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A simple formula is derived for the maximum squeezing rate which occurs at the initial stages of the squeezing
process: the rate only depends on the second partial derivatives of a classical Hamiltonian. Rules for optimum
rotation of the phase space are found to keep the state optimally located and oriented for fastest squeezing. These
operations transform the phase-space point of interest into a saddle point with opposite principal curvatures.
Similar results are found for the Bloch-sphere phase space and spin squeezing. Application of the general
formulas is illustrated by several model examples including parametric down conversion, Kerr nonlinearity,
Jaynes-Cummings interaction, and spin squeezing by one-axis twisting and two-axis countertwisting.
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I. INTRODUCTION

Squeezing is an irreducible resource for quantum informa-
tion processing [1]. Suppressing the noise of some physical
variables in squeezed states has important applications in
quantum metrology [2–5]. Sometimes it is stressed that
squeezed states are purely quantum mechanical states as
their Glauber P representation is nonpositive definite [6].
Therefore, to find squeezing properties of various physical
systems, it is very natural to use mathematical apparatus of
quantum physics.

Relations between classical and quantum predictions for
various squeezing processes have been studied, discussing
the similarities and differences (see, e.g., [7–10]). However,
there has been no general approach showing which particular
features of classical systems are responsible for noise suppres-
sion that would be analogous to squeezing production. Here,
a simple formula is derived for a rate at which squeezing is
generated at initial stages of the process: the maximum rate
only depends on the second partial derivatives of the classical
Hamiltonian. Also, simple formulas are found to determine
rotations of the phase space by which one keeps the state
optimally located and oriented to achieve fastest squeezing
rate: they only contain first and second partial derivatives
of the classical Hamiltonian. Although for precise results a
full quantum calculation is necessary, the classical formulas
work surprisingly well as long as the uncertainty area is not
deformed significantly beyond an elliptical shape described by
a variance matrix. The formulas can be used as a simple rule of
thumb for squeezing prospectors who need a quick orientation
in the terrain to decide where to start mining their precious
resource.

A simple intuitive picture of “classical squeezing” is as
follows. Imagine a group of tourists starting their hike in a
hilly countryside. Each member of the group goes along a
contour line of constant elevation, having the hill on the left
and the valley on the right, with a speed proportional to the
magnitude of the slope. Even though initially the group might
have a circular form, moving on the uneven landscape changes
the formation to be stretched in one direction and squeezed in
another. Here, of course, the countryside is a phase space,
elevation is the value of the Hamiltonian, and the hiking rules
are the classical Hamilton equations. The group of tourists
represents an ensemble of classical states, and our task is to

infer from the local shape of the landscape the rate at which
the group gets squeezed.

The paper is organized as follows. In Sec. II the formula
for the squeezing rate is derived. In Sec. III we study the
question how the uncertainty area changes orientation, in
Sec. IV we show how to compensate the motion of the
uncertainty ellipse to keep the optimum squeezing rate, and
in Sec. V we illustrate the general results on several examples.
In Sec. VI we show how the results can be generalized for spin
squeezing and motion on the Bloch sphere, and we conclude
in Sec. VII. Several derivations of technical nature are given
in the Appendixes.

II. SQUEEZING RATE

Consider a classical system described by a Hamiltonian
H (x,p) where the quantities x and p are rescaled such that
they have the same dimension. We consider a probability
distribution ρ(x,p) characterized by a variation matrix

V =
( 〈�x2〉 〈�x�p〉

〈�x�p〉 〈�p2〉
)

≡
(

Vxx Vxp

Vxp Vpp

)
, (1)

for a state centered in (x0,p0). The question is what features
of the Hamiltonian determine the squeezing generation in the
system.

Assume that at time t = 0 the system is in state (x0 +
�x,p0 + �p). At short time dt the system will be in a new
state (x̃0 + �x̃,p̃0 + �p̃), where up to the first order in dt

x̃0 + �x̃ ≈ x0 + �x + d

dt
(x0 + �x)dt

= x0 + �x + ∂H (x0 + �x,p0 + �p)

∂p
dt

≈ x0 + �x + ∂H (x0,p0)

∂p
dt

+
(

∂2H (x0,p0)

∂p2
�p + ∂2H (x0,p0)

∂x∂p
�x

)
dt (2)

and

p̃0 + �p̃ ≈ p0 + �p + d

dt
(p0 + �p)dt

= p0 + �p − ∂H (x0 + �x,p0 + �p)

∂x
dt
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≈ p0 + �p − ∂H (x0,p0)

∂x
dt

−
(

∂2H (x0,p0)

∂x2
�x + ∂2H (x0,p0)

∂x∂p
�p

)
dt. (3)

Denoting the partial derivatives at (x0,p0) as indexes,
∂H (x0,p0)/∂x ≡ Hx , etc., we can write for the new central
positions in the phase space

x̃0 ≈ x0 + Hpdt, (4)

p̃0 ≈ p0 − Hxdt, (5)

and for the new deviations

�x̃ ≈ �x + (Hxp�x + Hpp�p)dt, (6)

�p̃ ≈ �p − (Hxp�p + Hxx�x)dt. (7)

Assuming 〈�x〉 = 〈�p〉 = 0 and expressing the new vari-
ances up to the first order in dt we get

〈�x̃2〉 ≈ 〈�x2〉 + 2(Hxp〈�x2〉 + Hpp〈�x�p〉)dt, (8)

〈�p̃2〉 ≈ 〈�p2〉 − 2(Hxp〈�p2〉 + Hxx〈�x�p〉)dt, (9)

〈�x̃�p̃〉 ≈ 〈�x�p〉 + (Hpp〈�p2〉 − Hxx〈�x2〉)dt. (10)

These results can be described as transformation of the
variation matrix according to

Ṽ = SV ST , (11)

where

S =
(

1 + Hxpdt Hppdt

−Hxxdt 1 − Hxpdt

)
(12)

with all terms taken up to the first order in dt .
The results are simple for initially isotropic and uncorre-

lated fluctuations, i.e., 〈�x2〉 = 〈�p2〉 = σ 2, and 〈�x�p〉 =
0, where we get

〈�x̃2〉 ≈ σ 2(1 + 2Hxp)dt, (13)

〈�p̃2〉 ≈ σ 2(1 − 2Hxp)dt, (14)

〈�x̃�p̃〉 ≈ σ 2(Hpp − Hxx)dt. (15)

To find the rate of squeezing generation, we express the
eigenvalues of the new variance matrix Ṽ as

Ṽ± = 〈�x̃2〉 + 〈�p̃2〉
2

± 1

2

√
(〈�x̃2〉 − 〈�p̃2〉)2 + 4〈�x̃�p̃〉2, (16)

finding

Ṽ± = σ 2(1 ± Qdt), (17)

where

Q =
√

(Hpp − Hxx)2 + 4H 2
xp (18)

is the squeezing rate. Note that this formula is invariant
with respect to rotations of the phase space. In points of

zero gradient, Hx = Hp = 0, it has the following geometric
interpretation. If H is taken in the same units as x and p,
then the principal curvatures of its graph are 1

2 (Hxx + Hpp) ±
1
2

√
(Hpp − Hxx)2 + 4H 2

xp. Thus, in this case, Q is proportional
to the difference of principal curvatures of the Hamiltonian
graph.

