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Spinor Bose-Einstein condensates of rotating polar molecules
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We propose a scheme to realize a pseudospin-1/2 model of the 1�(v = 0) bialkali polar molecules with
the spin states corresponding to two sublevels of the first excited rotational level. We show that the effective
dipole-dipole interaction between two spin-1/2 molecules couples the rotational and orbital angular momenta and
is highly tunable via a microwave field. We also investigate the ground-state properties of a spin-1/2 molecular
condensate. A variety of nontrivial quantum phases, including the doubly quantized vortex states, are discovered.
Our scheme can also be used to create spin-1 model of polar molecules. Thus we show that the ultracold gases
of bialkali polar molecules provide a unique platform for studying the spinor condensates of rotating molecules.
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I. INTRODUCTION

Recent experimental realizations of ultracold polar
molecules in rovibrational ground state [1–6] offer remarkable
new frontiers for many areas of science, such as precision
measurement [7–9], quantum information [10], quantum
computation [11], ultracold collisions [12,13], cold con-
trolled chemistry [14,15], and quantum simulation [16–18].
Particularly, from the condensed-matter perspective, the large
permanent electric dipole moment and the ability to con-
trol the hyperfine states within a single rovibrational level
[19,20] make ultracold polar molecules an ideal platform for
investigating strongly correlated many-body physics [21–23].
So far, the dipolar spin-exchange interactions [24] and the
many-body dynamics [25] have been experimentally observed
in lattice-confined ultracold KRb gases.

For rotating molecules, the net dipole moment in the
laboratory frame vanishes in the absence of a dc elec-
tric field. Hence in most theoretical many-body studies, a
strong dc electric field is assumed to align polar molecules.
Consequently, the rotational degrees of freedom is frozen.
Even though there exist multicomponent models by utilizing
different rotational states, the number of molecules in each
rotational state is independently conserved by the interactions.
On the contrary, the spin-exchange contact interaction in
atomic spinor Bose-Einstein condensates (BECs) results in
rich magnetic phenomena [26–28]. Of particular interest,
the magnetic dipole-dipole interaction (DDI) gives rise to
spontaneous spin textures in dipolar spinor BECs [29–32].

In this paper we show that a bialkali polar molecule in the
electronic and vibrational ground state can be modeled as a
pseudospin-1/2 molecule with the spin states corresponding
to two hyperfine sublevels of the first excited rotational level.
The effective DDI between molecules contains a rotation-orbit
coupling term that is capable of inducing spin mixing. Thus
a BEC formed by these spin-1/2 molecules represents a
spinor BEC instead of a two-component BEC. We also
study the ground-state phases of the spin-1/2 molecular BEC
and demonstrate that rotation-orbit-coupled DDI gives rise
to the doubly quantized vortex (DQV) phases. Although
BECs of polar molecules are studied in Refs. [33–35], the
DDI considered in these works does not contain a term that
exchanges spin and orbital angular momentum.

This paper is organized as follows. In Sec. II, we intro-
duce the model Hamiltonian for a pseudospin-1/2 molecule.
Section III is devoted to derive the effective DDI between two
pseudospin-1/2 molecules. In Sec. IV, we present the quantum
phases of molecular condensates. In Sec. V, we briefly discuss
the experimental feasibility of our model. Finally, we conclude
in Sec. VI.

II. EFFECTIVE SINGLE-MOLECULE HAMILTONIAN

To be specific, we consider a gas of 7Li 133Cs molecules
in 1

�(v = 0) state subjected to a bias magnetic field B =
B ẑ. Each molecule has three angular momentum degrees of
freedom: the rotation angular momentum N and the nuclear
spins I1 and I2 [36–38]. Its internal states can be characterized
in the uncoupled basis |M1M2NMN 〉, where MN and Mi are,
respectively, the projections of N and Ii along the quantization
z axis. The Hamiltonian describing the internal degrees of free-
dom includes rotational Ĥrot, hyperfine Ĥhf , and Zeeman ĤZ

terms. Among them, the rotational term, Ĥrot = BvN2, defines
the largest intrinsic energy scale as the rotational constant Bv is
of gigahertz order. Since the rotational spectrum, BvN (N + 1),
is anharmonic, we may focus on the lowest two rotational
levels with N = 0 and 1, which are split by an energy 2Bv .

