenstates is exactly described by the integer number
partition function Z(N ); the set of eigenstates in general
includes hybrid states of multiphoton extended states and
multiphoton threshold bound states, formed by all possible
partitions of the photon number N . Physically, the N -photon
threshold bound states would give rise to N -photon bunching
behavior that is mathematically characterized by the N th-order
correlation function. To construct the scattering matrix, which
encodes all the information of the scattering process, it is vital
that the sets of in states and out states that are obtained from the
set of eigenstates are complete in the free space, respectively.
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For this purpose, we develop a numerical scheme to check
this property. Finally, as a concrete example, we consider
the case of the three-photon Fock state, and compute the
third-order correlation function to demonstrate the bunching
and antibunching behaviors in the scattered photon states.
Those nontrivial bunching and antibunching behaviors are
closely related to the existence of the threshold bound states.

The article is organized as follows. In Sec. II, we introduce
the Hamiltonian of the waveguide-QED system, which is said
to be nonchiral. For mathematical convenience, this to be
solved nonchiral Hamiltonian can be decomposed into two
decoupled chiral Hamiltonians. In Sec. III, we present the
solutions for the chiral systems including the eigenstates, in
states, and out states, and discuss their properties for different
photon number N . Then, Sec. IV shows how to construct the
scattering matrix in the nonchiral system by using the solved
solutions in the chiral systems. In Secs. V and VI, as a concrete
example, we numerically compute the scattered three-photon
Fock state in the nonchiral system, and discuss the photonic
wave functions and correlation functions in detail. Finally,
we make our conclusions in Sec. VII. Detailed mathematical
derivations are presented in the Appendixes.

II. THE HAMILTONIAN FOR A WAVEGUIDE-QED
SYSTEM

The system of interest is depicted in Fig. 1, which consists
of a one-dimensional waveguide coupled to a two-level system.
The two-level system can be a quantum dot [13,14], a
superconducting qubit [15,16], a nitrogen vacancy center [17],
or an atom [18,19], and hereafter is referred to as “an atom”; the
one-dimensional waveguide, for example, can be a line-defect
waveguide in a photonic crystal [20] or an optical fiber. To
have a robust realization of such a waveguide-QED system, it
is required to have a sufficiently large β factor [21,22], which
describes the spontaneous emission efficiency into the waveg-
uide. Furthermore, the waveguide is a single-polarization
single-mode (SPSM) waveguide [23], so that there would be no
photonic mode conversions that degrade the interference [24].
The Hamiltonian of the entire waveguide-QED system can be
described by a real-space form (for detailed derivation from
the frequency-space form, see Ref. [25])

H/� =
∫

dx(−i)vC
†
R(x)

∂

∂x
CR(x) +

∫
dx ivC

†
L(x)

∂

∂x
CL(x)

+
∫

dxV̄ δ(x)[C†
R(x)σ− + CR(x)σ+ + C

†
L(x)σ−

+CL(x)σ+] + ωea
†
eae + ωga

†
gag. (1)

FIG. 1. (Color online) Schematics of the described system. A
one-dimensional waveguide is coupled to a two-level atom. Multiple
photons are incident from the left side and are scattered by the
two-level atom. Each photon can be either reflected or transmitted
after scattering.

Here, v is the group velocity of the photons in the waveguide.
C

†
R(x) and CR(x) [C†

L(x) and CL(x)] are the operators that cre-
ate and annihilate a right- (left-) moving photon at position x.
Here, for brevity, the polarization and mode indices for the pho-
tons in the SPSM waveguide are suppressed. a†

e and ae (a†
g and

ag) are the creation and annihilation operators of the excited
(ground) state of the atom. Thus, σ+ ≡ a

†
eag and σ− ≡ a

†
gae

are the ladder operators that excite and deexcite the atom, re-
spectively. �ωe and �ωg are the energy levels of the atom in the
excited state and the ground state. V̄ is the coupling constant
between the waveguide and the atom (� ≡ 2V̄ 2/v is the spon-
taneous emission rate in the waveguide and also characterizes
the width of the transmission spectrum [24]). Hereafter, the
system which is described by such a Hamiltonian is said to be
nonchiral, wherein photons can propagate in both directions.

For an N -photon Fock-state scattering process in the
nonchiral system, a direct attempt to solve for the eigenstates is
mathematically complicated, as one has to deal with a plethora
of all possible transmitted and reflected states, which involves
2NN ! independent parameters to be determined. Instead, to
ease the calculation complexity, an efficient strategy is to
first solve the n-photon scattering process in the chiral space
for n = 1,2, . . . ,N , wherein photons only propagate in one
direction. Then, the solutions in the chiral space with different
photon numbers n are recombined to construct the solutions in
the nonchiral space [11]. To go from the nonchiral Hamiltonian
to the chiral ones, we perform the following transformations:

C†
e (x) ≡ 1√

2
[C†

R(x) + C
†
L(−x)],

C†
o(x) ≡ 1√

2
[C†

R(x) − C
†
L(−x)],

(2)

to decompose the Hamiltonian into two decoupled even and
odd parts (H = He + Ho):

He/� =
∫

dx(−i)vC†
e (x)

∂

∂x
Ce(x) +

∫
dxV δ(x)

× [C†
e (x)σ− + Ce(x)σ+] + ωea

†
eae + ωga

†
gag,

Ho/� =
∫

dx(−i)vC†
o(x)

∂

∂x
Co(x), (3)

where [He,Ho] = 0. Here, Ho is an interaction-free Hamil-
tonian, while He includes the interaction with an effective
coupling strength V ≡ √

2V̄ . The systems described by the
Hamiltonians He and Ho are referred to as the chiral systems
with unidirectional propagation of photons. Mathematically, a
complete set of solutions for both chiral systems allows one to
solve the scattering problems in the corresponding nonchiral
system. Although the chiral systems here described by Eq. (3)
are for mathematical convenience, there are physical systems
which are precisely described by the chiral Hamiltonians, such
as the photonic analog of the quantum Hall effect [26,27]. In
those chiral systems, the backscattered modes are completely
suppressed. Thus, the chiral systems are anticipated to be
robust for structural imperfections and slow light operations.
In view of these possibilities, we present the investigations for
the chiral systems in the next section.
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III. THE SOLUTIONS FOR THE CHIRAL SYSTEM

An N -photon interacting eigenstate |i+〉 of the chiral system
described by He satisfies He|i+〉 = E|i+〉 and is defined in the
Hilbert spaceH

⊗
N

e , whereHe is the one-photon Hilbert space.
|i+〉 has the following general form:

|i+〉 =
∫

· · ·
∫

dx1dx2 · · · dxNf (x1,x2, . . . ,xN )

× 1√
N !

C†
e (x1)C†

e (x2) · · · C†
e (xN )|∅,−〉

+
∫

· · ·
∫

dx1dx2 · · · dxN−1e(x1,x2, . . . ,xN−1)

× 1√
(N − 1)!

C†
e (x1)C†

e (x2) · · ·C†
e (xN−1)σ+|∅,−〉,

(4)

where |∅,−〉 is the vacuum state with zero photon in the
waveguide and the atom in the ground state. The first term
corresponds to the situation that the atom is in the ground
state and the N photons are in the waveguide described by
an N -photon wave function f (x1,x2, . . . ,xN ). The second
term, on the other hand, corresponds to the situation when
one of the N photons is absorbed by the atom and the
atom is in the excited state. The other N − 1 photons in the
waveguide are described by an (N − 1)-photon wave function
e(x1,x2, . . . ,xN−1). The prefactors 1/

√
N ! and 1/

√
(N − 1)!

are the normalization constants [28]. Due to the bosonic nature
of the photons, photonic wave functions f (x1,x2, . . . ,xN ) and
e(x1,x2, . . . ,xN−1) have the exchange symmetric with respect
to the exchange of any two coordinates.

From the Schrödinger equation He|i+〉 = E|i+〉, by equat-
ing the coefficients for each basis, we obtain the equations of
motion as follows:

[
−iv

∂

∂x1
− iv

∂

∂x2
− · · · − iv

∂

∂xN

− E/�

]
f (x1,x2, . . . ,xN )

+ V√
N

[δ(x1)e(x2,x3, . . . ,xN ) + δ(x2)e(x1,x3, . . . ,xN ) + · · · + δ(xN )e(x1,x2, . . . ,xN−1)] = 0, (5)[
−iv

∂

∂x1
− iv

∂

∂x2
− · · · − iv

∂

∂xN−1
− (E/� − �)

]
e(x1,x2, . . . ,xN−1)

+ V√
N

[f (0,x1,x2, . . . ,xN−1) + f (x1,0,x2, . . . ,xN−1) + · · · + f (x1,x2, . . . ,xN−1,0)] = 0, (6)

where � ≡ ωe − ωg is the transition frequency of the atom. From Eqs. (5) and (6), all the possible solutions of f (x1,x2, . . . ,xN )
and e(x1,x2, . . . ,xN−1) can be solved for (see Appendix A), which provide a complete set of interacting eigenstates {|i+〉}. By
using the Lippmann-Schwinger equation [29], the solved set of eigenstates |i+〉 can be used to obtain the corresponding in states
|in〉 and out states |out〉 [11]:

|in〉 =
∫

· · ·
∫

dx1dx2 · · · dxNfin(x1,x2, . . . ,xN )
1√
N !

C†
e (x1)C†

e (x2) · · · C†
e (xN )|∅,−〉,

|out〉 =
∫

· · ·
∫

dx1dx2 · · · dxNfout(x1,x2, . . . ,xN )
1√
N !