III. ORIENTATION AND ROTATION OF
THE SQUEEZING ELLIPSE

As can be seen, in the special case of Hxx = Hpp = 0 the
transformation matrix S of Eq. (12) is diagonal. If also V is
diagonal (i.e., �x and �p are uncorrelated), the transformation
squeezes one of the variables and stretches the other with rate
Q of Eq. (18), i.e., Q = 2|Hxp|. In a general case, however,
the squeezing ellipse changes orientation of the main axis, as
shown in Fig. 1(a). This process can be described as follows
[see Fig. 1(b)]: the variation matrix is rotated by φ to a new
coordinate system where S is diagonal, then squeezing and
stretching occurs along the new coordinates, and the variation
matrix is rotated back by a modified angle φ − ε. Thus the
transformation matrix S can be written as

S =
(

cos (φ − ε) − sin (φ − ε)
sin (φ − ε) cos (φ − ε)

)(
1 + Qdt

2 0
0 1 − Qdt

2

)

×
(

cos φ sin φ

sin φ cos φ

)
. (19)

Expanding this expression up to the first order in ε and dt , one
finds

S =
⎛
⎝ 1 + Qdt

2 cos 2φ ε + Qdt

2 sin 2φ

−ε + Qdt

2 sin 2φ 1 − Qdt

2 cos 2φ

⎞
⎠. (20)

Comparing this with Eq. (12) one finds

Q cos 2φ = 2Hxp, (21)

Q sin 2φ = Hpp − Hxx, (22)

2ε = (Hxx + Hpp)dt. (23)

Δ x

Δ p

V
~

~
θθ

V

(a)

φ φ−ε

Δ x

Δ p(b)

FIG. 1. (a) Uncertainty ellipse corresponding to variation matrix
V with the main axis oriented at θ is transformed into a new ellipse
corresponding to Ṽ with the main axis oriented at θ̃ . (b) The squeezing
process described by the matrix S of Eq. (19) corresponds to a rotation
of the phase space by φ, stretching along �x and squeezing along
�p, and rotation of the phase space back by φ − ε. Quantities x and
p are dimensionless here and in the next figures.
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This yields

tan 2φ = Hpp − Hxx

2Hxp

, (24)

and assuming that ε evolves with time as ε = ωvdt , one gets

ωv = Hxx + Hpp

2
(25)

with Q given by Eq. (18). Equation (24) tells us what
is the best orientation of the main axis of the uncertainty
ellipse to generate squeezing the fastest way, namely, θ = φ.
Equation (25) tells us with what rate should one rotate the
system to keep the uncertainty ellipse optimally oriented,
namely ω = −ωv .

IV. COMPENSATION OF MOTION OF THE
UNCERTAINTY ELLIPSE

During the evolution the uncertainty ellipse not only
deforms, but also drifts through the phase space. It is
convenient to express the motion of the center of the ellipse
as rotation around a phase-space point (xR,pR) with angular
velocity ωc (see Fig. 2). We show in Appendix A that for a
phase-space point (x,p) the rotation center is at (xR,pR) =
(x,p) + (Rx,Rp) with

Rx = −Hx

ωc

, (26)

Rp = −Hp

ωc

, (27)

with the angular frequency of the motion of the center being

ωc = H 2
x Hpp + H 2

pHxx − 2HxHpHxp

H 2
x + H 2

p

. (28)

While the center rotates around (xR,pR) with ωc, an uncer-
tainty ellipse with optimally oriented main axis deforms and
changes orientation with angular velocity ωv (see Fig. 2).
These formulas could be useful if one is able to construct
quadratic Hamiltonians of the form H = 1

2ω[(x − xc)2 +

(x  ,p  )R R

ωc t

ω v t
ω( ) tcωv−

x

p

FIG. 2. Motion of the uncertainty ellipse as combination of
rotation of its center around (xR,pR) with rate ωc, and change of
its orientation with rate ωv .

(p − pc)2] with variable parameters ω, xc, and pc. This can be
achieved, e.g., in quantum optical experiments where rotations
around the phase-space origin correspond to the accumulation
of interferometric phase, and rotations around other points can
be realized by combinations of interferometric phase shifts
and displacements realized by mixing the quantum field with
a strong coherent signal on an unbalanced beam splitter [11].

Suppose we initiate the system in a state centered at
(x0,p0) for which Q reaches the desired value. We want to
keep the state centered here and also keep the uncertainty
ellipse optimally oriented during the squeezing process. To
compensate for the motion of the uncertainty ellipse center we
first add the Hamiltonian Had1 in the form

Had1 = − 1
2ωc[(x − xR)2 + (p − pR)2], (29)

with (xR,pR) calculated according to the above formulas and
Eqs. (26), (27) in (x,p) = (x0,p0). Hamiltonian H + Had1 has
zero gradient so that the uncertainty ellipse stays centered at
(x0,p0). If its main axis is at the beginning optimally oriented, it
starts rotation with angular velocity ωv − ωc. To keep the opti-
mal orientation, one adds another Hamiltonian Had2 in the form

Had2 = − 1
2 (ωv − ωc)[(x − x0)2 + (p − p0)2], (30)

which rotates the phase space around (x0,p0) with the
appropriate frequency. As the result, (x0,p0) becomes a
saddle point with principal curvatures of equal magnitude
and opposite signs. The additional Hamiltonians combine to
a single quadratic Hamiltonian Had = Had1 + Had2 so that the
system evolves under the Hamiltonian H + Had with

Had = − 1
2ωv[(x − xr )2 + (p − pr )2] + const, (31)

where the center is localized at

(xr,pr ) = (xR,pR) +
(

1 − ωc

ωv

)
(x0 − xR,p0 − pR). (32)

As can be checked, the squeezing rate Q is unchanged.