Although the nuclear hyperfine interaction Ĥhf mixes
different internal states, it can be overcome by the Zeeman
term ĤZ , which couples B to N and Ii . For sufficiently strong
magnetic field, the nuclear Zeeman effect dominates over
the hyperfine interaction such that M1 and M2 become good
quantum numbers. For LiCs, this magnetic field is around
40 G [39]. Focusing on the lowest nuclear Zeeman levels
(Mi = Ii) in the N = 0 and 1 manifolds, the relevant internal
states reduce to |N,MN 〉 = |0,0〉, |1,0〉, and |1,±1〉, which
simplifies a rotating molecule to a four-level system (see
Appendix A for details). It can be verified that the hyperfine
interaction is diagonal in this reduced four-level Hilbert space.
Therefore each of these four levels indeed possesses a definite
quantum number MN . In Fig. 1(a), we plot the magnetic field
dependence of the hyperfine splittings δ0,−1 = E|1,0〉 − E|1,−1〉
and δ1,−1 = E|1,1〉 − E|1,−1〉 for a LiCs molecule. As can be
seen, the typical hyperfine splitting is around a few tens of
kilohertz for a magnetic field in the range of 100–900 G,
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FIG. 1. (Color online) (a) Hyperfine splittings as functions of the
external magnetic field and (b) level structure.

which corresponds to a temperature around 2 μ K. Figure 1(b)
shows the corresponding level structure.

Next, we illuminate the molecules with a position-
independent σ+-polarized microwave field which couples to
the electric dipole moment of the molecule dd̂, where d is the
permanent electric dipole moment and d̂ is the unit vector along
the internuclear axis of the molecule. The frequency of the
microwave ωmw is assumed to be blue detuned relative to the
rotational splitting with a detuning � = 2Bv/� − ωmw, where
the typical value of � is 100 MHz. The |0,0〉 ↔ |1,1〉 transition
is then induced by the microwave with Rabi frequency �.
Assuming that all molecules are initially prepared in the |1,1〉
state [19], level |0,0〉 can be adiabatically eliminated in the
large detuning limit |�/�| � 1. This procedure yields an
effective level splitting δ = δ1,−1 + �2/� between the levels
|1,1〉 and |1,−1〉. Moreover, under the condition |δ| � |δ0,−1|,
level |1,0〉 becomes well separated from |1,±1〉, which
eventually leads to the effective pseudospin-1/2 single-particle
Hamiltonian in the rotating frame (see the Appendix B):

ĥ = p2

2m
Î+�

δ

2
σ̂z, (1)

where m is the mass of the molecule, Î is the identity matrix,
and for shorthand notation, we shall denote |1,1〉 and |1,−1〉
as |↑〉 and |↓〉, respectively. As analyzed below, |↑〉 and
|↓〉 form a closed Hilbert space even in the presence of
the molecule-molecule interactions. On a side note, when
δ1,−1 ∼ 0 under an appropriate magnetic field, we may also
realize a spin-1 model by coupling |0,0〉 and |1,0〉 states with
a large detuned π -polarized microwave field.

In the second-quantized form, the single-particle Hamilto-
nian for the spin-1/2 molecules takes the form

Ĥ0 =
∑

σ

∫
drψ̂†

σ (r)[ĥσσ + Uopt(r)]ψ̂σ (r), (2)

where ψ̂σ=↑,↓ is the field operator for the spin-σ molecule and
Uopt is the optical dipole trap, which is assumed to be spin
independent [20,24].

III. INTERACTIONS

The electric DDI between two molecules, dd̂1 and dd̂2, can
be expressed as

Vdd(R) = gd

|R|3 [d̂1 · d̂2 − 3(d̂1 · R̂) (d̂2 · R̂)], (3)

where gd = d2/(4πε0) is the DDI strength, with ε0 being the
electric permittivity of vacuum, R is the vector connecting
the molecules, and R̂ = R/|R|. For a typical density n =
1013 cm−3 of LiCs gas, the DDI energy gdn is around 46 kHz,
which justifies the elimination of the |0,0〉 level. Although
there is no direct DDI between states in the N = 1 manifold,
effective DDI can be induced via the eliminated |0,0〉 state. As
shown in Appendix C, in the rotating frame, the effective DDI
that is time averaged over a period of 2π/ωmw is

Ĥdd = V̂1 + V̂2 + V̂3,

V̂1 = κgd

√
4π

45

∫
dr1dr2

|R|3 Y20(R̂) : n̂↑(r1)n̂↑(r2) : ,

V̂2 = κgd

√
4π

45

∫
dr1dr2

|R|3 Y20(R̂) : Ŝ+(r1)Ŝ−(r2) : ,

V̂3 = κgd

√
8π

15

∫
dr1dr2

|R|3 [Y22(R̂) : n̂↑(r1)Ŝ−(r2) : +H.c.],

(4)

where κ = �2/�2, Ylm are spherical harmonics, and n̂σ =
ψ̂†

σ ψ̂σ , Ŝ− = ψ̂
†
↓ψ̂↑, Ŝ+ = Ŝ

†
−, and :Ô : arrange the operator

in normal order. Clearly, V̂1 represents the density-density DDI
between spin-↑ molecules and V̂2 is the dipolar spin-exchange
interaction between spin-↑ and -↓ molecules. Of particular
interest, the dipolar density-spin interaction V̂3 couples the
rotational and orbital angular momenta while keeping the total
angular momentum conserved.

