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Spreading of entanglement and steering along small Bose-Hubbard chains
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We investigate how entanglement spreads along small Bose-Hubbard chains, with only the first well initially
occupied by a mesoscopic number of atoms, as the number of sites increases. For two- and three-well chains in the
noninteracting case, we are able to obtain analytical solutions and show that the presence of entanglement depends
on having a sub-Poissonian state of the atoms in the first well. In these cases, the correlations we calculate are
completely periodic. Restoring the collisional interactions or moving to a four-well chain necessitates a numerical
treatment, for which we use the fully quantum positive-P representation. We examine two different correlations
and find that adding collisional interactions destroys the periodicity of the correlations and causes them to degrade
with time. This happens well before there is a noticeable effect on the periodicity of the solutions for the number
of atoms in each well.
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I. INTRODUCTION

The investigation of nonlocal correlations such as entan-
glement and Einstein-Podolsky-Rosen (EPR) steering [1–3]
necessarily belongs to the field of continuous-variable entan-
glement, which is a very active area of research [4,5]. Many
criteria having been developed to signify the presence of in-
separability, entanglement, and the potential for EPR steering,
especially in bipartite systems. The measures that we use in
this work were developed from work by Hillery and Zubairy
[6], which was based on the Cauchy-Schwarz inequality. The
original inequality covered bipartite inseparability and was
expanded on by Cavalcanti et al. [7] to cover multipartite
entanglement, steering, and violations of Bell inequalities. As
shown by He et al. [8], the Hillery and Zubairy criteria are
well suited to number conserving processes such as those
of interest here. In previous work on a different three-well
system, we have found these to be the most useful criteria for
the detection of entanglement in Bose-Hubbard systems [9].

Multimode entanglement in Bose-Einstein condensates
(BEC) has been predicted and examined in the processes of
molecular dissociation [10], four-wave mixing in an optical
lattice [11–13], and in a two-well Bose-Hubbard model [8,14].
In the latter case the separation of the modes is produced by
the tunneling between wells, in both the continuous [8,15,16]
and pulsed tunneling configurations [17,18]. The spreading
of correlations and entanglement after a sudden parameter
change, investigated by Lauchli and Kollath [19], and the
development of entanglement between the two ends of a
chain, analyzed by Reslen and Bose [20], are particularly
relevant to the present work. In the two-well case, there are
also similarities to optical systems with coupled Kerr media,
shown to produce nonclassical states in both the traveling wave
[21,22] and the intracavity regimes [23].

The quantum correlations necessary to detect inseparability,
entanglement, and EPR steering can in principle be measured
using the interaction with light [24], or by homodyning with
other atomic modes [25]. We note here that the entanglement
we are examining is a collective property between atomic
modes, which are spatially separated, and is not between
individual atoms [12,14]. We also note that tunneling of atoms
between wells will not, by itself, lead to entanglement, with

either a nonlinear interaction or initial nonclassical states being
necessary [26].

What we investigate in this article is the spreading of
entanglement and the potential for EPR steering along small
Bose-Hubbard chains, beginning with a mesoscopic popula-
tion of atoms in one end well. In the case of noninteracting
atoms and two- or three-well chains, we will obtain analytical
solutions of the Heisenberg equations of motion for the
atomic annihilation and creation operators. In these cases, we
find that the presence of entanglement or EPR steering will
depend on the presence of a nonclassical quantum state of
the initial atoms. For four wells, and in all cases with atomic
interactions, we will use numerical stochastic integration in
the positive-P representation [27], which proved to be stable
over the evolution times we examine here.

II. PHYSICAL MODEL AND HAMILTONIANS

We follow the approach to the Bose-Hubbard model [28,29]
taken by Milburn et al. [30], also generalizing this to three
[31,32] and four wells [33]. All our systems are in a linear
configuration with only the first well initially occupied. Where
possible, we analytically solve the Heisenberg equations of
motion and in other cases we use the fully quantum positive-P
representation [27], which contains the full dynamics due to
the Hamiltonians. We consider these to be the most suitable
approaches here because they are both exact, allow for an
easy representation of mesoscopic numbers of atoms, can
be used to calculate quantum correlations, and can simulate
different quantum initial states [34]. Just as importantly, both
calculations scale linearly with the number of sites and can in
principle deal with any number of atoms. One disadvantage
of the positive-P representation is that the integration can
show a tendency to diverge at short times for high collisional
nonlinearities [35]. As long as the procedures followed to
derive the Fokker-Planck equation for the positive-P function
are valid [36], the stochastic solutions are guaranteed to be
accurate wherever the integration converges. With all the
results shown here, we found no sign of numerical divergences.