V. EXAMPLES

A. Harmonic oscillator

The Hamiltonian is

H = 1
2ω(p2 + x2), (33)

and Eq. (18) yields Q = 0, i.e., the harmonic oscillator does
not produce squeezing. Angular frequencies of Eqs. (25) and
(28) are ωv = ωc = ω, i.e., equal to the oscillator frequency.
The motion of the uncertainty ellipse is shown in Fig. 3(a).

B. Quadratic Hamiltonians, parametric down conversion

Apart from the harmonic oscillator, other Hamiltonians
quadratic in x and p generate squeezing. In quantum optics
they all have a simple interpretation of a parametric amplifier
[12,13].

1. Free particle

With dimensionless x and p, the Hamiltonian of a free
particle is

H = 1

2m
p2. (34)
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(a)

Δ x

Δ p (b)

Δ x

Δ p

(c)

Δ x

Δ p (d) Δ p

Δ x

FIG. 3. Transformation of the uncertainty ellipse for the harmonic
oscillator (a), free particle (b), inverted oscillator (c), and the xp

Hamiltonian (d).

This means that Hxx = Hxp = 0 and Hpp = 1/m which leads
to the squeezing rate Q = 1/m independent of the localization
in the phase space. The optimum orientation of the uncertainty
ellipse is θ = π/4 which is being rotated with the rate ωv =
1/(2m), and ωc = 0; see Fig. 3(b). This means that to keep the
optimum orientation, one has to rotate the system phase space
with the rate −1/(2m).

The quantum optical interpretation of this Hamiltonian is
found on assuming x and p to be operators constructed as
combinations of creation and annihilation operators, namely
(assuming m = 1)

x̂ = 1√
2

(â† + â), (35)

p̂ = i√
2

(â† − â). (36)

The Hamiltonian is then

H = 1
2 p̂2 = − 1

4 (â†2 + â2) + 1
2

(
â†â + 1

2

)
. (37)

The first term on the right-hand side corresponds to a
parametric down conversion with photons being created and
destroyed in pairs, whereas the second term corresponds to
a harmonic oscillator with frequency ωv = 1/2. Using the
additional Hamiltonian of Eq. (31) means just removing
this second term. Note that the squeezing rate Q exactly
corresponds to the quantum mechanical result discussed, e.g.,
in [3].

2. Inverted oscillator

The Hamiltonian is

H = 1
2ζ (p2 − x2), (38)

which leads to the squeezing rate Q = 2ζ , independent of
the initial state. The optimum orientation is θ = π/4, and

the ellipse does not rotate, ωv = 0. The evolution of the
uncertainty ellipse is shown in Fig. 3(c).

In terms of quantum optical operators the Hamiltonian can
be written as

Ĥ = 1
2ζ (p̂2 − x̂2) = − 1

2ζ (â†2 + â2), (39)

corresponding to the parametric down conversion.

3. xp Hamiltonian

The Hamiltonian is in the form

H = ζxp, (40)

which is a classical counterpart of the quantum operator

Ĥ = 1
2ζ (x̂p̂ + p̂x̂)

= i
2ζ (â†2 − â2) (41)

corresponding to the parametric down conversion discussed
in detail in [3]. Compared to the preceding two cases it has
just different phase ratio of the quadratures x and p. For the
Hamiltonian (40) the squeezing rate is Q = 2ζ , the optimum
orientation is θ = 0, and no rotation is generated, ωv = 0. The
evolution of the uncertainty ellipse is shown in Fig. 3(d).

C. Pendulum

The Hamiltonian is

H = 1
2p2 − cos x (42)

leading to the squeezing rate

Q = 1 − cos x = 2 sin2 x

2
, (43)

which changes continuously between zero for x = 0 (i.e.,
like harmonic oscillator near the stable equilibrium) and 2
for x = π (i.e., like inverted oscillator near the unstable
equilibrium). The optimum orientation is θ = π/4 and the
rotation frequency is ωv = cos2 x

2 changing continuously from
1 near the stable equilibrium to zero near the unstable
equilibrium.

D. Kerr nonlinearity

Assume the Hamiltonian

H = χ (p2 + x2)2, (44)

whose quantum counterpart was shown to generate squeezing
[14,15]. Equation (44) leads to the squeezing rate

Q = 8χ (p2 + x2), (45)

i.e., the squeezing rate increases with the oscillator energy.
Equation (45) corresponds to the analytical result for a
quantum Kerr oscillator found in [16]. We show the contour
lines of the Hamiltonian and the evolution of the uncertainty
lines in Fig. 4(a).

The optimum orientation depends on the phase, i.e., Eq. (24)
gives

tan 2φ = 1

2

(
p

x
− x

p

)
. (46)
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FIG. 4. (Color online) Contour lines of the Kerr Hamiltonian and
evolution of the uncertainty lines. (a) Hamiltonian (44) with χ = 1;
(b) the same Hamiltonian with the added term (51). The initial state
is centered at (x0,p0) = (7,0) and the uncertainty lines are plotted in
times t = 0, 2 × 10−3, 4 × 10−3, and 6 × 10−3.

Expressing the phase-space point (x,p) as x = A cos α, p =
A sin α, we get

tan 2φ = − cot 2α, (47)

so that φ = α ± π/4 which corresponds to the optimum
orientation of the axes of the uncertainty ellipse inclined by
±π/4 from the radius.

The angular velocities of Eqs. (25) and (28) are

ωv = 8χ (p2 + x2), (48)

ωc = 4χ (p2 + x2). (49)

Since ωc = ωv/2 and the state circles around the origin,
(xR,pR) = (0,0), from Eq. (32) we have

(xr,pr ) = 1
2 (x0,p0). (50)

Thus, to keep the state close to the phase state point (x0,p0)
with the uncertainty ellipse optimally oriented, one needs to
use the additional Hamiltonian

Had = −4χ
(
x2

0 + p2
0

)[(
x − x0

2

)2

+
(

p − p0

2

)2]
.

(51)

This Hamiltonian rotates the phase space around the point in
the middle between the origin and the center of the uncertainty
ellipse (x0,p0) by twice the rate of the original rotation of
(x0,p0) around the origin. Contour lines of the resulting
Hamiltonian H + Had and evolution of the uncertainty lines
are shown in Fig. 4(b).