Compared to the DDI appearing in other spin-1/2 models of
polar molecules [23,24,33], selecting |1,1〉 and |1,−1〉 states
gives rise to the rotation-orbit coupling term V̂3. In addition, the
elimination of the |0,0〉 state with a large detuned microwave
field introduces a control knob κ for the DDI. Throughout
this work, we assume that κ � 6 × 10−4 to maintain a stable
BEC. Consequently, the typical DDI energy between states in
the N = 1 manifold is around κgdn � 27 Hz, which further
validates the assumption that |1,0〉 is well separated from
|1,±1〉.

For completeness, we also include the collisional interac-
tion term

Ĥcon =
∑
σσ ′

2π�
2aσσ ′

m

∫
drψ̂†

σ (r)ψ̂†
σ ′(r)ψ̂σ ′(r)ψ̂σ (r), (5)

where aσσ ′ are the s-wave scattering lengths between the spin-
σ and -σ ′ molecules. So far, the s-wave scattering lengths
for LiCs molecules are unknown. For simplicity, we take the
typical values of a↑↑ = a↓↓ = a↑↓ = 100aB , with aB being
the Bohr radius. It can be estimated that the contact interaction
energy is also of a few tens of Hertz. We remark that the spin
structures presented below should not depend on the specific
choice of aσσ ′ , as Ĥcon conserves the number of molecules in
the individual spin states.

IV. RESULTS

We now turn to explore the ground-state properties of a
molecular BEC by using the mean-field theory. To this end,
we replace the field operators ψ̂σ by the condensate wave
functions ψσ ≡ 〈ψ̂σ 〉, which can be obtained by numerically
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FIG. 2. (Color online) Phase diagram on the κ-δ parameter plane.
The dotted line is a guide for the eyes.

minimizing the energy functional F[ψσ ,ψ∗
σ ] = 〈Ĥ0 + Ĥdd +

Ĥcon〉. More specifically, we consider a condensate of N =
3.2 × 105 LiCs molecules trapped in a harmonic potential
Uopt = mω2

⊥(x2 + y2 + γ 2z2)/2, with ω⊥ = (2π )10Hz being
the radial trap frequency and γ = 6.3 being the trap as-
pect ratio. For simplicity, the condensate wave functions
are decomposed into ψσ (r) = φσ (x,y)φz(z) with φz(z) =
(γ /π�2

⊥)1/4e−γ z2/2�2
⊥ and �⊥ = √

�/(mω⊥). After integrating
out the z variable, the system simplifies to a quasi-two-
dimensional system. Limited by the validity of the spin-1/2
model and the stability of the system, the numerical results
presented below cover the parameter space −10 � δ/ω⊥ < 10
and 10−4 � κ � 6 × 10−4.

Figure 2 summarizes the phase diagram of a molecular BEC
in the κ-δ parameter plane. The region denoted by P represents
the polarized phase and those labeled by VI and VII are two
vortex phases. For κ > 5.7 × 10−4, the condensate becomes
unstable due to the partially attractive nature of the DDI. In
Figs. 3(a) and 3(b), we plot, for a fixed effective detuning
δ = 2ω⊥, the κ dependence of the numbers of molecules

FIG. 3. (Color online) (a)–(c) The molecule number, mean or-
bital angular momentum, and peak density, respectively, as functions
of κ for spin-↑ (�) and -↓ (�) states. (d) Fidelity F�κ as a function
of κ . The detuning used here is δ = 2ω⊥.

FIG. 4. Typical condensate wave functions for the vortex phases
VI (row 1) and VII (row 2) corresponding to κ = 1.56 × 10−4

and 4.94 × 10−4, respectively. The effective detuning used here is
δ = 2ω⊥. Columns 1 and 3 show the densities of the spin-↑ and -↓
molecules, respectively; columns 2 and 4 show the corresponding
phases.