C†
e (x1)C†

e (x2) · · · C†
e (xN )|∅,−〉.

(7)

The in-state wave function fin(x1,x2, . . . ,xN ) is the extension
of the eigenstate wave function,

fin(x1, . . . ,xN ) ≡ Ext[f (x1 < 0, . . . ,xN < 0)]. (8)

This equation means that the functional form of fin(x1, . . . ,xN )
is the same as that of f (x1, . . . ,xN ) in the restricted region x1 <

0, . . . ,xN < 0, but all arguments are extended to the entire
space so that now −∞ < xj < ∞ for all j [30]. Similarly, the
out-state wave function fout(x1,x2, . . . ,xN ) is the extension of
the eigenstate wave function:

fout(x1, . . . ,xN ) ≡ Ext[f (x1 > 0, . . . ,xN > 0)]. (9)

Both the in states and the out states are free states that are
governed by the free Hamiltonian. For each in state, there
exists a causally related out state. The in states and out states
are complete in the in and out spaces, respectively. With the
full knowledge of the in states and out states, one can construct

the scattering matrix for any states ∈ H
⊗

N
e ,

Se(N) =
∑
{|in〉}

|out〉〈in|, (10)

which maps a free N -photon Hilbert space of in states to
another free N -photon Hilbert space consisting of out states.
The summation is taken over for a complete basis {|in〉}.
Once the scattering matrix is determined, one can calculate
the output state of the system for an arbitrary input state when
the atom is initially in the ground state.

In the following, we show explicitly the form of the
complete set of the in states for different photon numbers
from N = 1 to 4, as well as the general case N .

(1) One-photon case: For this simplest case, the class of the
in-state wave functions can be represented by a plane wave,

fin(x) = C1e
ikx, (11)
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TABLE I. Two-photon in-state classifications.

Type 1 k1, k2 (real numbers) (1,1)
Type 2 k1 = k − i�/(2v), k2 = k + i�/(2v) (2)

which is characterized by a single real parameter k =
E/(v�) ∈ R. For different k, these waves form a complete
set. C1 is the normalization constant, which can be determined
using the normalization condition detailed in Appendix B.

(2) Two-photon case: The general form of the class of in-
state wave functions is

fin(x1,x2) = C2{[k1 − k2 − i� sgn(x2 − x1)/v]eik1x1+ik2x2

+ [k1 − k2 − i� sgn(x1 − x2)/v]eik2x1+ik1x2},
(12)

where sgn(·) is the sign function with sgn(x > 0) = 1 and
sgn(x < 0) = −1. � = 2V̄ 2/v = V 2/v is the spontaneous
emission rate into the waveguide. k1 and k2 are in general
two complex numbers subject to the constraint of k1 + k2 =
E/(v�) ∈ R, among others. Such a constraint imposes that
either both k1 and k2 are real (type 1) or their imaginary parts
have an opposite sign (type 2). A full analysis shows that in
type 2, k1 and k2 are in fact complex conjugate to each other
(i.e., have the same real part). In general, these two types of
in states exhibit different forms of wave functions, thereby
requiring different normalization constants (Appendix B).
Table I summarizes the properties of the two types of in states.

TABLE II. Three-photon in-state classifications.

Type 1 k1, k2, k3 (real numbers) (1,1,1)
Type 2 k1 = k − i�/(2v), k2 = k + i�/(2v), k3 (2,1)
Type 3 k1 = k − i�/v, k2 = k, k3 = k + i�/v (3)

In type 1, both k1 and k2 are real, which leads to a two-
photon extended state. In type 2, k1 = k − i�/(2v) and k2 =
k + i�/(2v), where k = E/(2v�), so that the wave function
can be further reduced to

fin(x1,x2) = C2e
ik(x1+x2)−|x2−x1|�/(2v). (13)

This wave function describes a two-photon bound state, as the
wave function approaches to zero exponentially when the two
photons become far. It has been shown that these two types
of in states form a complete set in the two-photon Hilbert
space [11]. In the last column of the table, we also list all
possible partitions of the photon number N = 2. The assigning
rule is as follows: for unrestricted real number E, if a single
variable can specify the values of j k’s, a number j is assigned
in the column. For the present case, in type 1, k1 and k2 need
to be independently specified, so this type is assigned (1,1).
In type 2, a single variable k can specify the values of both k1

and k2 (� and v are given constants), thus (2) is assigned in
the column.

(3) Three-photon case: The general form of the class of
in-state wave functions is

fin(x1,x2,x3) = C3{[k1 − k2 − i� sgn(x2 − x1)/v][k2 − k3 − i� sgn(x3 − x2)/v][k1 − k3 − i� sgn(x3 − x1)/v]ei(k1x1+k2x2+k3x3)

+ [k1 − k2 − i� sgn(x3 − x1)/v][k2 − k3 − i� sgn(x2 − x3)/v][k1 − k3 − i� sgn(x2 − x1)/v]ei(k1x1+k2x3+k3x2)

+ [k1 − k2 − i� sgn(x1 − x2)/v][k2 − k3 − i� sgn(x3 − x1)/v][k1 − k3 − i� sgn(x3 − x2)/v]ei(k1x2+k2x1+k3x3)

+ [k1 − k2 − i� sgn(x1 − x3)/v][k2 − k3 − i� sgn(x2 − x1)/v][k1 − k3 − i� sgn(x2 − x3)/v]ei(k1x3+k2x1+k3x2)

+ [k1 − k2 − i� sgn(x3 − x2)/v][k2 − k3 − i� sgn(x1 − x3)/v][k1 − k3 − i� sgn(x1 − x2)/v]ei(k1x2+k2x3+k3x1)

+ [k1 − k2 − i� sgn(x2 − x3)/v][k2 − k3 − i� sgn(x1 − x2)/v][k1 − k3 − i� sgn(x1 − x3)/v]ei(k1x3+k2x2+k3x1)},
(14)

where k1, k2, and k3 are in general complex numbers subject to the constraint of k1 + k2 + k3 = E/(v�). In such a three-photon
Hilbert space, there are in total three different types of in states, illustrated in Table II.

In type 1, k1, k2, and k3 are three independent real numbers, which leads to a three-photon extended state and is assigned
(1,1,1). In type 2, k1 = k − i�/(2v) and k2 = k + i�/(2v) are complex conjugate to each other, while the third number k3 is a
real number. This type is accordingly assigned (2,1). To gain insights for the mathematical structure of this wave function, we
focus on a specific region, e.g., x1 < x2 < x3, to remove all the sign functions,

fin(x1,x2,x3) = C3{[k − k3 − i�/(2v)][k − k3 − i3�/(2v)]eik(x1+x2)+ik3x3−(x2−x1)�/(2v)

+ [k − k3 + i3�/(2v)][k − k3 − i3�/(2v)]eik(x1+x3)+ik3x2−(x3−x1)�/(2v)

+ [k − k3 + i3�/(2v)][k − k3 + i�/(2v)]eik(x2+x3)+ik3x1−(x3−x2)�/(2v)}.
(15)

In such a wave function, the first term and the third term
indicate one two-photon bound state and one one-photon
extended state. The second term in the wave function, however,
describes the situation that all three photons are bounded,
as the coordinates are in the region of x1 < x2 < x3. The
wave function in the other five regions can be obtained

straightforwardly using the exchange symmetry with respect
to the coordinates. Finally, in type 3, k1 = k − i�/v, k2 = k,
and k3 = k + i�/v, and the wave function is reduced to

fin(x1,x2,x3) = C3e
ik(x1+x2+x3)−(|x3−x1|+|x2−x1|+|x3−x2|)�/(2v).

(16)
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TABLE III. Four-photon in-state classifications.

Type 1 k1, k2, k3, k4 (real numbers) (1,1,1,1)
Type 2 k1 = k − i�/(2v), k2 = k + i�/(2v), k3, k4 (2,1,1)
Type 3 k1 = k − i�/(2v), k2 = k + i�/(2v) k3 = k′ − i�/(2v), k4 = k′ + i�/(2v) (2,2)
Type 4 k1 = k − i�/v, k2 = k, k3 = k + i�/v, k4 (3,1)
Type 5 k1 = k − 3i�/(2v), k2 = k − i�/(2v), k3 = k + i�/(2v), k4 = k + 3i�/(2v) (4)

Such a wave function describes a three-photon bound state, as
the wave function approaches to zero exponentially when any
two of the three photons become afar. For all three types of
in states, we develop a computational procedure to check the
completeness of these three types of in states, which is detailed
in Appendix C.

(4) Four-photon case: Analogous to the previous case, the
complete set of in states for the N = 4 case can be classified
into five different types, illustrated in Table III.

(5) N -photon case: The general form of the class of in-state
wave functions is

fin(x1,x2, . . . ,xN )

= CN

∑
P∈SN

{∏
m<n

[km − kn − i� sgn(xPn
− xPm

)/v]

}

× exp

⎛
⎝i

N∑
j=1

kjxPj

⎞
⎠, (17)

where SN is the symmetric group on an N -element set
{1,2, . . . ,N}, and the summation P ∈ SN accounts for all the
N ! permutations of the labels {1,2, . . . ,N}. k1, k2, . . . , and kN

are in general N complex numbers subject to the constraint of
k1 + k2 + · · · + kN = E/(v�). We note that Eq. (17) satisfies
the form of Bethe ansatz [31]. In the N -photon Hilbert space,
the total number of types of in states is exactly the partition
function Z(N ) for an integer number N . The first ten values
of Z(N ) are 1,2,3,5,7,11,15,22,30,42. For large values of
N , Z(N ) increases exponentially with an asymptotic behavior
given by [32]

Z(N ) ∼ 1

4N
√

3
eπ

√
2N/3. (18)

Table IV classifies all types of in states for the N -photon case.
We note that all the values of k in each type are in agreement
with that obtained using the Bethe anstaz approach [9].