E. Jaynes-Cummings model

Assume the Hamiltonian in the form

H = ±g

√
p2 + x2

2
. (52)

The motivation comes from the Jaynes-Cummings model of
a two-level atom interacting with a single mode field, the
quantum Hamiltonian being

ĤJC = g(âσ̂+ + â†σ̂−), (53)

x

p

H

FIG. 5. Hamiltonian of the Jaynes-Cummings type, Eq. (52) and
motion of the uncertainty ellipse on the two branches.

where g is a coupling constant and σ̂± are the atomic raising
and lowering operators. It was first shown in [6] that this
Hamiltonian can generate squeezed states of the optical field,
which was elaborated in detail in [17–19]. Let us assume the
initial quantum state prepared as

|�±〉 = |α〉 ⊗ 1√
2
(|g〉 ± eiϕ|e〉), (54)

where |α〉 is the coherent state of the field with α expressed
as α = √

neiϕ = 2−1/2(x + ip) and |g〉 and |e〉 are the ground
and the excited atomic states, respectively. For times short
compared to πn/g the state remains approximately factorized
so that one can study the evolution of the field separately
from that of the atom. The mean energy of the state |�±〉 is
〈�±|ĤJC |�±〉 = ±g

√
n = ±2−1/2g

√
x2 + p2, which corre-

sponds to the classical Hamiltonian (52).
Graph of the Hamiltonian (52) is a cone shown in Fig. 5,

the two branches corresponding to the two signs of the atomic
superposition in Eq. (54). A state on the upper branch rotates
clockwise, whereas that on the lower branch counterclockwise.
Note that in the quantum case, if the initial atomic state is
different from 2−1/2(|g〉 ± eiϕ|e〉), the state evolves into a
superposition containing two separate coherent components
of the field (i.e., a Schrödinger cat state; see [18,20]).

Each phase-space point drifts along a circle of equal
height. Since the magnitude of the cone slope does not
depend on position (x,p), each point moves with equal speed√

ẋ2 + ṗ2 = g/
√

2. However, points on circles of different
radii move with different angular velocities: points closer to
the origin describe in the same time a bigger angle than points
farther from the origin. As a result, a small area of the phase
space is stretched in one direction and squeezed in the other
one. We show the contour lines of Hamiltonian (52) (branch
with the plus sign) and evolution of the uncertainty lines in
Fig. 6(a).

On using Eq. (18) we find the squeezing rate as

Q = g√
2

1√
x2 + p2

. (55)
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FIG. 6. (Color online) Contour lines of the Jaynes-Cummings-
like Hamiltonian and evolution of the uncertainty lines. (a) Hamilto-
nian (52) with the plus sign and with g = 1; (b) the same Hamiltonian
with the added term (60). The initial state is centered at (x0,p0) =
(7,0) and the uncertainty lines are plotted in times t = 0, 4, 8, and 16.

Note that this rate agrees with the short-time value of squeezing
evolution derived in the quantum model [18]. As can be seen,
contrary to the Kerr model, the squeezing rate decreases with
increasing the distance from the origin. Note also that, although
the classical model is equally valid for any nonzero distance
from the origin, the approximation derived in the quantum
model [18] works only for x2 + p2 � 1.

The optimum orientation of the uncertainty ellipse given by
Eq. (24) is

tan 2φ = 1

2

(
p

x
− x

p

)
, (56)

which is the same result as in the Kerr model. However,
whereas in the Kerr model the distant part of the ellipse is
ahead, in the Jaynes-Cummings model the part closer to the
origin is ahead.

For the angular velocities we find

ωv = ± g√
2

1

2
√

x2 + p2
(57)

and

ωc = ± g√
2

1√
x2 + p2

, (58)

with the upper (lower) sign corresponding to the upper (lower)
branch of the Hamiltonian (52). Since ωc = 2ωv and the state
circles around the origin, (xR,pR) = (0,0), from Eq. (32) we
have

(xr,pr ) = (−x0,−p0), (59)

i.e., to keep the state close to the phase state point (x0,p0) with
the uncertainty ellipse optimally oriented, one needs to use the
additional Hamiltonian

Had = ∓ g

4
√

2
√

x2
0 + p2

0

[(x + x0)2 + (p + p0)2]. (60)

Contour lines of the resulting Hamiltonian H + Had and
evolution of the uncertainty lines are shown in Fig. 6(b).

VI. BLOCH SPHERE AS A PHASE SPACE
AND SPIN SQUEEZING

To describe dynamics of collective spin systems, one often
depicts the states on a Bloch sphere with coordinates Jx ,
Jy , and Jz satisfying J 2

x + J 2
y + J 2

z = |J |2, where |J | is a
constant. These numbers are related to angular momentum
operators defined as

Ĵx = 1

2
(â†b̂ + âb̂†), (61)

Ĵy = −i

2
(â†b̂ − âb̂†), (62)

Ĵz = 1

2
(â†â − b̂†b̂), (63)

where â and b̂ are the annihilation operators of two bosonic
modes corresponding to the populations of atoms in two
possible spin states. The angular momentum operators satisfy
the relation Ĵ 2

x + Ĵ 2
y + Ĵ 2

z = N
2 (N

2 + 1), where N is the total
number of particles. The Bloch sphere has properties of a
compact phase space where the classical trajectories have
been used, e.g., for Bohr-Sommerfeld quantization of spin
Hamiltonians [21,22]. Here we use classical trajectories on the
Bloch sphere to explore properties of various spin squeezing
models.

A. Hamilton equations

Assume Hamiltonian H (Jx,Jy,Jz) to be a differentiable
function of Jx , Jy , and Jz. We postulate the Hamilton equations
of motion as

J̇x = Jz

∂H

∂Jy

− Jy

∂H

∂Jz

, (64)

J̇y = Jx

∂H

∂Jz

− Jz

∂H

∂Jx

, (65)

J̇z = Jy

∂H

∂Jx

− Jx

∂H

∂Jy

. (66)

These equations can be written in a condensed form as

J̇i = εijkJk

∂H

∂Jj

, (67)

where εijk is the Levi-Civita symbol and Einstein summation
is used, or in the vector form as


̇J = grad H × 
J . (68)

Equations (64)–(66) correspond in the quantum regime to
the Heisenberg equations i ˙̂A = [Â,Ĥ ] where combinations
of operators Ĵx,y,z are taken in a symmetrical form and
the commutation relations are [Ĵx,Ĵy] = iĴz with cyclical
interchange of indexes.

To see the correspondence of Eqs. (64)–(66) with the
classical Hamilton equations in a planar phase space, let
us assume N � 1 and states near the pole with Jz ≈ N/2
and Jx,y � N/2. Defining x ≡ √

2/NJx , p ≡ √
2/NJy , and
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z ≡ √
2/NJz ≈ √

N/2, we have

ẋ ≈ ∂H

∂p
− p

√
2

N

∂H

∂z
, (69)

ṗ ≈ −∂H

∂x
+ x

√
2

N

∂H

∂z
. (70)

For sufficiently weak dependence of H on Jz and large N , the
second terms on the right-hand side can be neglected and we
arrive at the Hamilton equations for the 1D motion.