The systems we investigate are very simple, with the
potential wells in a linear configuration. Each of these can
contain a single atomic mode, which we will treat as being in
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the lowest energy level. Atoms in each of the wells can tunnel
into the nearest-neighbor potential. With the âj as bosonic
annihilation operators for atoms in mode j , J representing
the coupling between the wells, and χ as the collisional
nonlinearity, we may now write our Hamiltonians. Following
the usual procedures [30], we find the two-well Hamiltonian
as

H2 = �

2∑
j=1

χâ
† 2
j â2

j + �J (â1â
†
2 + â

†
1â2), (1)

the three-well Hamiltonian as

H3 = �

3∑
j=1

χâ
† 2
j â2

j + �J (â†
1â2 + â

†
2â1 + â

†
3â2 + â

†
2â3), (2)

and that for the four-well system as

H4 = �

4∑
j=1

χâ
† 2
j â2

j + �J (â†
1â2 + â

†
2â1 + â

†
3â2

+ â
†
2â3 + â

†
4â3 + â

†
3â4). (3)

From these three Hamiltonians we can derive the equations of
motion used to investigate the dynamics of our systems.

III. NONINTERACTING CASE

For the case where the collisional interaction between the
atoms is set to zero, we find that an analytical solution of the
Heisenberg equations of motion of the system operators for
the two- and three-well chains is possible. For the four-well
chain, we were unsuccessful. The two-well system is rather
simple and has been extensively analyzed. We will present
the results here for completeness and for the purposes of easy
comparison with the longer chains.

A. Two wells

For the two-well system, the Heisenberg equations of
motion are found as

d

dt

⎡
⎢⎢⎣

â1

â
†
1

â2

â
†
2

⎤
⎥⎥⎦ =

⎡
⎢⎣

0 0 −iJ 0
0 0 0 iJ

−iJ 0 0 0
0 iJ 0 0

⎤
⎥⎦

⎡
⎢⎢⎣

â1(0)
â
†
1(0)

â2(0)
â
†
2(0)

⎤
⎥⎥⎦. (4)

This set of linear operator equations is readily solved, having
the solutions

â1(t) = â1(0) cos J t − iâ2(0) sin J t,

â
†
1(t) = â

†
1(0) cos J t + iâ

†
2(0) sin J t,

(5)
â2(t) = −iâ1(0) sin J t + â2(0) cos J t,

â
†
2(t) = iâ

†
1(0) sin J t + â

†
2(0) cos J t.

For the populations, we find the time dependent solutions,

〈N̂1(t)〉 = 〈â†
1(0)â1(0)〉 cos2 J t,

(6)
〈N̂2(t)〉 = 〈â†

1(0)â1(0)〉 sin2 J t,

showing that the atoms will cycle forever between the two
wells, as long as any other considerations are absent. The

inclusion of the atomic interactions is known to cause a
collapse and eventual revival of the oscillations [32], but over
longer timescales than we are investigating here.

B. Triple wells

For the noninteracting three-well system, the Heisenberg
equations of motion are

d

dt

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

â1

â
†
1

â2

â
†
2

â3

â
†
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −iJ 0 0 0

0 0 0 iJ 0 0

−iJ 0 0 0 −iJ 0

0 iJ 0 0 0 iJ

0 0 −iJ 0 0 0

0 0 0 iJ 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

â1(0)

â
†
1(0)

â2(0)

â
†
2(0)

â3(0)

â
†
3(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7)
This set of linear operator equations is also readily solved,

having the solutions

â1(t) = 1

2
(cos �t + 1)â1(0) − i√

2
sin �t â2(0)

+ 1

2
(cos �t − 1)â3(0),

â
†
1(t) = 1

2
(cos �t + 1)â†

1(0) + i√
2

sin �t â
†
2(0)