In type 1, all the k1,k2, . . . , and kN are real numbers,
which leads to an N -photon extended state and is assigned
(1,1, . . . ,1,1). In type 2, k1 = k − i�/(2v) and k2 = k +
i�/(2v) are complex conjugate to each other, while the

remaining N − 2 k’s are independent real variables. For
simplicity, we focus on a specific region x1 < x2 < · · · < xN

to remove all the sign functions. A direct substitution of the
k’s into Eq. (17) reveals that half of terms in the wave function
vanish as their coefficients become zero, and only half of the
terms remain. Among the remaining terms, for coordinates
xl and xm (l < m) paired with the two complex conjugates
k1 = k − i�/(2v) and k2 = k + i�/(2v), such term would
give rise to a form of e−(xm−xl )�/(2v). As x1 < x2 < · · · < xN ,
the m − l + 1 photons with coordinates xl, . . . ,xm form an
(m − l + 1)-photon bound state. The rest of (N − m + l − 1)
photons form an (N − m + l − 1)-photon extended state.
The type Z(N ) has N complex k’s: kj = k + [2j − (N +
1)]�/(2v), j = 1,2, . . . ,N . By substituting them into Eq. (17),
the wave function is reduced to

fin(x1,x2, . . . ,xN ) = CNeik(x1+x2+···+xN )−(
∑

m<n |xm−xn|)�/(2v),

(19)

which only contains one term, describing an N -photon bound
state, as the wave function approaches zero exponentially
when any two of the N photons become afar. The concept
of multiphoton bound states has also been discussed by Zheng
et al. [33]. Nonetheless, the wave functions presented there are
not correct.

Having introduced all possible in-state wave functions, the
out-state wave functions can be expressed by multiplying
an N -photon transmission amplitude to the in-state wave
functions (see Aappendix A for details):

fout(x1,x2, . . . ,xN ) = T (k1,k2, . . . ,kN )fin(x1,x2, . . . ,xN ),
(20)

where

T (k1,k2, . . . ,kN ) =
∏
kj

tkj
, (21)

and

tkj
≡ kj − �/v − i�/(2v)

kj − �/v + i�/(2v)
(22)

is the single-photon transmission amplitude in the chiral
system with absolute value equal to one. With all the

TABLE IV. N -photon in-state classifications.

Type 1 k1, . . ., kN (real numbers) (1,1, . . . ,1,1)
Type 2 k1 = k − i�/(2v), k2 = k + i�/(2v), k3, . . . , kN (2,1, . . . ,1)
· · · · · · · · ·
Type Z(N ) k1 = k − i(N − 1)�/(2v), k2 = k − i(N − 3)�/(2v),

...
kN−1 = k + i(N − 3)�/(2v), kN = k + i(N − 1)�/(2v) (N )
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in states and out states, the scattering matrix for Hamil-
tonian He is formed using the definition in Eq. (10).
The scattering matrix for Hamiltonian Ho, on the other
hand, is simply an identity matrix. We note that in the
above procedure, the in states thus constructed are eigen-
states of the scattering matrix, which encodes the optical
nonlinearity induced by the atomic degree of freedom.

IV. THE SCATTERING MATRIX FOR
NONCHIRAL SYSTEM

Having solved the scattering problems for the chiral case,
we now compute the scattered photon states for the nonchiral
systems, wherein the photons can propagate in both directions.
For the nonchiral case, a typical input Fock state |Xin〉 that
contains N right-moving photons can be written as

|Xin〉 =
∫

· · ·
∫

dx1dx2 · · · dxNh(x1,x2, . . . ,xN )
1√
N !

C
†
R(x1)C†

R(x2) · · · C†
R(xN )|∅,−〉

=
∫

· · ·
∫

dx1dx2 · · · dxNh(x1,x2, . . . ,xN )
1√
N !

(
1√
2

)N

[C†
e (x1) + C†

o(x1)] · · · [C†
e (xN ) + C†

o(xN )]|∅,−〉

=
∫

· · ·
∫

dx1dx2 · · · dxNh(x1,x2, . . . ,xN )
1√
N !

(
1√
2

)N

C†
e (x1) · · · C†

e (xN )|∅,−〉 + · · ·

+
∫

· · ·
∫

dx1dx2 · · · dxNh(x1,x2, . . . ,xN )
1√
N !

(
1√
2

)N

C†
o(x1) · · · C†

o(xN )|∅,−〉. (23)

Here, h(x1,x2, . . . ,xN ) is the N -photon wave function. In the second equality, we have used the inverse relation of Eq. (2). For an
input Fock state that contains N left-moving photons, the process will proceed similarly. In the last equality, the direct expansion
gives rise to 2N terms. Since C

†
e (x) and C

†
o(x) commute, using the exchange symmetry with respect to the coordinates in the

wave function, these 2N terms can be grouped into N + 1 orthogonal terms. Thus, |Xin〉 can be written as a linear superposition
of N + 1 chiral spaces.

|Xin〉 = |Xin〉e(N) + |Xin〉e(N−1)o(1) + · · · + |Xin〉o(N) . (24)

Here, |Xin〉e(j )o(N−j ) is given by

|Xin〉e(j )o(N−j ) =
∫

· · ·
∫

dx1dx2 · · · dxNh(x1,x2, . . . ,xN )
1√
N !

(
1√
2

)N
N !

j !(N − j !)
C†

e (x1) · · · C†
e (xj )C†

o(xj+1) · · · C†
o(xN )|∅,−〉,

(25)

which describes a state in the e(j )o(N−j ) space where j photons
are in the even mode and N − j photons are in the odd mode.
Consequently, the scattering matrix S in the nonchiral case can
be decomposed accordingly,

S =
N∑

j=0

Se(j )

⊗
So(N−j ) , (26)

where Se(j ) and So(j ) are the scattering matrices for states
in H

⊗
j

e and H
⊗

j
o , respectively. By applying the scattering

matrix onto the input state [Eq. (24)], one can directly compute
the scattered states term by term in each mutually orthogonal
subspace,

|Xout〉 ≡ S|Xin〉
= Se(N) |Xin〉e(N) + Se(N−1)

⊗
So(1) |Xin〉e(N−1)o(1) + · · ·

+ So(N) |Xin〉o(N)

≡ |Xout〉e(N) + |Xout〉e(N−1)o(1) + · · · + |Xout〉o(N) . (27)

In the above calculations, the scattering matrices only apply to
the states with the same subscripts. Using Eq. (2), each state
can be transformed back into the original nonchiral system in

terms of right- and left-moving photons,

|Xout〉 = |Xout〉R(N) + |Xout〉R(N−1)L(1) + · · · + |Xout〉L(N) . (28)

Here, |Xout〉R(j )L(N−j ) describes the scattered photon state in
the R(j )L(N−j ) space where j photons propagate to the right
(i.e., transmitted) and N − j photons propagate to the left
(reflected). Such a procedure facilitates the calculations by
allocating the scattering processes into decoupled chiral sys-
tems, each of which involves less computational complexity.
In the following, we demonstrate this computational scheme
by calculating the scattered photon state for a three-photon
Fock state.

V. EXAMPLE: THE SCATTERING OF THREE-PHOTON
FOCK STATES IN NONCHIRAL SYSTEMS

A. The scattered photon wave functions

Having introduced the general approach to solve the
scattering problems in the nonchiral space, we now calculate
the scattered photon states for a concrete example. Consider
an input state of a three-photon Fock state, formed by three
overlapping photons, wherein each photon is represented by a
Gaussian wave packet. Such a state is a product state which has
no photonic entanglement. Each photon is on resonant with the
atom and has a broad extension in the real space so that the
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bandwidth is narrow. The single-photon wave function is

φi(x) = (
2πσ 2

x

)−1/4
e−x2/4σ 2

x ei(�/v)x. (29)

Here, |φi(x)|2 is normalized to unity when integrated over
x from −∞ to +∞. The standard deviation σx = 10vτr

and σω = 0.2�, where σx and σω are the width of the
single-photon Gaussian pulse in coordinate space and in
frequency space, respectively (τr = 1/� is the radiation
lifetime for the spontaneous emission). After scattering,
the three-photon Hilbert space is decomposed into four
orthogonal spaces: R(3), R(2)L(1), R(1)L(2), and L(3). A di-
rect calculation using the computational scheme presented
above reveals that all three photons are most likely to be
reflected into the L(3) space, with a probability PL(3) ≡∫∫∫

dx1dx2dx3|〈x1,x2,x3|Xout〉L(3) |2 ≈ 55%; while the proba-
bility that all three photons are transmitted into the R(3) space is
the least: PR(3) ≡ ∫∫∫

dx1dx2dx3|〈x1,x2,x3|Xout〉R(3) |2 ≈ 2%.
The remaining probability is distributed within the other
two possibilities with PR(2)L(1) ≈ 13% and PR(1)L(2) ≈ 29%.
Such a probability distribution is completely beyond the
single-photon picture; for a single photon with the same
Gaussian wave-function form, it is numerically found that
the photon is essentially completely reflected with a reflec-
tivity over 99% and a transmissivity less than 1% [24].
Thus, based upon the single-photon picture, if there are no
correlations induced by the atom, one would have expected
PL(3) > (99%)3 ≈ 97% and PR(3) < (1%)3 = 10−6. Thus, for
the three-photon case, PR(3) is greatly enhanced by the
correlations. Such an example demonstrates that the dynamics
in the multiple photon scattering processes are dramatically
influenced by the correlations induced by the atom. Thus, it
is of great interest to understand how the three photons get
transmitted in the presence of the atom-induced correlations.
For this purpose, we numerically checked the transmitted
three-photon wave function in the R(3) space, which can be
expressed as

hR(3) (x1,x2,x3) = 1
8 [he(3) (x1,x2,x3) + he(2)o(1) (x1,x2,x3)

+he(1)o(2) (x1,x2,x3) + ho(3) (x1,x2,x3)].