B. Integrals of motion and the Liouville theorem

The equations of motion guarantee that both the Hamilto-
nian and J 2

x + J 2
y + J 2

z are conserved quantities, dH/dt = 0
and d(J 2

x + J 2
y + J 2

z )/dt = 0. It is obvious especially from

Eq. (68): vector 
J moves perpendicularly to both the gradient
of H and to itself. Thus the phase-space point moves on a
surface of a sphere along lines of constant H with a speed
proportional to the magnitude of grad H .

One can also check that the Liouville theorem holds in
this system. Let us assume a probability density ρ(Jx,Jy,Jz,t)
satisfying the continuity equation

∂ρ

∂t
= −
∇ · 
j, (71)

where the current density is 
j = (J̇x,J̇y,J̇z)ρ. Expressing the
total time derivative of ρ as

dρ

dt
= ∂ρ

∂Jx

J̇x + ∂ρ

∂Jy

J̇y + ∂ρ

∂Jz

J̇z + ∂ρ

∂t
, (72)

using Eq. (71) for ∂ρ/∂t and Eqs. (64)–(66) for J̇x,y,z, one finds
dρ/dt = 0, i.e., the Liouville theorem holds. The probability
density thus behaves as an incompressible liquid circulating
along constant-Hamiltonian lines on a sphere. These results
hint that the Bloch sphere with Eqs. (64)–(66) represent a well-
behaved phase space with classical evolution of state points.

C. Evolution of moments

Let us assume that the states are distributed in the vicinity
of some phase-space point (J (0)

x ,J (0)
y ,J (0)

z ) such that the
values of Hamiltonian in any nearby point (J (0)

x + �Jx,J
(0)
y +

�Jy,J
(0)
z + �Jz) can be expressed by means of the Taylor

expansion up to the quadratic terms. Denoting J̄k ≡ 〈Jk〉,
Vkl ≡ 〈(Jk − J̄k)(Jl − J̄l)〉, and the partial derivatives Hk ≡
∂H/∂Jk , etc., one finds (see Appendix B for details of the
derivation)

dJ̄i

dt
= εijk(Hj J̄k + HjlVlk), (73)

dVij

dt
= Hl(εilkVjk + εjlkVik)

+HlpJ̄k(εilkVjp + εjlkVip). (74)

Note that for the special case of quadratic Hamiltonians H =
ωkJk + χklJkJl the results of Eqs. (73) and (74) coincide with
the equations derived in [23] for a quantum description of spin
squeezing in Gaussian approximation, and in particular for

Hamiltonian H = −ωJx + η

2 J 2
z describing a two-component

Bose-Einstein condensate they coincide with the “Bogoliubov
backreaction” equations of [24].

D. Squeezing rate and orientation of the uncertainty ellipse

Let us first assume that the state is centered at the north
pole of the Bloch sphere with J̄x = J̄y = 0, J̄z > 0 with
no fluctuations in the radial direction, Vzk ≈ 0, k = x,y,z.
We express the variation matrix by means of the principal
variances V±, where

V± = Vxx + Vyy

2
± 1

2

√
(Vxx − Vyy)2 + 4V 2

xy, (75)

and

Vxx = V+ cos2 α + V− sin2 α, (76)

Vyy = V+ sin2 α + V− cos2 α, (77)

Vxy = V+ − V−
2

sin 2α, (78)

where α is the orientation of the uncertainty ellipse. Expressing
the time derivatives by means of Eq. (74) as

V̇xx = −2HzVxy + 2Jz(HxyVxx + HyyVxy), (79)

V̇yy = 2HzVxy − 2Jz(HxyVyy + HxxVxy), (80)

V̇xy = Hz(Vxx − Vyy) + Jz(HyyVyy − HxxVxx), (81)

we find for the principal moments

V̇± = ±Jz[(Hyy − Hxx) sin 2α + 2Hxy cos 2α]V±, (82)

which shows the dependence of the squeezing rate on the
orientation. The optimum orientation occurs for

tan 2α = Hyy − Hxx

2Hxy

, (83)

for which we get V̇± = ±QV± with

Q = |J̄z|
√

(Hxx − Hyy)2 + 4H 2
xy, (84)

which is analogous to Eq. (18). Note that if the coordinates
are chosen such that Hxy = 0, the orientation of optimum
squeezing corresponds to α = ±π/4.

In the case of a general position on the Bloch sphere one
can proceed by first transforming the coordinate system to
place the state to the pole and then use Eq. (84). Expressing
the general result, one finds after some algebra

Q =
√

Tr(JH ′′JH ′′) + Tr(J 2H ′′J 2H ′′)
|J |2 , (85)

where H ′′ is the matrix of the Hamiltonian second derivatives

H ′′ =
⎛
⎝Hxx Hxy Hxz

Hxy Hyy Hyz

Hxz Hyz Hzz

⎞
⎠, (86)
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J is the antisymmetric matrix corresponding to the coordinate
vector 
J as

J =
⎛
⎝ 0 Jz −Jy

−Jz 0 Jx

Jy −Jx 0

⎞
⎠, (87)

and |J | =
√

J 2
x + J 2

y + J 2
z (see Appendix C for more details

of the derivation).

E. Rotation of the Bloch sphere to keep the optimum
squeezing orientation

In general, the state driven by H is not only squeezed, but
it also drifts along the Bloch sphere and gets the orientation of
the uncertainty area rotated. Suppose that we want to keep the
state at the chosen position and have its orientation optimal
for fastest squeezing. Assuming that the initial distribution
is sufficiently narrow that the terms HjlVlk in Eq. (73) can be
neglected, compensation of the drift can be achieved by adding
the Hamiltonian

Had1 = −HkJk (88)

= 
ωc · 
J , (89)

where


ωc = −gradH, (90)

and the derivatives of H are taken in (Jx,Jy,Jz) = (J̄x,J̄y,J̄z).
To find the rotation Hamiltonian that would keep the state

optimally oriented, let us first consider that the chosen location
is the north pole, i.e., J̄x = J̄y = 0, J̄z > 0 and the coordinate
system is chosen such that Hxy = 0. This means that the
optimum angle is α = π/4 which can be kept if variances
of Jx and Jy are stretched with the same rate, i.e., we have
V̇xx = V̇yy in Eqs. (79) and (80). This can be achieved if the
Hamiltonian H + Had1 is supplemented with another term

Had2 = ωvzJz (91)

with

ωvz = J̄z

2
(Hxx + Hyy). (92)

This result is analogous to Eq. (25) in the planar phase space.
For a general position (J̄x,J̄y,J̄z) on the Bloch sphere one

can transform the coordinate system to get

Had2 = 1

2

(
Hkk − J̄iHij J̄j

|J̄ |2
)

J̄lJl (93)

= 
ωv · 
J , (94)

where


ωv = 1

2

(
TrH ′′ −


̄JH ′′ 
̄J
|J̄ |2

)

̄J, (95)

and the derivatives of H are taken in 
J = 
̄J .