+ 1

2
(cos �t − 1)â†

3(0),

â2(t) = −i√
2

sin �t â1(0) + cos �t â2(0) − i√
2

sin �t â3(0),

â
†
2(t) = i√

2
sin �t â

†
1(0) + cos �t â

†
2(0) + i√

2
sin �t â

†
3(0),

â3(t) = 1

2
(cos �t − 1)â1(0) − i√

2
sin �t â2(0)

+ 1

2
(cos �t + 1)â3(0),

â
†
3(t) = 1

2
(cos �t − 1)â†

1(0) + i√
2

sin �t â
†
2(0)

+ 1

2
(cos �t + 1)â†

3(0), (8)

where we have made the substitution � = √
2J for reasons of

notational elegance. In this case we find the populations as

〈N̂1(t)〉 = 1
4 (cos �t + 1)2〈â†

1(0)â1(0)〉,
〈N̂2(t)〉 = 1

2 sin2 �t〈â†
1(0)â1(0)〉, (9)

〈N̂3(t)〉 = 1
4 (cos �t − 1)2〈â†

1(0)â1(0)〉.
These solutions again describe fully periodic oscillations and
are shown in Fig. 1.

C. Four wells

In the four-well case, we were not able to obtain analytical
solutions of the Heisenberg equations of motion. However,
we can integrate the positive-P representation [27] equations
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FIG. 1. (Color online) The analytical noninteracting solutions for
the populations in each well as a function of time, for J = 1 and
N1(0) = 200, with N2(0) = N3(0) = 0. The interacting stochastic
results for χ = 10−3 and both coherent and Fock initial states are
indistinguishable on this scale. The quantities plotted in this and
subsequent plots are dimensionless.

numerically with initial states taken from distributions using
the methods developed by Olsen and Bradley [34]. For an
initial coherent state, this is the same as integrating the
classical, Gross-Pitaevskii equations. For an initial Fock state,
while each trajectory is deterministic, the initial state is
chosen from a distribution in the doubled phase space of the
representation. The equations are as given in Sec. V below,
but without the noise terms. We present the solutions for the
populations in Fig. 2, beginning again with an initial Fock state
of 200 atoms in the first well.
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FIG. 2. (Color online) The numerical noninteracting solutions
for the populations of the four-well model as a function of time,
for J = 1, and N1(0) = 200 in a Fock state, with N2(0) = N3(0) =
N4(0) = 0. These solutions were averaged over 2.88 × 105 stochastic
realizations of the positive-P equations. We see that the populations
now exhibit much more complicated dynamics than for the three-well
case shown in Fig. 1.

IV. ANALYTIC QUANTUM CORRELATIONS

As well as the populations in each well, we also calculate
any type of operator products that we desire, analytically in
the case without interactions. We will calculate the number
variances in each well, and entanglement and EPR steering
measures adapted from an inequality developed by Hillery and
Zubairy. They showed that, considering two separable modes
denoted by i and j [6],

|〈â†
i âj 〉|2 � 〈â†

i âi â
†
j âj 〉, (10)

with the equality holding for coherent states. The violation of
this inequality is thus an indication of the inseparability of,
and entanglement between, the two modes. Cavalcanti et al.
[7] have extended this inequality to provide indicators of EPR
steering [1–3] and Bell violations [37]. We now define the
correlation function

ξij = 〈â†
i âj 〉〈âi â

†
j 〉 − 〈â†

i âi â
†
j âj 〉, (11)

for which a positive value reveals entanglement between
modes i and j . We easily see that ξij gives a value of zero
for two independent coherent states and a negative result for
two independent Fock states.