(30)

Here, the functions he(3) (x1,x2,x3), he(2)o(1) (x1,x2,x3),
he(1)o(2) (x1,x2,x3), and ho(3) (x1,x2,x3) are the scattered wave
functions in the e(3), e(2)o(1), e(1)o(2), and o(3) subspaces,
respectively. It is numerically found that the nonchiral wave
function hR(3) (x1,x2,x3) is essentially due to the chiral wave
function of the three-photon bound state in he(3) (x1,x2,x3).
We emphasize that he(3) (x1,x2,x3) also contains components
other than the three-photon bound state. Specifically, it is the
second term in the type-2 wave function, and the type-3 wave
function that contribute to hR(3) (x1,x2,x3) (see Sec. III). In
contrast, wave functions he(2)o(1) , he(1)o(2) , ho(3) , and the rest of
the parts in wave functions he(3) (x1,x2,x3) numerically cancel
each other out, and thus do not contribute to the three-photon
transmitted wave function hR(3) (x1,x2,x3). Therefore, we
conclude that the incoming three photons, which cannot
pass through the atom individually, now are able to pass
through the atom as a whole by forming a three-photon bound
state.

We now look into the wave functions in more detail. To
facilitate the visualization of a wave function that contains
three spatial coordinates, we transform the wave function in
terms of the relative coordinates as follows:

hr (x1 − x3,x2 − x3,x3) ≡ 〈x1 − x3,x2 − x3,x3|X〉, (31)

where |X〉 is an arbitrary three-photon state and the subscript
“r” denotes the relative coordinates (�1,�2,x3) ≡ (x1 −
x3,x2 − x3,x3). Such a transformation has a Jacobian J = 1,
and maintains the exchange symmetry of the photonic wave
function. As the transformed wave function still contains
three variables, we eliminate x3 by integrating the probability
density function as follows:∫

dx3|hr (x1 − x3,x2 − x3,x3)|2 ≡
∫

dx3|hr (�1,�2,x3)|2

≡ p(�1,�2). (32)

The relative probability density function p(�1,�2) describes
the probability density of finding two photons from the
viewpoint of the third one. This function also exhibits two
interesting symmetries. First, by exchanging the coordinates x1

and x2 in the photonic wave function hr , one can immediately
see that the function p(�1,�2) is symmetric along the line
�1 = �2, i.e.,

p(�1,�2) = p(�2,�1). (33)

Secondly, p(�1,�2) also exhibits inversion symmetry with
respect to the origin of the coordinate system, p(�1,�2) =
p(−�1, − �2). The proof is straightforward:

p(�1,�2)

≡
∫ +∞

−∞
dx3|hr (�1,�2,x3)|2

=
∫ +∞

−∞
dx3|hr (x1 − x3,x2 − x3,x3)|2

=
∫ −∞

+∞
(−dx3)|hr [(−x1)− (−x3),(−x2) − (−x3),(−x3)]|2

=
∫ −∞

+∞
(−dx3)|hr (x3 − x1,x3 − x2, − x3)|2

=
∫ −∞

+∞
(−dx3)|hr (−�1, − �2, − x3)|2

=
∫ +∞

−∞
dx3|hr (−�1, − �2,x3)|2

= p(−�1, − �2). (34)

Now, we plot the relative probability density function pR(3)

and pL(3) in the R(3) space and the L(3) space, respectively.
Figure 2 plots pR(3) (�1,�2) for the scattered three-photon state
in the R(3) space. A pronounced single narrow peak at �1 =
�2 = 0 clearly emerges with a full width at half maximum
≈1.2vτr . Thus, we have pR(3) (0,�2) > pR(3) (�1,�2) for all
�1 �= 0. The emergence of the center peak indicates photonic
bunching, as the probability of finding three photons together is
significantly larger than the probability of finding them apart.
Mathematically, pR(3) (�1,�2) is related to the second-order
correlation function as follows [the relation can be derived by
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FIG. 2. (Color online) Relative probability density function
pR(3) (�1,�2) for the scattered photon states in the R(3) space (all three
photons are transmitted and propagate to the right). A projection of
the pattern is also plotted underneath to aid visualization.

using Eqs. (D12) and (32)]:

g(2)(τ ) = 2

3
PR(3)

∫
d�2pR(3) (vτ,�2)∫

dx0|φR(3) (x0)|2|φR(3) (x0 + vτ )|2 . (35)

Here, x0 is the position of the detector, and φR(3) (x) is the prob-
ability of finding a single photon at position x in the scattered
state in the R(3) space regardless of the position of the other
two photons [see Eq. (D8)]. Numerically, it is found that
φR(3) (x) has a similar broad extension as that of φi(x). τ is
the difference in the arrival times between two photons. Thus,
when τ is several times of τr , the numerator of g(2)(τ ) is much
smaller than the numerator of g(2)(0) due to the pronounced
peak at the center, while the denominators of g(2)(τ ) and g(2)(0)
are numerically found to be roughly the same. Therefore,
it is numerically found that g(2)(0) > g(2)(τ ), confirming the
photonic bunching [34].

On the other hand, the photon statistics for the reflected
photons is fundamentally different in the L(3) space. Figure 3
plots pL(3) (�1,�2) for the scattered three-photon photon state
in the L(3) space, which shows six broad peaks separated by
three boundaries (�1 = 0, �2 = 0, and �1 = �2), respec-
tively. The relative probability function is essentially depleted
along the boundaries, signaling the photonic antibunching, as
the probability of finding any two photons together (�1 =
0, �2 = 0, or �1 = �2) is significantly smaller than the
probability of finding them apart (�1 �= 0, �2 �= 0, and �1 �=

0
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FIG. 3. (Color online) Relative probability density function
pL(3) (�1,�2) for the scattered wave function in the L(3) space (all
three photons get reflected and propagate to the left). A projection of
the pattern is also plotted underneath to aid visualization.

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

FIG. 4. (Color online) Third-order correlation function for the
scattered photon wave function in the L(3) space.

�2). Mathematically, such an observation can be rigorously
confirmed by directly computing the second-order correlation
function for the scattered photon state in the L(3) space. The
g(2)(τ ) can be similarly expressed in terms of the relative
probability density function, as follows ([see Eqs. (D12)
and (32)]:

g(2)(τ ) = 2

3
PL(3)

∫
d�2pL(3) (vτ,�2)∫

dx0|φL(3) (x0)|2|φL(3) (x0 + vτ )|2 , (36)

where φL(3) (x) is the probability of finding a single photon at
position x in the scattered state in the L(3) space regardless of
the position of the other two photons, which has a similar broad
extension of φi(x). By comparing g(2)(0) and g(2)(τ ), the prior
one has a much smaller numerator and their denominators are
roughly the same. Thus g(2)(0) < g(2)(τ ), confirming photonic
antibunching. Such a nonclassical phenomenon is in contrast
to the bunching effect for the transmission field. Moreover, the
photonic bunching and antibunching are also manifest in the
states in other orthogonal spaces. For example, the two right-
moving photons in the state that belongs to the R(2)L(1) space
exhibit bunching behavior, while the two left-moving photons
in the state that belongs to R(1)L(2) space exhibit antibunching
behavior. We note here that the antibunching behavior has also
been discussed in Refs. [35,36] when the two-level atom is
driven by a weak classical driving field.

B. Third-order correlation function

From the wave functions of the scattered three-photon
state, the third-order correlation function in each subspace
can be computed (Appendix D). For example, the third-order
correlation function for the scattered photon wave function in
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the L(3) space is

g(3)(τ1,τ2) = 2

9
P 2

L(3)

∫
dx0|hL(3) (x0,x0 + vτ1,x0 + vτ2)|2∫

dx0|φL(3) (x0)|2||φL(3) (x0 + vτ1)|2||φL(3) (x0 + vτ2)|2| , (37)

which is plotted in Fig. 4. At the origin of the figure, g(3)(0,0)
is numerically found to 0.09. We found that this value could
be further suppressed when the grid spacing is decreased
at the expense of computational resources. Moreover, three
lines τ1 = 0, τ2 = 0, and τ1 = τ2 separate g(3)(τ1,τ2) into six
regions. The values on the three lines are numerically found
to be essentially zero. We also note that the numerator of
the third-order correlation function [Eq. (37)] has the same
functional form as the relative probability density function
[Eq. (32)]. Thus, Fig. 4 looks qualitatively the same as that of
the projection in Fig. 3. Moreover, the second-order correlation
function can also be inferred from the third-order correlation
as follows [the relation can be derived using Eqs. (D10)
and (D11)]:

g(2)(τ ) = 3

PL(3)

∫
dx3g

(3)

(
τ,

x3 − x0

v

)
|φL(3) (x3)|2. (38)

Since g(3)(0,τ2) ≈ 0 essentially holds for almost all τ2,
g(2)(0) ≈ 0 is obtained. On the other hand, the third-order
correlation function for the scattered photon wave function in
the R(3) space can also be plotted, and a bright spot is observed
in the origin. Such a pattern looks qualitatively the same as
that of the projection in Fig. 2, and will not be duplicated here.
The third-order correlation functions for the wave functions in
the R(2)L(1) and R(1)L(2) spaces are zero, as a fixed detector
can never register three photons in the current setup.