F. Examples

1. One-axis twisting

The simplest Hamiltonian used to generate spin squeezing
is

H = χJ 2
z (96)

corresponding to the one-axis twisting introduced in [25].
Applying Eq. (85) we find

Q = 2χ
J̄ 2

x + J̄ 2
y

|J̄ |
= 2χ |J̄ | sin2 θ, (97)

where J̄x = |J̄ | sin θ cos φ, J̄y = |J̄ | sin θ sin φ, and J̄z =
|J̄ | cos θ . Thus the fastest generation of squeezing occurs on
the equator of the Bloch sphere with Q = 2χ |J̄ | corresponding
to the quantum result Q = Nχ with N = 2|J̄ | being the total
particle number. To compensate for the drift one rotates the
Bloch sphere with 
ωc,


ωc = 2χ (0,0,J̄z), (98)

and to keep the optimum orientation with 
ωv ,


ωv = χ

(
1 − J̄ 2

z

|J̄ |2
)


̄J (99)

= χ sin2 θ 
̄J. (100)

Assume now an optimally located state at the equator, say,
with J̄y = J̄z = 0 and J̄x > 0. In this case there is no drift
to compensate (ωc = 0), and the optimal orientation of the
uncertainty ellipse is kept by rotation with 
ωv = χ (|J̄ |,0,0) so
that the total Hamiltonian is

Htot = H + Had2 = χ
(
J 2

z + |J̄ |Jx

)
. (101)

This Hamiltonian occurs in processes of classical bifurcation
studied, e.g., in [26]. We show the corresponding classical
trajectories and the evolution of the uncertainty area in Fig. 7.
These trajectories are equivalent to those found in the θ − φ

plane by semiclassical analysis of the model in [27].

2. Two-axis countertwisting

Assume the Hamiltonian

H = χ
(
J 2

x − J 2
y

)
, (102)

whose quantum counterpart corresponds to the two-axis
countertwisting of [25]. Possible physical realization of such
a Hamiltonian has been studied recently in [23,28].

For the squeezing rate we find

Q = χ

|J̄ |
√(

J̄ 2
x − J̄ 2

y

)2 + 4J̄ 2
z |J̄ |2 (103)

= χ |J̄ |
√

sin4 θ cos2 2φ + 4 cos2 θ, (104)

which is maximized at the poles J̄x = J̄y = 0 with Q = 2χ |J̄ |
and is zero at four points at the equator, J̄z = 0 and φ = ±π/4,
π ± π/4.

To compensate for the drift one needs to rotate the Bloch
sphere with the angular velocity


ωc = 2χ (−J̄x,J̄y,0), (105)
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Jz

Jy

Jx

FIG. 7. (Color online) Phase-space trajectories and evolution of
the uncertainty region in the one-axis twisting scenario with Hamil-
tonian (101). Quantities Jx,y,z are dimensionless here and in the next
figures.

and to keep the optimal orientation the sphere is rotated with


ωv = −χ
J̄ 2

x − J̄ 2
y

|J̄ |2

̄J (106)

= −χ sin2 θ cos 2φ 
̄J. (107)

As can be seen, no rotation is necessary if the state is located
at the optimum squeezing points J̄x = J̄y = 0, where ωc =
ωv = 0. This case is illustrated in Fig. 8.

The results of the one-axis twisting and two-axis counter-
twisting scenarios correspond exactly to the quantum results
obtained from the Gaussian approximation in [23] using the
“twisting tensor” approach.

Jz

Jy

Jx

FIG. 8. (Color online) Phase-space trajectories and evolution of
the uncertainty region in the two-axis countertwisting scenario with
Hamiltonian (102).

3. Spin squeezing by Jaynes-Cummings interaction

Let us assume the Hamiltonian

H = ±g

√
|J̄ | − Jz. (108)

This form stems from the same considerations as in Sec. V E,
assuming a two-mode field and an atom coupled to mode b̂

of the field, the atom being prepared in positive or negative
superposition of the two levels. Another physical realization
proposed in [29] is a collection of atoms with states |a〉 and
|b〉, the latter being coupled by a laser field to a Rydberg
state |r〉 for which the Rydberg blockade prohibits more than
one atom in state |r〉. On using the definitions of x and p

of Sec. VI A, we see that near the north pole of the Bloch
sphere with |Jx,y | � |J̄ | = N/2, Jz ≈ |J̄ |, Eq. (108) reduces
to Eq. (52).

For a general position, on using Eq. (85) one finds

Q = g(|J̄ | + Jz)

4|J̄ |
√

|J̄ | − Jz

, (109)

which near the north pole of the Bloch sphere reduces to
Eq. (55). For the drift compensation and for keeping optimum
orientation of the uncertainty ellipse we find the angular
velocities


ωc =
(

0,0,± g

2
√

|J̄ | − J̄z

)
, (110)


ωv = ∓ g

8|J̄ |2
|J̄ | + J̄z√
|J̄ | − J̄z


J . (111)

We illustrate the classical trajectories and the evolution of the
uncertainty area in Fig. 9. As can be checked, for states near
the north pole of the Bloch sphere the combined rotation is


ωc + 
ωv ≈ ∓g√
8|J̄ |(J̄ 2

x + J̄ 2
y

) (−J̄x,−J̄y,J̄z), (112)

Jz

Jy

Jx

FIG. 9. (Color online) Phase-space trajectories and evolution of
the uncertainty region in the Jaynes-Cummings model with Hamil-
tonian H + ( 
ωc + 
ωv) · 
J of Eqs. (108), (110), and (111), with the
upper choice of sign.
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which means that the sphere is rotated around an axis
intersecting the sphere oppositely to the state across the pole.
This result is analogous to the rotation by Hamiltonian (60) in
the planar phase space.