Cavalcanti et al. [7] further developed the work of Hillery
and Zubairy to find inequalities for which the violation denotes
the possibility of EPR steering and Bell states. The EPR
steering inequality for two modes is written as

|〈âi â
†
j 〉|2 �

〈
â
†
i âi

(
â
†
j âj + 1

2

)〉
, (12)

while the Bell state inequality is written as

|〈âi â
†
j 〉|2 �

〈(
â
†
i âi + 1

2

)(
â
†
j âj + 1

2

)〉
. (13)

Calling on the overworked Alice and Bob, if Alice measures
mode i and Bob measures mode j a violation of the
inequality (12) signifies that Bob would be able to steer Alice,
and vice versa for a swapping of the modes. These inequalities
allow us to define a correlation function, which signifies the
presence of EPR steering when it has a value of greater than
zero,

�ij = 〈âi â
†
j 〉〈â†

i âj 〉 − 〈
â
†
i âi

(
â
†
j âj + 1

2

)〉
, (14)

and another for which a positive value signifies the presence
of Bell correlations,

ζij = 〈âi â
†
j 〉〈â†

i âj 〉 − 〈(
â
†
i âi + 1

2

)(
â
†
j âj + 1

2

)〉
. (15)

The criteria ξij and �ij have been shown to detect both
inseparability and asymmetric EPR steering in a three-well
Bose-Hubbard model under the process of coherent transfer
of atomic population (CTAP) [17,18], as well as bipartite
entanglement in a three-mode model with all population
initially in the central well [9].

A. Twin-well model

The first class of correlations we calculate are the number
variances in each well. In terms of the operators, these are

V (N̂j ) = 〈â†
j âj â

†
j âj 〉 − 〈â†

j âj 〉2. (16)
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FIG. 3. (Color online) The analytical noninteracting solutions for
ξ12 and �ij in the twin-well model as a function of time, for J = 1 and
N1(0) = 200 in a Fock state, with N2(0) = N3(0) = 0. We see that
the �ij exhibit positivity at different times, showing that asymmetric
steering is possible by this measure. The dotted line at zero is to help
discern where the plotted quantities are positive.

We find, dropping the time argument for simplicity,

V (N̂1) = V [N̂1(0)] cos4 J t + 1
4 〈N̂1(0)〉 sin2 2J t,

(17)
V (N̂2) = V [N̂1(0)] sin4 J t + 1

4 〈N̂1(0)〉 sin2 2J t.

The Hillery-Zubairy correlation is found as

ξ12 = 1
4 sin2 2J t{〈N̂1(0)〉 − V [N̂1(0)]}, (18)

showing that entanglement will be detected by this measure
whenever the initial state of the atoms in the first well is sub-
Poissonian. The correlation will be maximized for an initial
Fock state, as shown in Fig. 3.

The EPR steering correlations are solved as

�12 = 1
4 sin2 2J t{〈N̂1(0)〉 − V [N̂1(0)]} − 1

2 sin2 J t〈N̂1(0)〉,
�21 = 1

4 sin2 2J t{〈N̂1(0)〉 − V [N̂1(0)]} − 1
2 cos2 J t〈N̂1(0)〉,

(19)

both of which can be positive. We note that �12 �= �21, which
leaves open the possibility of asymmetric steering [38], which
we see in Fig. 3, where �12 and �21 are positive at different
times for an initial Fock state. We note here that, although the
steering is asymmetric by this measure, this does not mean
this is the case for all possible measures. The Bell correlation
is found as

ζ12 = 1
4 sin2 2J t{〈N̂1(0)〉 − V [N̂1(0)]} − 〈N̂1〉 − 1

4 , (20)

which obviously can never be positive.

B. Triple-well model

In the noninteracting case and again with only the first well
initially occupied, we find

V (N̂1) = 1
16 (1 + cos �t)4V [N̂1(0)] + 1

8 sin2 �t

× [
1
2 sin2 �t + (1 + cos �t)2

]〈N̂1(0)〉,

V (N̂2) = 1
4 sin4 �t V [N̂1(0)] + 1

2 sin2 �t

× (
1 − 1

2 sin2 �t
)〈N̂1(0)〉,

V (N̂3) = 1
16 (cos �t−1)4V [N̂1(0)] + 1

4 (cos �t−1)2〈N̂1(0)〉.
(21)

The Hillery-Zubairy inseparability correlations ξ1j are found
as

ξ12 = 1
8 sin2 �t(1 + cos �t)2{〈N̂1(0)〉 − V [N̂1(0)]},

(22)
ξ13 = 1

16 sin4 �t{〈N̂1(0) − V [N̂1(0)]},
from which we can see that both modes 1 and 2, and 1 and
3 can exhibit a time-dependent inseparability for an initial
sub-Poissonian state in the first well. We also see from both the
equations and Fig. 4 that the maximum value of the function is
less for ξ13 than for ξ12, indicating that the entanglement with
the first well decreases with distance along the chain.