VI. CONCLUSION

In this article, we presented a comprehensive study on the
analytic approach to solve the multiphoton scattering problems
in a waveguide-QED system. The fermionic degree of freedom
due to the atom induces photon-photon correlations through
scattering processes. These photon correlations significantly

modify the photon transport properties, which are completely
out of the scope of the single-photon picture. For example,
after the unentangled photonic Fock state scattered by the
atom, the transmitted photons, due to the induced correlations,
now are bunched, while the reflected photons are antibunched.
Moreover, the capability of computing the scattering processes
for input Fock states with an arbitrary number of photons
enables one to compute the scattered state for an input coherent
state. In principle, one can decompose the coherent state into
a linear superposition of all possible Fock states with photon
number N = 1,2,3, . . .. Then, the scattered photon states for
all the Fock states can be computed individually. After that,
all the computed scattered states are recombined to obtain the
scattered state for the input coherent state. Such a possibility
can be practically implemented when the mean photon number
is small.

The above procedures can be further generalized to the
cases when the incident photons are in the superposition state,
i.e., entangled [37] or even involving photons incident from
both sides of the atom. For each case, one needs to employ
an appropriate input state by using corresponding operators in
the first row of Eq. (23). The rest of the steps, including the
construction of the S matrix, remain the same.

APPENDIX A: N-PHOTON FOCK STATE FOR THE
CHIRAL SYSTEM: EXTENDED STATES, BOUNDED

STATES, AND HYBRID STATES

In this appendix, we show the details of how to construct the
eigenstates by solving Eqs. (5) and (6). To begin with, a direct
observation of Eq. (5) reveals that in the region wherein none of
the coordinates is zero, Eq. (5) describes a free system, thereby
permitting plane wave solution. Thus, the general form of an
eigenstate wave function in the region x1 < x2 < · · · < xN can
be parametrized as follows:

f (x1,x2, . . . ,xN ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
P∈SN

AN+1(P) exp
(
i
∑N

j=1 kjxPj

)
,

in subregion N + 1 (x1 < x2 < · · · < xN < 0),∑
P∈SN

AN (P) exp
(
i
∑N

j=1 kjxPj

)
,

in subregion N (x1 < x2 < · · · < xN−1 < 0 < xN ),

· · ·
· · ·
· · ·∑

P∈SN
A1(P) exp

(
i
∑N

j=1 kjxPj

)
,

in subregion 1 (0 < x1 < x2 < · · · < xN ).

(A1)

In this expression, we restrict ourselves to the region of
x1 < x2 < · · · < xN , and the expressions of the wave function

in other regions can be obtained using the bosonic symmetry.
k1, k2, . . . , and kN are in general N complex numbers subject to
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the constraint of k1 + k2 + · · · + kN = E/(v�), among others.
The orders of the k’s are fixed. The summation P ∈ SN

accounts for all the N ! permutations of the labels {1,2, . . . ,N},
and is assigned to the coordinates x’s. All the coefficients A,
in addition to their explicit labels, are in general a function of
all the k’s and the corresponding P . With this wave function,
one can use the boundary conditions in Eqs. (5) and (6) to
determine all the constraints regarding the coefficients A and
wave numbers k.

To proceed, the first attempt is to assume all the k’s are real
and all the N ! A’s are nonzero. To investigate those coefficient
relations, we focus on two representative terms in the same sub-
region, which are e···+kmxj +···+knxj+1+··· and e···+kmxj+1+···+knxj +···
with 1 � m < n � N and j = 1,2, . . . ,N − 1. Except for the
exchange of xj and xj+1, these two terms have the exact same
orders of the other coordinates. Specifically, we rewrite the
wave function to explicitly show the two terms,

f (x1,x2, . . . ,xN ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

· · · + AN+1(. . . ,j, . . . ,j + 1, . . .)ei(···+kmxj +···+knxj+1+··· ) + · · ·
· · · + AN+1(. . . ,j + 1, . . . ,j, . . .)ei(···+kmxj+1+···+knxj +··· ) + · · · ,

in subregion N + 1 (x1 < x2 < · · · < xN < 0),

· · · + AN (. . . ,j, . . . ,j + 1, . . .)ei(···+kmxj +···+knxj+1+··· ) + · · ·
· · · + AN (. . . ,j + 1, . . . ,j, . . .)ei(···+kmxj+1+···+knxj +··· ) + · · · ,

in subregion N (x1 < x2 < · · · < xN−1 < 0 < xN ),

· · ·
· · ·
· · ·

· · · + A1(. . . ,j, . . . ,j + 1, . . .)ei(···+kmxj +···+knxj+1+··· ) + · · ·
· · · + A1(. . . ,j + 1, . . . ,j, . . .)ei(···+kmxj+1+···+knxj +··· ) + · · · ,

in subregion 1 (0 < x1 < x2 < · · · < xN ).

(A2)

By investigating the boundary between subregion N + 1 and subregion N where xN crosses from 0− to 0+, the two equations of
motion to be solved now become

−iv[f (x1,x2, . . . ,xN−1,0
+) − f (x1,x2, . . . ,xN−1,0

−)] + V√
N

e(x1,x2, . . . ,xN−1) = 0, (A3)

iv

[
− ∂

∂x1
− ∂

∂x2
− · · · − ∂

∂xN−1
− (E/� − �)

]
e(x1,x2, . . . ,xN−1)

+
√

NV

2
[f (x1,x2, . . . ,xN−1,0

+) + f (x1,x2, . . . ,xN−1,0
−)] = 0. (A4)

By substituting Eq. (A2) into the above Eqs. (A3) and (A4), we obtain the following coefficient relations:

AN (. . . ,j, . . . ,j + 1, . . .) = k(xN ) − �/v − i�/(2v)

k(xN ) − �/v + i�/(2v)
AN+1(. . . ,j, . . . ,j + 1, . . .) = tk(xN )AN+1(. . . ,j, . . . ,j + 1, . . .),

AN (. . . ,j + 1, . . . ,j, . . .) = k(xN ) − �/v − i�/(2v)

k(xN ) − �/v + i�/(2v)
AN+1(. . . ,j + 1, . . . ,j, . . .) = tk(xN )AN+1(. . . ,j + 1, . . . ,j, . . .),

(A5)

where k(xN ) is the k that is multiplied with xN in the exponentials. These two equations indicate that the coefficients between the
two neighboring subregions only deviate by a single-photon transmission amplitude tk(xN ) [see Eq. (22)]. Moreover, by dividing
these two equations, we get

AN (. . . ,j, . . . ,j + 1, . . .)

AN (. . . ,j + 1, . . . ,j, . . .)
= AN+1(. . . ,j, . . . ,j + 1, . . .)

AN+1(. . . ,j + 1, . . . ,j, . . .)
. (A6)

In the following, by repeating the same procedure to other boundaries where xN−1, xN−2, . . ., and xj+2 cross from 0− to 0+ one
by one, we obtain similar relations

Aj+2(. . . ,j, . . . ,j + 1, . . .)

Aj+2(. . . ,j + 1, . . . ,j, . . .)
= · · · = AN−1(. . . ,j, . . . ,j + 1, . . .)

AN−1(. . . ,j + 1, . . . ,j, . . .)
= AN (. . . ,j, . . . ,j + 1, . . .)

AN (. . . ,j + 1, . . . ,j, . . .)
. (A7)

Such a relation is anticipated, as the k’s associated with the coordinates that cross the boundaries are the same.
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For the next boundary between subregion j + 2 and subregion j + 1 where xj+1 crosses from 0− to 0+, the coefficient
relations between the neighboring subregions can also be computed:

Aj+1(. . . ,j, . . . ,j + 1, . . .) = kn − �/v − i�/(2v)

kn − �/v + i�/(2v)
Aj+2(. . . ,j, . . . ,j + 1, . . .) = tkn

Aj+2(. . . ,j, . . . ,j + 1, . . .),

Aj+1(. . . ,j + 1, . . . ,j, . . .) = km − �/v − i�/(2v)

km − �/v + i�/(2v)
Aj+2(. . . ,j + 1, . . . ,j, . . .) = tkm

Aj+2(. . . ,j + 1, . . . ,j, . . .).

(A8)

We note that different from the previous case, this time, the k’s associated with xj+1 are different for the two terms. Thus, Eq. (A8)
does not yield the same relation that follows the rule in Eq. (A7). Moreover, the (N − 1)-photon wave function with the photon
labeled by j + 1 being absorbed by the atom is also computed:

e(x1,x2, . . . ,xj−1,xj ,xj+2, . . . ,xN )

=
√

N (V/v)

[
ei(···+kmxj +··· )

kn − �/v + i�/(2v)
Aj+2(. . . ,j, . . . ,j + 1, . . .) + ei(···+knxj +··· )

km − �/v + i�/(2v)
Aj+2(. . . ,j + 1, . . . ,j, . . . · · · )

]
.