Nσ = ∫
dxdy|φσ |2 and the average orbital angular momenta

L(z)
σ = −i�N−1

σ

∫
dxdyφ∗

σ (x∂y − y∂x)φσ , respectively. In the
P phase, the spin-↓ state is dominantly populated and the
wave functions of both spin states are structureless; while
in the vortex phases, molecules in one of the spin states
carry orbital angular momentum. The boundaries between
different phases are clearly marked by the L(z)

σ . It should be
noted that for large negative δ, we still find that L

(z)
↓ = 2�,

even though only the spin-↑ state is dominantly populated.
Figure 3(c) shows the κ dependence of the peak number
densities n̄σ = max(nσ ) with nσ = |φσ |2. It should be noted
that n̄↑ > n̄↓ immediately after the spin-↑ state is populated.
To further confirm these phase transitions, we calculate the
fidelity, F�κ = |〈�(κ)|�(κ + �κ)〉|, of the condensate wave
function |�〉 = (ψ↑,ψ↓)T , where �κ is the interval of κ

between two adjacent data points [40]. Since the fidelity
measures the similarity between two adjacent states in the
parameter space, it can drop sharply across different phases
[41,42]. In Fig. 3(d) we plot the κ dependence of F�κ . Two
transition points marked by the dips are consistent with the
phase boundaries obtained in Fig. 3(b).

To gain more insight into the vortex phases, we present
the wave functions for phases VI and VII in Fig. 4. As shown
in the phase plots, the spin-↑ state in phase VI contains two
singly quantized vortices and the spin-↓ state in phase VII has
a DQV, in striking difference to the vortices in dipolar spin-1
atomic condensates [29]. The presence of the vortices can
be understood from V̂3 in the DDI. By annihilating a spin-↑
molecule and creating a spin-↓ molecule, the rotational angular
momentum is decreased by 2�. To ensure the total angular
momentum conservation, the orbital angular momentum of
spin-↑ molecules must be larger than that of spin-↓ molecules
by 2�, which gives rise to the vortex phases. However, for
reasons which shall become clear below, the DQV in the spin-↑
state of phase VI splits into two singly quantized states such
that |L(z)

↑ | is smaller than 2�.
As to the density profiles, the spin-↑ molecules always

occupy the center of the trap, with spin-↓ molecules being
pushed to the periphery. This observation holds even if the
scattering lengths are slightly tuned such that the contact
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interactions favor a miscible gas. In fact, by aggregating at the
trap center, the spin-↑ cloud becomes less oblate such that the
intraspecies DDI, V̂1, is lowered. Additionally, in a less oblate
dipolar condensate, a DQV becomes more unstable against
splitting [43]. The immiscibility of the spin-↑ and -↓ clouds is
induced by V̂2, as a miscible mixture in a pancake-shaped trap
normally results in a positive dipolar spin-exchange interaction
energy due to the anisotropic nature of Y20. In this density
configuration, spin-↑ gas acts effectively as a pinning potential
for spin-↓ molecules, which stabilizes the DQV in spin-↓
state [44]. Nevertheless, this DQV can still split. In fact,
in the vicinity of the stability boundary, the orbital angular
momentum L

(z)
↓ drops slightly, signaling the splitting of the

DQV in the spin-↓ state.
This layered density structure also leads to other nontrivial

behavior of the condensate. In dipolar spinor condensates, it is
usually energetically favorable to have vortices emerge in the
less populated spin state due to the kinetic energy associated
with the vortex state. Here we see that near the phase boundary
between VI and VII, the vortex emerges in the spin-↓ state,
even though N↓ is still larger than N↑. This can be understood
as follows. Since the spin-↓ cloud occupies the outer layer,
adding vortices to it will hardly modify its density profile and
costs only the kinetic energy associated with the gradient of the
phase. However, for the spin-↑ state, the appearance of vortices
will significantly change its density profile, which results in ex-
tra kinetic energy contributed by the gradient of density. In fact,
we have examined the kinetic energies contributed from each
spin state in the vicinity of the phase boundary. It is found that
the kinetic energy of the spin-↑ state drops dramatically during
the transition from the VI to VII phases, while only a moderate
change occurs for the kinetic energy of the spin-↓ state.