For the EPR steering criteria we find

�12 = − 1
8 (1 + cos �t)2{〈N̂1(0)〉 cos2 �t + V [N̂1(0)]},

�21 = − 1
8 sin2 �t((1 + cos �t)2{V [N̂1(0)] + 〈N̂1(0)〉}

+ 2 cos2 �t〈N̂1(0)〉),
�13 = 1

16 sin4 �t{〈N̂1(0)〉 − V [N̂1(0)]} (23)

− 1
8 (1 + cos �t)2〈N̂1(0)〉,

�31 = 1
16 sin4 �t{〈N̂1(0)〉 − V [N̂1(0)]}
− 1

8 (cos �t − 1)2〈N̂1(0)〉,
none of which can be greater than zero for initial coherent
states. For initial Fock states, we find that �13 and �31 can
take on positive values, and we again see that the correlations
measured are not equivalent under an exchange of indices.
These are shown in Fig. 5.
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FIG. 4. (Color online) The analytical noninteracting solutions for
ξ12 and ξ13 in the triple-well model as a function of time, for J = 1 and
N1(0) = 200 in a Fock state, with N2(0) = N3(0) = 0. We see that
the maximum of ξ12 is greater than the maximum of ξ13, suggesting
that entanglement decreases with distance along the chain.
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FIG. 5. (Color online) The analytical noninteracting solutions for
the �ij in the triple-well model as a function of time, for J = 1 and
N1(0) = 200 in a Fock state, with N2(0) = N3(0) = 0. We see that
only �13 and �31 take on positive values. The dotted line at zero is to
help discern where the plotted quantities are positive.

V. STOCHASTIC METHODS

In this case (χ �= 0), it is not obvious how to solve the full
quantum equations of motion analytically. We will therefore
use the positive-P representation [27], which allows for exact
solutions of the dynamics arising from the Hamiltonians, in
the limit of the average of an infinite number of trajectories of
the stochastic differential equations in a doubled phase space.
In practice we obviously cannot integrate an infinite number
of trajectories, but have used numbers large enough that the
sampling error is within the line thicknesses of our plotted
results. Following the standard methods [39], the set of Itô
stochastic differential equations [36] for the two-well system
are found as

dα1

dt
= −2iχα+

1 α2
1 − iJα2 +

√
−2iχα2

1 η1,

dα+
1

dt
= 2iχα+ 2

1 α1 + iJα+
2 +

√
2iχα+ 2

1 η2,

(24)
dα2

dt
= −2iχα+

2 α2
2 − iJα1 +

√
−2iχα2

2 η3,

dα+
2

dt
= 2iχα+ 2

2 α2 + iJα+
1 +

√
2iχα+ 2

2 η4,

where the ηj are standard Gaussian noises with ηj = 0 and
ηj (t)ηk(t ′) = δjkδ(t − t ′). As always, averages of the positive-
P variables represent normally ordered operator moments,
such that, for example, αm

j α+ n
k → 〈â† nâm〉. We also note that

αj = (α+
j )∗ only after taking averages, and it is this freedom

that allows classical variables to represent quantum operators.
The equations for the triple and quadruple well systems are

obvious extensions of Eq. (24), but we will present them here
for the sake of completeness. For the three-well system we