(A9)

For the next boundary between subregion N − 1 and region N − 2 where xj increases from 0− to 0+, we obtain

Aj (. . . ,j, . . . ,j + 1, . . .) = km − �/v − i�/(2v)

km − �/v + i�/(2v)
Aj+1(. . . ,j, . . . ,j + 1, . . .) = tkm

Aj+1(. . . ,j, . . . ,j + 1, . . .),

Aj (. . . ,j + 1, . . . ,j, . . .) = kn − �/v − i�/(2v)

kn − �/v + i�/(2v)
Aj+1(. . . ,j + 1, . . . ,j, . . .) = tkn

Aj+1(. . . ,j + 1, . . . ,j, . . .),

(A10)

and the (N − 1)-photon wave function with the photon labeled by j being absorbed is

e(x1,x2, . . . ,xj−1,xj+1,xj+2, . . . ,xN )

=
√

N (V/v)

[
ei(···+knxj+1+··· )

km − �/v + i�/(2v)
Aj+1(. . . ,j, . . . ,j + 1, . . .) + ei(···+kmxj+1+··· )

kn − �/v + i�/(2v)
Aj+1(. . . ,j + 1, . . . ,j, . . .)

]
.

(A11)

Therefore, Eqs. (A9) and (A11) represent the expressions for the (N − 1)-photon wave function in two neighboring subregions.
Since this wave function is continuous everywhere in the entire space [see Eq. (6)], the self-consistency of the function requires

e(x1,x2, . . . ,xj−1,0
−,xj+2, . . . ,xN ) = e(x1,x2,xj−1,0

+,xj+2, . . . ,xN ), (A12)

which immediately leads to

Aj+2(. . . ,j, . . . ,j + 1, . . .)/Aj+2(. . . ,j + 1, . . . ,j, . . .) = (km − kn − i�/v)/(km − kn + i�/v). (A13)

By combining Eq. (A13) with all the previous obtained coefficient relations [Eqs. (A6) and (A7)], we finally get

AN+1(. . . ,j, . . . ,j + 1, . . .)/AN+1(. . . ,j + 1, . . . ,j, . . .) = (km − kn − i�/v)/(km − kn + i�/v). (A14)

It is worth mentioning here that the above analysis does not yield any restrictions on the wave numbers k. Thus, the eigenstate
wave function f (x1,x2, . . . ,xN ) is uniquely determined as

f (x1,x2, . . . ,xN ) ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
P∈SN

{∏
m<n[km − kn − i� sgn(Pn − Pm)/v]

}
exp

(
i
∑N

j=1 kjxPj

)
,

in subregion N + 1 (x1 < x2 < · · · < xN < 0),
· · ·
· · ·
· · ·(∏N

j=1 tkj

)∑
P∈SN

{∏
m<n[km − kn − i� sgn(Pn − Pm)/v]

}
exp

(
i
∑N

j=1 kjxPj

)
,

in subregion 1 (0 < x1 < x2 < · · · < xN ),

(A15)

which describes an N -photon extended state, as each exponential term represents a free plane wave without restriction. The
corresponding in-state wave function fin(x1,x2, . . . ,xN ) is expressed by extending f (x1,x2, . . . ,xN ) in subregion N + 1 to the
entire space (−∞ < x1,x2, . . . ,xN < +∞),

fin(x1,x2, . . . ,xN ) = CN

∑
P∈SN

{∏
m<n

[
km − kn − i� sgn

(
xPn

− xPm

)/
v
]}

exp

⎛
⎝i

N∑
j=1

kjxPj

⎞
⎠, (A16)
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with normalization constant CN to be determined. The corresponding out-state wave function fout(x1,x2, . . . ,xN ), on the other
hand, can be expressed by extending f (x1,x2, . . . ,xN ) in subregion 1 to the entire space and is conveniently written as

fout(x1,x2, . . . ,xN ) =
⎛
⎝ N∏

j=1

tkj

⎞
⎠fin(x1,x2, . . . ,xN ). (A17)

Until now, we have constructed the N -photon extended states, which are indeed the eigenstates of the Hamiltonian He.
Nonetheless, it turns out that the N -photon extended states do not form a complete set in the N -photon Hilbert space H

⊗
N

e . To
find out those missing eigenstates, one needs to extend the wave numbers k into complex values. As all k’s sum up to be a real
number, to avoid the divergence, some of the coefficients A must be zero. The extreme case is that only one coefficient A is left
to be nonzero, and all the k’s are assumed to be complex numbers {kj = k′

j + iκj }, j = 1, . . . ,N , where k′
j is the real part and

κj is the imaginary part.

f (x1,x2, . . . ,xN ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AN+1e
i(k′

1+iκ1)x1+i(k′
2+iκ2)x2+···+i(k′

N+iκN )xN ,

in subregion N + 1 (x1 < x2 < · · · < xN < 0),

ANei(k′
1+iκ1)x1+i(k′

2+iκ2)x2+···+i(k′
N+iκN )xN ,

in subregion N (x1 < x2 < · · · < xN−1 < 0 < xN ),
· · ·
· · ·
· · ·

A1e
i(k′

1+iκ1)x1+i(k′
2+iκ2)x2+···+i(k′

N +iκN )xN ,

in subregion 1 (0 < x1 < x2 < · · · < xN ).

(A18)

With this wave function, one can apply exactly the same procedures at all the boundaries to obtain all the constraints regarding
the A’s and k’s. At the first boundary between subregion N + 1 and subregion N where xN crosses from 0− to 0+, the equations
of motion yield the following coefficient relation:

AN = k′
N + iκN − �/v − i�/(2v)

k′
N + iκN − �/v + i�/(2v)

AN+1 = tkN
AN+1, (A19)

which has exactly the same form as before. Moreover, the (N − 1)-photon wave function with the photon labeled by N being
absorbed is obtained accordingly:

e(x1,x2, . . . ,xN−1) =
√

N (V/v)

[
ei(k′

1+iκ1)x1+i(k′
2+iκ2)x2+···+i(k′

N−1+iκN−1)xN−1

k′
N + iκN − �/v + i�/(2v)

AN+1

]
. (A20)

At the next boundary between subregion N and subregion N − 1 where xN−1 crosses from 0− to 0+, the equations of motion
also yield similar coefficient relation

AN−1 = k′
N−1 + iκN−1 − �/v − i�/(2v)

k′
N−1 + iκN−1 − �/v + i�/(2v)

AN = tkN−1AN, (A21)

and the (N − 1)-photon wave function with the photon labeled by N − 1 being absorbed is given by

e(x1,x2, . . . ,xN−2,xN ) =
√

N (V/v)

[
ei(k′

1+iκ1)x1+i(k′
2+iκ2)x2+···+i(k′

N−2+iκN−2)xN−2+i(k′
N+iκN )xN

k′
N−1 + iκN−1 − �/v + i�/(2v)

AN

]
. (A22)

Again, by applying the self-consistent condition

e(x1,x2, . . . ,xN−2,0
−) = e(x1,x2, . . . ,xN−2,0

+), (A23)

we get

k′
N−1 = k′

N, (A24)

and

κN = κN−1 + �/v. (A25)

This procedure can be repeated for the rest of the boundaries, and we finally get

k′
N = k′

N−1 = · · · = k′
1 ≡ k (A26)

and

κN = κN−1 + �/v = κN−2 + 2�/v = · · · = κ1 + (N − 1)�/v. (A27)
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As the summation of all the k’s is a real number, κ1 = −(N − 1)�/(2v). Thus, the N k’s are given by

kj = k + [2j − (N + 1)]�/(2v), (A28)

where j = 1,2, . . . ,N . With those k’s, the eigenstate wave function is uniquely determined:

f (x1,x2, . . . ,xN ) ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

eik(x1+x2+···+xN )−(N−1)�(xN −x1)/(2v)−(N−3)�(xN−1−x2)/(2v)−···,
in subregion N + 1 (x1 < x2 < · · · < xN < 0),

· · ·
· · ·
· · ·(∏N

j=1 tkj

)
eik(x1+x2+···+xN )−(N−1)�(xN −x1)/(2v)−(N−3)�(xN−1−x2)/(2v)−···,

in subregion 1 (0 < x1 < x2 < · · · < xN ),

(A29)

which describes an N -photon bound state, as the wave
function is exponentially suppressed when the relative dis-
tances between any two coordinates increase. The plane wave
component eik(x1+x2+···+xN ) in the wave function, on the other
hand, indicates that the N -photon bound state can propagate
in the entire space freely as a whole. Having constructed
the N -photon bound state, its corresponding in-state wave
function fin(x1,x2, . . . ,xN ) can then be obtained by extending
f (x1,x2, . . . ,xN ) in subregion N + 1 to the entire space

fin(x1,x2, . . . ,xN ) = CNeik(x1+x2+···+xN )−(
∑

m<n |xm−xn|)�/(2v),

(A30)

where CN is the normalization constant to be determined. The
out-state wave function fout(x1,x2, . . . ,xN ), on the other hand,
possesses the same expression as that in Eq. (A17).

Except for the two types of eigenstates presented above,
the rest of the types of eigenstates can be constructed in a
similar manner by postulating different numbers of nonzero
A’s in the wave function. Nonetheless, most cases do not yield
a solution. For those cases that do permit a valid eigenstate, the
choices of the nonzero A’s are unique. Thus, a unique set of
k’s is obtained, which in turn defines the types of eigenstates.
Remarkably, it turns out that there exists a one-to-one mapping
between the types of N -photon eigenstates and the partitions
of the integer number N (shown in Table IV), which illustrates
how many nonzero terms exist in certain types of eigenstates.
For example, for N = 4, (2,2) is one of the partitions, and by
assuming 4!/[2!2!] = 3 nonzero terms in the wave function,
we can construct the type-3 eigenstate in Table III. Also,
(3,1) is another partition, and by assuming 4!/[3!1!] = 4
nonzero terms in the wave function, we can construct the
type-4 eigenstate in Table III. In general, to construct a
certain type of eigenstate that corresponds to the partition
N = N1 + N2 + · · · , the number of nonzero terms in the
eigenstate wave function is given by N !/[N1!N2! · · · ].