VII. CONCLUSION

The main result of this paper is Eqs. (18) and (85)
giving the maximum squeezing rate Q in a planar phase
space and on the Bloch sphere, respectively. In the planar
phase space, Q is a function of second derivatives of the
classical Hamiltonian which, in the zero-gradient points, is
proportional to the difference of principal curvatures. On the
Bloch sphere, formula (85) generalizes the result found for
quadratic Hamiltonians in [23], where the maximum squeezing
rate is proportional to the difference of the maximum and
minimum eigenvalues of the twisting tensor. The formulas
with the second derivatives can be interpreted as using a local
expansion of the Hamiltonian up to quadratic terms to “twist”
the phase-space neighborhood of the considered state.

The other main results are the rotation frequencies of the
phase space that keep the state at the right place and optimally
oriented. They can be used as parameters of additional
Hamiltonians to supplement the original Hamiltonian. These
additional Hamiltonians themselves do not produce squeezing
and their addition does not influence the value of Q. They can
be treated rather as instruments that optimize the exploitation,
but do not change the amount of the resource. Their application
transforms the point of interest into a saddle point with
principal curvatures of equal magnitudes and opposite signs.

It is interesting to note how several “quantum” results could
be found purely by classical means. Apart from the squeezing
rates, these are, e.g., the “Bogoliubov backreaction” equations
(73) and (74) relevant for the description of two-component
Bose-Einstein condensates. Although squeezing itself is some-
times described as a purely quantum phenomenon, we can
see that it is not. What is quantum on squeezed states is
rather the requirement on the minimum size of the uncertainty
area, and sometimes the origin of the Hamiltonian governing
the evolution (as, e.g., in the Jaynes-Cummings model). The
classical results can be used for a quick estimation of the
main properties of the states at the beginning of the squeezing
process. At later stages of the evolution, however, the quantum
nature of our world starts revealing in the interference
phenomena that cannot be described by the classical means.
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APPENDIX A: ROTATION RADIUS AND ANGULAR
VELOCITY OF A PHASE-SPACE POINT

Assume a phase-space point moving from (x1,p1) through
(x2,p2) to (x3,p3) as in Fig. 10. First we express (x2,p2) and
(x3,p3) up to the second order of a short time interval dt . We
have

x2 ≈ x1 + ẋ1dt + 1
2 ẍ1dt2

= x1 + Hpdt + 1
2 (HxpHp − HppHx)dt2, (A1)

(x  ,p  )R R

(x  ,p  )1 1

(x  ,p  )2 2

(x  ,p  )3 3

1s

s2

w

R
γ

γ

FIG. 10. Motion of the phase-space point from (x1,p1) through
(x2,p2) to (x3,p3) expressed as rotation around (xR,pR) by angle γ .

p2 ≈ p1 + ṗ1dt + 1
2 p̈1dt2

= p1 − Hxdt + 1
2 (HxpHx − HxxHp)dt2, (A2)

where we have used

ẍ1 = d

dt
Hp = Hpxẋ1 + Hppṗ1 = HxpHp − HppHx, (A3)

p̈1 = − d

dt
Hx = −Hxxẋ1 − Hxpṗ1

= −HxxHp + HxpHx, (A4)

and the derivatives are taken in (x1,p1). Similarly, we have

x3 ≈ x2 + ẋ2dt + 1
2 ẍ2dt2

= x2 + H (2)
p dt + 1

2

(
H (2)

xp H (2)
p − H (2)

pp H (2)
x

)
dt2, (A5)

p3 ≈ p2 + ṗ2dt + 1
2 p̈2dt2

= p2 − H (2)
x dt + 1

2

(
H (2)

xp H (2)
x − H (2)

xx H (2)
p

)
dt2, (A6)

where the upper index in H (2)
p , etc., means that the derivatives

are taken in (x2,p2). We express these derivatives in terms of
the derivatives in (x1,p1) with a correction up to the first order
in dt as

H (2)
x = Hx + Hxxdx + Hxpdp

= Hx + (HxxHp − HxpHx)dt, (A7)

H (2)
p = Hp + Hpxdx + Hppdp

= Hp + (HpxHp − HppHx)dt, (A8)

while for the second derivatives it is enough to keep only the
zeroth order of dt , i.e., H (2)

xp = Hxp, etc. We thus have

x3 = x1 + 2Hpdt + 2(HxpHp − HppHx)dt2, (A9)

p3 = p1 − 2Hxdt + 2(HxpHx − HxxHp)dt2. (A10)

We can then express the vectors 
s1 = (x2,p2) − (x1,p1) and

s2 = (x3,p3) − (x2,p2) of Fig. 10 which are used to get their
difference 
w = 
s2 − 
s1 as


w = (HxpHp − HppHx,HxpHx − HxxHp)dt2. (A11)
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For the remaining calculations vectors 
s1,2 are taken up to the
first order of dt as 
s1 ≈ 
s2 ≡ 
s, i.e.,


s = (Hp,−Hx)dt. (A12)

A small angle γ = ωcdt � 1 can be expressed as

γ = 
w × 
s
|
s| = wxsp − wpsx

s2
x + s2

p

= H 2
x Hpp + H 2

pHxx − 2HxHpHxp

H 2
x + H 2

p

dt, (A13)

from which we get ωc as in Eq. (28).

Finally, we can express position of the center of the rotation
as (xR,pR) = (x1,p1) + (Rx,Rp), where

Rx = sp

γ
, (A14)

Rp = − sx

γ
, (A15)

from which we get Eqs. (26) and (27).

APPENDIX B: TIME DERIVATIVES OF MOMENTS ON
THE BLOCH SPHERE

Let us express the time derivative of Ji + �Ji by means of
Eq. (67) as

d

dt
(Ji + �Ji) = εijk(Jk + �Jk)

∂

∂Jj

(
H + Hl�Jl + 1

2
Hls�Jl�Js + · · ·

)

= εijkJk

(
Hj + Hjl�Jl + 1

2
Hjls�Jl�Js + · · ·

)
+ εijk

(
Hj�Jk + Hjl�Jk�Jl + 1

2
Hjls�Jk�Jl�Js + · · ·

)
.

(B1)

If this expansion is taken in the mean value of (Jx,Jy,Jz) = (J̄x,J̄y,J̄z), one can use 〈�Jk〉 = 0 and 〈�Jk�Jl〉 = Vkl so that the
mean value of Eq. (B1) yields

dJ̄i

dt
= εijkJ̄k

(
Hj + 1

2
HjlsVls + · · ·

)
+ εijk

(
HjlVkl + 1

2
HjlsVkls + · · ·

)
, (B2)

where Vkls ≡ 〈�Jk�Jl�Js〉, etc. If the distribution of (Jx,Jy,Jz) is sufficiently narrow around its mean, we can keep in each
bracket just the first term so that we arrive at Eq. (73).