find
dα1

dt
= −2iχα+

1 α2
1 − iJα2 +

√
−2iχα2

1 η1,

dα+
1

dt
= 2iχα+ 2

1 α1 + iJα+
2 +

√
2iχα+ 2

1 η2,

dα2

dt
= −2iχα+

2 α2
2 − iJ (α1 + α3) +

√
−2iχα2

2 η3,

(25)
dα+

2

dt
= 2iχα+ 2

2 α2 + iJ (α+
1 + α+

3 ) +
√

2iχα+ 2
2 η4,

dα3

dt
= −2iχα+

3 α2
3 − iJα2 +

√
−2iχα2

3 η5,

dα+
3

dt
= 2iχα+ 2

3 α3 + iJα+
2 +

√
2iχα+ 2

3 η6,

while the equations for the four-well system are

dα1

dt
= −2iχα+

1 α2
1 − iJα2 +

√
−2iχα2

1 η1,

dα+
1

dt
= 2iχα+ 2

1 α1 + iJα+
2 +

√
2iχα+ 2

1 η2,

dα2

dt
= −2iχα+

2 α2
2 − iJ (α1 + α3) +

√
−2iχα2

2 η3,

dα+
2

dt
= 2iχα+ 2

2 α2 + iJ (α+
1 + α+

3 ) +
√

2iχα+ 2
2 η4,

(26)
dα3

dt
= −2iχα+

3 α2
3 − iJ (α2 + α4) +

√
−2iχα2

3 η5,

dα+
3

dt
= 2iχα+ 2

3 α3 + iJ (α+
2 + α+

4 ) +
√

2iχα+ 2
3 η6,

dα4

dt
= −2iχα+

4 α2
4 − iJα3 +

√
−2iχα2

4 η7,

dα+
4

dt
= 2iχα+ 2

4 α4 + iJα+
3 +

√
2iχα+ 2

4 η8.

These systems of equations must be solved numerically, for
which we use MATLAB. This allows us to average over a
sufficient number of trajectories in a reasonable time, in most
cases less than two hours. If we wished to add wells, the
growth in computational time would be linear in the number,
and we found that four wells did not extend our computational
resources to any significant extent.

VI. NUMERICAL SOLUTIONS

For our results in the interacting case, we have chosen a
nonlinearity of χ = 10−3, again with either a Fock or coherent
state with an average of 200 atoms in the first well and all
the others initially empty. These different quantum states are
simulated using the methods found in Olsen and Bradley [34].
We have chosen coherent states because they are the initial
state most often used in numerical simulations, and Fock states
because we consider this the most natural state for atoms in an
isolated well.

A. Two wells

For the two-well system we found evidence of both
entanglement and EPR steering in the noninteracting case. We
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FIG. 6. (Color online) The numerical interacting solutions for
ξ12, �12, and �21 in the twin-well model as a function of time, for J =
1, χ = 10−3, and N1(0) = 200 in a Fock state, with N2(0) = 0. We
see that the correlations are no longer periodic as in the noninteracting
case of Fig. 3, and that the two EPR steering correlations give positive
signals at different times. These solutions are averaged over 1.9 × 106

stochastic realizations of the positive-P equations. The dotted line at
zero is to help discern where the plotted quantities are positive.

find that the results with a collisional nonlinearity and an initial
Fock state are initially similar, as shown in Fig. 6, but that the
correlations degrade with time. For an initial coherent state
in the first well, we found no evidence of EPR steering, and
only a very small positive value of ξ12 ≈ 0.2 at J t ≈ 2.2. We
note that our results are not inconsistent with those of He et al.
[8], who found entanglement in the ground state of a two-well
system. Our system, beginning with only one of the wells
initially occupied, effectively undergoes a sudden parameter
change from J = 0 to J = 1 at t = 0, and in that respect has
more in common with the work of Lauchli and Kollath [19],
who studied the time evolution of entanglement following a
quench. In our case, the sudden change in parameters is the
turning on of the tunneling at t = 0, so that our system is then
far from the equilibrium state of the multiwell systems.

B. Three wells

With an initial Fock state in the first well, we find signals
of entanglement with both ξ12 and ξ13, as shown in Fig. 7
and Fig. 8. These initially follow the analytical noninteracting
solutions, but again become different with time. We find
asymmetric EPR steering in both cases, with only �21 and �31

attaining positive values, while �12 and �13 remain negative.
For an initial coherent state, we see no evidence of EPR

steering in the three-well model, and only a very small signal of
entanglement between wells 1 and 2, with ξ12 � 2.5, and even
that only for very short intervals of time. ξ13 had a maximum
value of zero over the length of time of our investigations.
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FIG. 7. (Color online) The numerical interacting solutions for
ξ12, �12, and �21 in the three-well model as a function of time,
for J = 1, χ = 10−3, and N1(0) = 200 in a Fock state, with N2(0) =
N3(0) = 0. We see that the correlations degrade with time when
compared to the noninteracting case of Fig. 4, and that only one of
the EPR steering correlations gives a positive signal for any of the
times considered. These solutions were averaged over 6.74 × 105

stochastic realisations of the positive-P equations.