APPENDIX B: THE NORMALIZATION FOR THE IN
STATES IN THE NONCHIRAL CASE

To expand an arbitrary input state, it is convenient to
normalize the in states. In this appendix, we employ the delta
normalization condition to normalize the wave functions of
the in states, with definitions shown as follows:

(1) One-photon case: The in-state wave function has only
one specific form,

f (k)
in (x) = C1e

ikx, (B1)

where we add a superscript k to denote only one real parameter
that characterizes this wave function. To normalize this wave
function, we compute the overlap between two such kinds of
wave functions with different superscripts,∫ +∞

−∞
dxf (k′)∗

in (x)f (k)
in (x) = |C1|22πδ(k − k′), (B2)

where the symbol (∗) represents the complex conjugate of the
function. In the integration, the following identity is used:∫ +∞

−∞
dx e−ik′xeikx = 2πδ(k − k′). (B3)

Thus, the normalization constant C1 is set to be 1/
√

2π so that
f (k)

in (x)/
√

2π is normalized to the delta function.
(2) Two-photon case: The two-photon extended state with

wave function f (k1,k2)
in (x1,x2) [Eq. (12)] is characterized by

two real parameters (k1,k2). Similarly, we compute the overlap
between the wave functions with different superscripts,∫ +∞

−∞

∫ +∞

−∞
dx1dx2f

(k′
1,k

′
2)∗

in (x1,x2)f (k1,k2)
in (x1,x2)

= |C2|28π2[(k1 − k2)2 + (�/v)2]δ(k1 − k′
1)δ(k2 − k′

2).

(B4)

To avoid double counting, we restrict k1 < k2 and k′
1 < k′

2.
Thus, the normalization constant C2 is set to be [(k1 − k2)2 +
(�/v)2]−1/2/(2

√
2π ).

Another type of in states to be normalized is the two-photon
bound state with wave function f (k)

in (x1,x2) [Eq. (13)], which
is characterized by only one real parameter k. A direct
computation reveals that,∫ +∞

−∞

∫ +∞

−∞
dx1dx2f

(k′)∗
in (x1,x2)f (k)

in (x1,x2)

= |C2|2 2πv

�
δ(k − k′). (B5)

Thus, C2 = √
�/(2πv).

(3) Three-photon case: The first type is the three-photon ex-
tended state with wave function f (k1,k2,k3)

in (x1,x2,x3) [Eq. (14)],
which is characterized by three real parameters (k1,k2,k3).
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A direct computation reveals that,∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
dx1dx2dx3f

(k′
1,k

′
2,k

′
3)∗

in (x1,x2,x3)f (k1,k2,k3)
in (x1,x2,x3)

= |C3|248π3[(k1 − k2)2 + (�/v)2][(k1 − k3)2 + (�/v)2][(k2 − k3)2 + (�/v)2]δ(k1 − k′
1)δ(k2 − k′

2)δ(k3 − k′
3), (B6)

where we restrict k1 < k2 < k3 and k′
1 < k′

2 < k′
3 to avoid double counting. Thus, C3 is set to be {48π3[(k1 − k2)2 + (�/v)2][(k2 −

k3)2 + (�/v)2][(k1 − k3)2 + (�/v)2]}−1/2.
The second type is the hybrid state f

(k,k3)
in (x1,x2,x3), characterized by two real parameters k and k3, which is obtained by

adding 15 other terms by permuting x1,x2, and x3 in Eq. (15). Similarly, we compute the overlap between the wave functions
with different superscripts:∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
dx1dx2dx3f

(k′,k′
3)∗

in (x1,x2,x3)f (k,k3)
in (x1,x2,x3)

= |C3|2(12π2v/�)[(k − k3)2 + [�/(2v)]2[(k − k3)2 + [3�/(2v)]2]δ(k − k′)δ(k3 − k′
3) + · · · , (B7)

where “· · · ” denotes terms that contain less than two delta functions. For the normalization purpose, only the most singular term
is kept. Thus, C3 =

√
�/(12π2v){[(k − k3)2 + [�/(2v)]2][(k − k3)2 + [3�/(2v)]2]}−1/2.

The third type is the three-photon bound state with wave function f (k)
in (x1,x2,x3) [Eq. (16)], which is characterized by only

one real parameter k. A direct computation reveals that,∫ +∞

−∞

∫ +∞

−∞
dx1dx2dx3f

(k′)∗
in (x1,x2,x3)f (k)

in (x1,x2,x3) = |C3|2 πv2

�2
δ(k − k′). (B8)

Thus, C3 = �/(v
√

π ).
(4) N -photon case: The wave function of the N -photon extended state is f (k1,k2,...,kN )

in (x1,x2, . . . ,xN ) [Eq. (17)], which is
characterized by N real parameters (k1,k2, . . . ,kN ). A direct computation reveals that (k1 < k2 < · · · < kN and k′

1 < k′
2 < · · · <

k′
N are restricted to avoid double counting),∫ +∞

−∞
· · ·

∫ +∞

−∞
dx1dx2 · · · dxNf

(k′
1,k

′
2,...,k

′
N )∗

in (x1,x2, . . . ,xN )f (k1,k2,...,kN )
in (x1,x2, . . . ,xN )

= |CN |2
{∏

m<n

[(km − kn)2 + (�/v)2]

}
N !(2π )Nδ(k1 − k′

1)δ(k2 − k′
2) · · · δ(kN − k′

N ). (B9)

Thus, CN = {∏m<n[(km − kn)2 + (�/v)2]}−1/2/(
√

N !(2π )N . In contrast, the wave function of the N -photon bound state
f (k)

in (x1,x2, . . . ,xN ) [Eq. (19)], which is characterized by only one real parameter k. A direct computation reveals that,∫ +∞

−∞
· · ·

∫ +∞

−∞
dx1dx2 · · · dxNf (k′)∗

in (x1,x2, . . . ,xN )f (k)
in (x1,x2, . . . ,xN ) = |CN |2 2π

(N − 1)!(�/v)N−1
δ(k − k′). (B10)

Thus, CN =
√

(N − 1)!(�/v)N−1/(2π ). The normalization constants for other hybrid states can be determined through a similar
procedure.

APPENDIX C: COMPLETENESS CHECK

The construction of the scattering matrix relies on the the
completeness of the set of in states {|in〉} in the chiral space.
In the chiral space, the completeness condition is expressed as
the following identity:

∑
j

∑
{k}

∣∣in{k}
j

〉〈
in{k}

j

∣∣ = 1, (C1)

where the subscript j = 1,2, . . . ,Z(N ) accounts for all the
types of the in states and the set {k} is for all the possible
k’s in a given type. In this appendix, we provide a numerical
check for the completeness for the chiral case; that is, we will
check if the equality in Eq. (C1) holds. This procedure can
be straightforwardly generalized to the nonchiral case without
further conceptual difficulties.

As all the in states are given in real-space forms, we first
project an arbitrary N -photon state |X〉 into the real space,
which is also chosen to be normalized as∫

· · ·
∫

dx1 · · · dxN |〈x1, . . . ,xN |X〉|2 = 1. (C2)

Then, by inserting the to-be-checked Eq. (C1) into Eq. (C2),
we get ∑

j

Pj
?= 1, (C3)

where

Pj ≡
∑
{k}

∫
· · ·

∫
dx1 · · · dxN

∣∣∣〈x1, . . . ,xN |in{k}
j 〉〈in{k}

j |X〉
∣∣∣2

,

(C4)
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TABLE V. Completeness check for in states in H
⊗

3
e . To ease the

computational burden, for the purpose of checking completeness, σx

is smaller than that used in previous section, where a much larger σx

is required for near single frequency condition.

σx/vτr P1 P2 P3 Summation

0.5 0.008 0.052 0.941 1.001
1 0.017 0.163 0.821 1.001
2 0.033 0.566 0.393 0.992

describing the weight of |X〉 in the j th type in states. When
writing down Eqs. (C3) and (C4), we have used the fact that

the in states with different j and set {k} are orthogonal with
each other. The orthogonality can either be proved by standard
procedures or directly be checked numerically.

As a concrete example, we numerically check the in
states in H

⊗
3

e . The incoming three-photon Fock state |X〉
is assumed to be three identical and overlapping Gaussian
wave packets, characterized by standard deviation σx . Ta-
ble V lists all the Pj ’s for varying σx . As we can see
from the table, for all σx investigated, the summations of
all the Pj ’s are very close to unity, with relative error
less than 1%. Such a result numerically confirms both the
completeness and orthogonality of the three-photon in states in
H

⊗
3

e .