In a similar way we can express the time derivative of the product (Ji + �Ji)(Jj + �Jj ) as

d

dt
[(Ji + �Ji)(Jj + �Jj )] = [εilk(Jj + �Jj ) + εjlk(Ji + �Ji)](Jk + �Jk)

×
(

Hl + Hlp�Jp + 1

2
Hlpr�Jp�Jr + 1

6
Hlprs�Jp�Jr�Js + · · ·

)
. (B3)

Expressing the mean value of Eq. (B3) and using (B2), one finds

dVij

dt
= Hl(εilkVjk + εjlkVik) + HlpJ̄k(εilkVjp + εjlkVip)

+ 1

2
Hlpr (εilkVjkpr + εjlkVikpr ) + 1

6
Hlprs J̄k(εilkVjprs + εjlkViprs) + · · · . (B4)

For a sufficiently narrow distribution only the first two terms on the right-hand side of Eq. (B4) are essential so we arrive at
Eq. (74).

APPENDIX C: SQUEEZING RATE FOR A GENERAL POSITION ON THE BLOCH SPHERE

For a state centered at (J̄x,J̄y,J̄z) the transformation⎛
⎝J ′

x

J ′
y

J ′
z

⎞
⎠ = R2R1

⎛
⎝Jx

Jy

Jz

⎞
⎠, (C1)

with

R1 =

⎛
⎜⎜⎝

J̄x√
J̄x

2+J̄y
2

J̄y√
J̄x

2+J̄y
2

0

−J̄y√
J̄x

2+J̄y
2

J̄x√
J̄x

2+J̄y
2

0

0 0 1

⎞
⎟⎟⎠, R2 =

⎛
⎜⎜⎜⎝

J̄z√
J̄x

2+J̄y
2+J̄z

2
0 −

√
J̄x

2+J̄y
2√

J̄x
2+J̄y

2+J̄z
2

0 1 0√
J̄x

2+J̄y
2√

J̄x
2+J̄y

2+J̄z
2

0 J̄z√
J̄x

2+J̄y
2+J̄z

2

⎞
⎟⎟⎟⎠, (C2)

033801-11
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moves the state to the pole of the Bloch sphere with J̄ ′
x = J̄ ′

y = 0, where one can apply Eq. (84) as Q2 =
|J |2[(Hx ′x ′ − Hy ′y ′ ) + 4H 2

x ′y ′ ]. The derivatives with respect to the new coordinates Hx ′x ′ ≡ ∂2H/∂J ′2
x , etc. are expressed using

the chain rule

Hx ′x ′ = Hxx

(
∂Jx

∂J ′
x

)2

+ 2Hxy

∂Jx

∂J ′
x

∂Jy

∂J ′
x

+ · · · + Hzz

(
∂Jz

∂J ′
x

)2

, (C3)

etc., with

∂Jx

∂J ′
x

= J̄x J̄z√
J̄x

2 + J̄y
2
√

J̄x
2 + J̄y

2 + J̄z
2
,

∂Jy

∂J ′
x

= J̄y J̄z√
J̄x

2 + J̄y
2
√

J̄x
2 + J̄y

2 + J̄z
2
,

∂Jz

∂J ′
x

= −
√

J̄x
2 + J̄y

2√
J̄x

2 + J̄y
2 + J̄z

2
,

∂Jx

∂J ′
y

= −J̄y√
J̄x

2 + J̄y
2
,

∂Jy

∂J ′
y

= J̄x√
J̄x

2 + J̄y
2
,

∂Jz

∂J ′
y

= 0,

∂Jx

∂J ′
z

= J̄x√
J̄x

2 + J̄y
2 + J̄z

2
,

∂Jy

∂J ′
z

= J̄y√
J̄x

2 + J̄y
2 + J̄z

2
,

∂Jz

∂J ′
z

= J̄z√
J̄x

2 + J̄y
2 + J̄z

2
.

(C4)

On changing from the mean values to the coordinates of the point of interest J̄k → Jk , we arrive at

Q2 = |J |−2
{(

J 2
y + J 2

z

)2
H 2

xx + (
J 2

x + J 2
z

)2
H 2

yy + (
J 2

x + J 2
y

)2
H 2

zz + 4
(
J 2

x + J 2
z

)(
J 2

y + J 2
z

)
H 2

xy

+ 4
(
J 2

x + J 2
y

)(
J 2

y + J 2
z

)
H 2

xz + 4
(
J 2

x + J 2
y

)(
J 2

x + J 2
z

)
H 2

yz + 2
[
J 2

x J 2
y − J 2

z

(
J 2

x + J 2
y + J 2

z

)]
HxxHyy

+ 2
[
J 2

x J 2
z − J 2

y

(
J 2

x + J 2
y + J 2

z

)]
HxxHzz + 2

[
J 2

y J 2
z − J 2

x

(
J 2

x + J 2
y + J 2

z

)]
HyyHzz

−4JxJy

(
J 2

y + J 2
z

)
HxxHxy − 4JxJz

(
J 2

y + J 2
z

)
HxxHxz + 4JyJz

(
2J 2

x + J 2
y + J 2

z

)
HxxHyz

−4JxJy

(
J 2

x + J 2
z

)
HyyHxy + 4JxJz

(
J 2

x + 2J 2
y + J 2

z

)
HyyHxz − 4JyJz

(
J 2

x + J 2
z

)
HyyHyz

+4JxJy

(
J 2

x + J 2
y + 2J 2

z

)
HzzHxy − 4JxJz

(
J 2

x + J 2
y

)
HzzHxz − 4JyJz

(
J 2

x + J 2
y

)
HxzHyz

−8JyJz

(
J 2

y + J 2
z

)
HxyHxz − 8JxJz

(
J 2

x + J 2
z

)
HxyHyz − 8JxJy

(
J 2

x + J 2
y

)
HxzHyz

}
, (C5)

which can be abbreviated by using the Einstein summation as

Q2 = 1

JwJw

[(JsJs)(εijkεlpqJkJqHjlHpi) + (JkHkqJq)(JsHspJp) − 2(JkJk)(JsHslHlqJq) + (JkJk)(JsJs)(HlqHql)]

= εijkJkHjlεlpqJqHpi + 1

JwJw

(εijkJkεjlpJpHlqεqrsJsεrtvJpHti), (C6)

which corresponds to Eq. (85), taking into account that Jij = εijkJk .
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