C. Four wells

The solutions for the populations of the four-well system
become more irregular, without the clear periodicity of the
smaller chains, as was shown above in Fig. 2 for an initial
Fock state in the noninteracting case. The solutions when we
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FIG. 8. (Color online) The numerical interacting solutions for
ξ13, �13, and �31 in the three-well model as a function of time,
for J = 1, χ = 10−3 and N1(0) = 200 in a Fock state, with N2(0) =
N3(0) = 0. We see that the correlations degrade with time when
compared to the noninteracting case of Fig. 4, and that only �31 gives
a positive EPR steering signal, and this only for a short time. These
solutions were averaged over 6.74 × 105 stochastic realisations of the
positive-P equations. The dotted line at zero is to help discern where
the plotted quantities are positive.
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FIG. 9. (Color online) The numerical noninteracting solutions
for the Hillery-Zubairy criteria of the four-well model as a function
of time, for J = 1, and N1(0) = 200 in a Fock state, with N2(0) =
N3(0) = N4(0) = 0. These solutions were averaged over 2.88 × 105

stochastic realisations of the positive-P equations.

begin with either Fock or coherent states are indistinguishable
over the time interval investigated. When we add interactions,
the solutions begin to deviate from those without interactions
around J t = 4, with the deviations increasing with time. This
is common with Bose-Hubbard models and has been seen
previously in two-, three-, and four-well systems [30,32]. The
irregularity and lack of clear periodicity may be a sign of the
onset of chaos, which has been predicted in longer chains, but
with much smaller well occupation numbers [40,41]. Irregular
behavior has previously been seen in a four-well system in a
square configuration with two different tunneling rates [32,33],
and may happen because we begin with the system far from
equilibrium. We integrated the classical equations as far as t =
60 and the solutions continued to be highly irregular. However,
further investigation is beyond the scope of the present
work.

In Fig. 9 we show the noninteracting ξ1j values with an
initial Fock state, averaged over 2.88 × 105 trajectories. We
see that all values are positive semidefinite and irregular in
time. The same correlations with χ = 10−3 are presented in
Fig. 10. These were averaged over 5.54 × 105 trajectories, and
show clearly how interactions degrade the entanglement that
can be detected by the Hillery-Zubairy measure. As expected,
we see that this measure shows the onset of entanglement
between the first well and the others at times, which in-
crease for the position along the chain. The entanglement
between wells one and four with interactions is also seen
to persist at later times than that between one and three,
at least over this time interval. When we begin with an
initial coherent state in the first well, only ξ12 takes on a
positive value over the evolution time, with ξ12 ≈ 1 around
Jt = 6.35.

There are six different bipartite EPR steering correlations
between the first well and the other three. In the noninteracting
case with an initial Fock state, they all take on positive values
at some times, as shown in Fig. 11 and Fig. 12. As found with
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FIG. 10. (Color online) The numerical interacting solutions for
the Hillery-Zubairy criteria of the four-well model as a function of
time, for J = 1, χ = 10−3 and N1(0) = 200 in a Fock state, with
N2(0) = N3(0) = N4(0) = 0. These solutions were averaged over
5.54 × 105 stochastic realisations of the positive-P equations.

the two-and three-well systems, �ij and �ji were never found
to be positive at the same time. This hints that asymmetric EPR
steering may not be at all uncommon in nature, although it is
not possible to make a definitive claim using only one type of
measurement.