APPENDIX D: THE PHOTON CORRELATIONS OF ARBITRARY ORDER

The second-order photon correlation function, which is the primary quantity to describe the statistical properties of a stream
of photons, is defined as [38]

g(2)(x0,t,t + τ ) = 〈E−(x0,t)E−(x0,t + τ )E+(x0,t + τ )E+(x0,t)〉
〈E−(x0,t)E+(x0,t)〉〈E−(x0,t + τ )E+(x0,t + τ )〉 , (D1)

where 〈·〉 is the expectation value of a normalized state, and E−(x0,t) and E+(x0,t) are the positive and negative frequency
components, respectively, of the electric field operators. t and t + τ are the two times to make the measurements and x0 is the
position of the detector. By using the real-space approach presented above, it can be shown that the second-order correlation
function can be reduced to [39]

g
(2)
i (τ ) = 〈C†

i (x0)C†
i (x0 + vτ )Ci(x0 + vτ )Ci(x0)〉

〈C†
i (x0)Ci(x0)〉〈C†

i (x0 + vτ )Ci(x0 + vτ )〉
, (D2)

where i = R or L represents the measurements for the right-moving photons or the left-moving photons, respectively. For
incoming photons from the left, if x0 > 0, the detector is placed on the transmitted side, which only registers the right-moving
photons in the transmitted scattered state; on the other hand, if x0 < 0, the detector is placed on the reflected side, which registers
the right-moving photons in the input state and the left-moving photons in the reflected scattered state. In principle, the correlation
function does not depend on the placement of the detector, i.e., x0. Analytically, we found out it is indeed so; numerically, we
found there exists a very minute difference. For brevity, hereafter, we drop the subscript “i” in the correlation function.

Equation (D2) can be further expressed in terms of the wave function of the transmitted or reflected part of the scattered state.
For example, the second-order correlation function for a two-photon state, now takes the following form:

g(2)(τ ) = 1

2

[∫∫
dx1dx2|h(x1,x2)|2

] |h(x0,x0 + vτ )|2[∫
dx2|h(x0,x2)|2][∫ dx1|h(x1,x0 + vτ )|2] , (D3)

where h(x1,x2) is the two-photon wave function of the relevant state. Using a similar approach, the second-order correlation
function for a three-photon state can also be written as

g(2)(τ ) = 2

3

[∫∫∫
dx1dx2dx3|h(x1,x2,x3)|2

] ∫
dx3|h(x0,x0 + vτ,x3)|2[∫∫

dx2dx3|h(x0,x2,x3)|2][∫ ∫
dx1dx3|h(x1,x0 + vτ,x3)|2] , (D4)

where h(x1,x2,x3) is the three-photon wave function of the relevant state. Such a procedure can be further generalized to the
N -photon state, and its second-order correlation function is

g(2)(τ ) = N − 1

N

[∫
· · ·

∫
dx1 · · · dxN |h(x1,x2, . . . ,xN )|2

]

×
∫ · · · ∫ dx3 · · · dxN |h(x0,x0 + vτ,x3, . . . ,xN )|2[∫ · · · ∫ dx2 · · · dxN |h(x0,x2, . . . ,xN )|2][∫ · · · ∫ dx1dx3 · · · dxN |h(x1,x0 + vτ,x3, . . . ,xN )|2] , (D5)

where h(x1,x2, . . . ,xN ) is the N -photon wave function of the relevant state.
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Moreover, the higher-order correlation functions can also be obtained in a similar manner. For example, the third-order
correlation function for a three-photon state is

g(3)(τ1,τ2) = 2

9

[∫∫∫
dx1dx2dx3|h(x1,x2,x3)|2

]2

× |h(x0,x0 + vτ1,x0 + vτ2)|2[∫∫
dx2dx3|h(x0,x2,x3)|2][∫∫ dx1dx3|hi(x1,x0 + vτ1,x3)|2][∫∫ dx1dx2|h(x1,x2,x0 + vτ2)|2] , (D6)

where τ1 and τ2 are the differences of the three arrival times of the photons. Similarly, the mth-order correlation function for an
N -photon state (m � N ) is

g(m)(τ1, . . . ,τm−1)

= N !

(N − m)!Nm

[∫
· · ·

∫
dx1 · · · dxN |h(x1,x2, . . . ,xN )|2

]m−1

×
∫ · · ·∫ dxm+1· · ·dxN |h(x0,x0 + vτ1,x0 + vτ2, . . . ,x0 + vτm−1,xm+1, . . . ,xN )|2[∫· · ·∫ dx2· · ·dxN |h(x0,x2, . . . ,xN )|2]· · ·[∫· · ·∫ dx1· · ·dxm−1dxm+1· · ·dxN |h(x1, . . . ,xm−1,x0 + vτm−1,xm+1, . . . ,xN )|2] ,

(D7)

where τ1,τ2, . . . ,τm−1 are differences of the m arrival times of the photons.
Among all the correlation functions presented above, the second- and third-order correlation functions for the three-photon

state are of particular interest and discussed in Sec. V. To simplify the expressions, one can define

|φ(x)|2 ≡
∫∫

dx2dx3|h(x,x2,x3)|2, (D8)

and

P ≡
∫∫∫

dx1dx2dx3|h(x1,x2,x3)|2 =
∫

dx1|φ(x1)|2. (D9)

The first quantity |φ(x)|2 describes the probability of finding one photon at position x regardless of the positions of the other
two photons. The second quantity P is the total probability of the three-photon state in the entire space. Thus, the correlation
functions can be further simplified as

g(2)(τ ) = 2

3
P

∫
dx3|h(x0,x0 + vτ,x3)|2
|φ(x0)|2|φ(x0 + vτ )|2 , (D10)

and

g(3)(τ1,τ2) = 2

9
P 2 |h(x0,x0 + vτ1,x0 + vτ2)|2

|φ(x0)|2||φ(x0 + vτ1)|2||φ(x0 + vτ2)|2| . (D11)

Numerically, we found that the above exact expressions can be computationally extensive when small denominators are
present, which occur when |φ(x)|2 is small (e.g., at the edge of the wave packet). To ease the computational expense, we
perform the following trick by integration over x0 for both numerators and denominators independently (note the analytic result
is independent of x0). Such a procedure numerically gets away with the small denominator problem, and results in the following
expressions used in the article:

g(2)(τ ) = 2

3
P

∫∫
dx0dx3|h(x0,x0 + vτ,x3)|2∫
dx0|φ(x0)|2|φ(x0 + vτ )|2 , (D12)

and

g(3)(τ1,τ2) = 2

9
P 2

∫
dx0|h(x0,x0 + vτ1,x0 + vτ2)|2∫

dx0|φ(x0)|2|φ(x0 + vτ1)|2|φ(x0 + vτ2)|2 . (D13)

[1] M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak,
E. Lucero, M. Neeley, A. D. Oconnell, H. Wang, J. M.
Martinis, and A. N. Cleland, Generation of Fock states in a
superconducting quantum circuit, Nature (London) 454, 310
(2008).

[2] J. Jacabson, G. Björk, I. Chuang, and Y. Yamamoto, Photonic
de Broglie Waves, Phys. Rev. Lett. 74, 4835 (1995).

[3] A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P.
Williams, and J. P. Dowling, Quantum Interferometric Optical
Lithography: Exploiting Entanglement to Beat the Diffraction
Limit, Phys. Rev. Lett. 85, 2733 (2000).

[4] S. Bentley and R. Boyd, Nonlinear optical lithography with
ultra-high sub-Rayleigh resolution, Opt. Express 12, 5735
(2004).

033803-16

http://dx.doi.org/10.1038/nature07136
http://dx.doi.org/10.1038/nature07136
http://dx.doi.org/10.1038/nature07136
http://dx.doi.org/10.1038/nature07136
http://dx.doi.org/10.1103/PhysRevLett.74.4835
http://dx.doi.org/10.1103/PhysRevLett.74.4835
http://dx.doi.org/10.1103/PhysRevLett.74.4835
http://dx.doi.org/10.1103/PhysRevLett.74.4835
http://dx.doi.org/10.1103/PhysRevLett.85.2733
http://dx.doi.org/10.1103/PhysRevLett.85.2733
http://dx.doi.org/10.1103/PhysRevLett.85.2733
http://dx.doi.org/10.1103/PhysRevLett.85.2733
http://dx.doi.org/10.1364/OPEX.12.005735
http://dx.doi.org/10.1364/OPEX.12.005735
http://dx.doi.org/10.1364/OPEX.12.005735
http://dx.doi.org/10.1364/OPEX.12.005735


PHOTONIC-FOCK-STATE SCATTERING IN A . . . PHYSICAL REVIEW A 92, 033803 (2015)

[5] M. Tsang, Quantum Imaging Beyond the Diffraction Limit by
Optical Centroid Measurements, Phys. Rev. Lett. 102, 253601
(2009).

[6] V. Giovannetti, S. Lloyd, L. Maccone, and J. H. Shapiro, Sub-
Rayleigh-diffraction-bound quantum imaging, Phys. Rev. A 79,
013827 (2009).

[7] C. Monroe, Quantum information processing with atoms and
photons, Nature (London) 416, 238 (2002).

[8] A. Kuhn, M. Hennrich, and G. Rempe, Deterministic Single-
Photon Source for Distributed Quantum Networking, Phys. Rev.
Lett. 89, 067901 (2002).

[9] V. I. Rupasov and V. I. Yudson, Rigorous theory of cooperative
spontaneous emission of radiation from a lumped system of
two-level atoms: Bethe ansatz method, Zh. Eksp. Teor. Fiz. 87,
1617 (1984).

[10] J.-T. Shen and S. Fan, Strongly Correlated Two-Photon Trans-
port in a One-Dimensional Waveguide Coupled to a Two-Level
System, Phys. Rev. Lett. 98, 153003 (2007).

[11] J. T. Shen and S. Fan, Strongly correlated multiparticle transport
in one dimension through a quantum impurity, Phys. Rev. A 76,
062709 (2007).

[12] J. Daboul and M. M. Nieto, Quantum bound states with zero
binding energy, Phys. Lett. A 190, 357 (1994).

[13] K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre,
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