The results for the EPR steering correlations for the
interacting system with an initial Fock state are presented
in Fig. 13. Out of the six possible bipartite correlations,
only the three shown are ever significantly positive. �41
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FIG. 11. (Color online) The numerical noninteracting solutions
for the EPR steering criteria of the four-well model as a function
of time, for J = 1 and N1(0) = 200 in a Fock state, with N2(0) =
N3(0) = N4(0) = 0. These solutions were averaged over 2.88 × 105

stochastic realisations of the positive-P equations. We again see that
the system is asymmetric with regard to these measures of EPR
steering.
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FIG. 12. (Color online) The numerical noninteracting solutions
for the EPR steering criteria �14 and �41, for J = 1, χ = 10−3, and
N1(0) = 200 in a Fock state, with N2(0) = N3(0) = N4(0) = 0. These
solutions were averaged over 2.88 × 105 stochastic realizations of the
positive-P equations.

momentarily attained a value of less than 0.05 around J t =
0.7, which would be unlikely to be of practical importance.
With an initial coherent state, these EPR steering measures
did not take on positive values over the time interval in-
vestigated. This demonstrates that the interactions mainly
serve to degrade the correlations and that, if we wish to see
entanglement and EPR steering in a Bose-Hubbard system,
it is preferable to start with a nonclassical initial state and
minimize collisional interactions, possibly using Feshbach
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FIG. 13. (Color online) The numerical interacting solutions for
the EPR steering criteria of the four-well model as a function of time,
for J = 1, χ = 10−3 and N1(0) = 200 in a Fock state, with N2(0) =
N3(0) = N4(0) = 0. These solutions were averaged over 5.54 × 105

stochastic realisations of the positive-P equations. Apart from �41,
which momentarily attained a value of less than 0.05 around Jt = 0.7,
those not shown remained negative.

resonance techniques [42]. In these systems, a quantum
initial state plays a greater role than in nonlinear optical
systems, where, for example, a squeezed pump was predicted
to improve quantum correlations in traveling-wave second
harmonic generation [43]. The essential difference is that
second harmonic generation is perfectly capable of producing
squeezed outputs even beginning from a completely classical
pump.

VII. CONCLUSIONS

We have investigated the short time dynamics of the
populations, entanglement, and EPR steering in small Bose-
Hubbard chains with a mesoscopic number of atoms initially
inhabiting only the first well. The tunneling is turned on at t =
0, which is equivalent to a sudden change of parameters. Using
correlations that are suitable for number conserving processes,
we find that bipartite entanglement and EPR steering spreads
along the chain and gives a periodic signal in the two- and
three-well cases without interatomic interactions, but only
when the initial state in the first well is sub-Poissonian. In
the cases where we could obtain analytical solutions, we
saw that the existence of the entanglement and EPR steering
signals depended completely on the number statistics in the
first well being sub-Poissonian. The Fock states we used are
maximally sub-Poissonian, so that the signals were optimized
for these cases. When we began with an initial coherent
state, we saw no evidence of either entanglement or EPR
steering in these cases. This is not unexpected since the linear
tunneling is somewhat analogous to a time-dependent beam
splitter and it is known that this cannot produce entangled
outputs from classical inputs. In the four-well system, the
solutions for the populations and the different correlations
were irregular and nonperiodic, even without interactions.
In this case an initial Fock state resulted in strong signals
for entanglement and EPR steering between the two end
wells.

The solutions for the well populations did not change
significantly over the time scales investigated, being virtually
indistinguishable in the two- and three-well systems. The
four-well population solutions did begin to diverge from the
noninteracting populations after some time, but followed the
same general form. The correlations for an initial Fock state,
however, were seriously affected by the interactions, only
following the noninteracting solutions at short times. Some
individual correlations, which had signaled entanglement or
EPR steering in the noninteracting case, failed to do so once
interactions were added. On the other hand, some correlations,
which failed to attain positive values for initial coherent states
did become positive with interactions, although only over
small time intervals and with small maximum values. In every
case, the EPR steering correlations between any two wells were
found to be different under a change of indices, with �ij and
�ji never having positive values simultaneously. We cannot
say if this would be the case for all possible EPR steering
measurements, but any steering is asymmetric for the measure
we used here.

Overall, the initial quantum state in the first well was
found to be far more important in achieving the bipar-
tite correlations than the interactions. This suggests that if
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Bose-Hubbard dynamics are to be used for quantum informa-
tion purposes, it would be preferable to lower the collisional
interactions as far as possible and concentrate on producing
nonclassical initial states. As the natural state of the atoms in
an isolated well is a Fock state, this may provide significant
advantages.
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