In Fig. 5(a), we plot the DDI energies as functions of κ . The
negativity of 〈V̂1〉 indicates that the spin-↑ condensate is indeed
of cigar shape, whereas it is confined is a pancake-shaped trap.
Moreover, the fact that 〈V̂2〉 roughly remains zero over a wide
range of κ is consistent with the immiscibility of the system.
For 〈V̂3〉 it can be rewritten as

〈V̂3〉 = κgd

∫
dr1dr2

R3
n↑(r1) sin2 θR

× [sx(r2) cos(2ϕR) + sy(r2) sin(2ϕR)], (6)
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FIG. 5. (Color online) (a) κ dependence of the DDI energies per
molecule for δ = 2ω⊥. (b) Typical planar spin structure for the vortex
phases.

where θR and ϕR are the polar and azimuthal angles of R,
respectively, sx = 1

2 (〈Ŝ+〉 + 〈Ŝ−〉), and sy = 1
2i

(〈Ŝ+〉 − 〈Ŝ−〉).
Clearly, V̂3 aligns the planar spin s⊥ = (sx,sy) such that 〈V̂3〉 is
always negative. In fact, as shown in Fig. 5(b), s⊥ always forms
a spin vortex with winding number 2 in the vortex phases.
In competing with V̂2, it is energetically favorable to have
a large overlap between ψ↑ and ψ↓ for V̂3. Consequently,
〈V̂1〉 and 〈V̂2〉 significantly increase with κ in the strong
DDI regime. Since 〈V̂3〉 also depends on n↑, it explains why
N↑ continuously grows with κ [Fig. 2(b)], instead of being
saturated at around N /2. Finally, it is worthwhile to point
out that the condensate becomes unstable when the DDI
interaction energy is comparable to the contact interaction
energy. The critical value of κ is insensitive to δ, as the
spins are free to rearrange themselves to minimize the dipolar
interaction energy.

V. EXPERIMENTAL FEASIBILITY

The realization of the proposed model requires the
molecules to possess a large hyperfine splitting such that the
effective DDI would not mix the unwanted rotational sublevel.
In fact, the nuclear electric quadrupole coupling constants for
all bialkali polar molecules with known molecular parameters
are of order 100 kHz [36], indicating that the proposed scheme
is also applicable to other bialkali polar molecules.

As to the experimental detection, similar to imaging an
atomic spinor condensate, we may construct a Stern-Gerlach
apparatus by utilizing the rotational Zeeman shift, −grμNN ·
B, where gr is the rotational g factor of the molecule and μN

is the nuclear magnetic moment. It can be estimated that for a
modest magnetic field gradient of a few T/m, the spin-↑ and
-↓ states of the LiCs molecules are spatially separated after
200 ms of free expansion and can be directly observed with
absorption image measurement [45].

VI. CONCLUSIONS

We have demonstrated that a rotating bialkali polar
molecule can be modeled as a pseudospin-1/2 particle by uti-
lizing external magnetic and microwave fields. In this model,
a control knob for the effective molecular DDI is naturally
introduced that can be used to stabilize the condensates of
polar molecules with large electric dipole moment. We have
also shown that the rotation-orbit coupling term in the effective
DDI gives rise to DQV phases of the molecular condensate.
Finally, the proposed scheme also works for the ultracold gases
of fermionic polar molecules, in which the effective DDI may
lead to exotic superfluid pairings.

Note added. Recently, we became aware of the work by Wall
et al. [46] for realizing unconventional quantum magnetism
with symmetric top molecules in which the effective DDI also
exchanges the spin and orbital angular momentum.
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APPENDIX A: HYPERFINE STRUCTURE OF 1
� BIALKALI MOLECULES

Here we demonstrate how to reduce the internal states of a 1
� bialkali molecule to a four-level system. The Hamiltonian

describing the internal degrees of freedom of a 1
� diatomic molecule subjected to a bias magnetic field B = B ẑ is [36,38,47]

Ĥin = Ĥrot + Ĥhf + ĤZ, (A1)

where Ĥrot = BvN2 is diagonal in the uncoupled basis {|M1M2NMN 〉}.
The nuclear hyperfine interaction contains four contributions: nuclear electric quadrupole interaction ĤQ, nuclear spin-rotation

interaction ĤIN , and tensor Ĥt and scalar Ĥsc nuclear spin-spin interactions. Explicitly, the hyperfine Hamiltonian can be expressed
as

Ĥhf =ĤQ + ĤIN + Ĥt + Ĥsc

=
2∑

i=1

√
6(eQiqi)

4Ii(2Ii − 1)
T (2)(C) · T (2)(Ii ,Ii) +

2∑
i=1

ciN · Ii − c3

√
6 T (2)(C) · T (2)(I1,I2) + c4I1 · I2, (A2)

where T (2)(C) is the second-order un-normalized spherical harmonic with components T (2)
q (C) ≡ C(2)

q (θ,ϕ) =
√

4π
5 Y2,q(θ,ϕ),

with (θ,ϕ) being the spherical coordinate and T (2)(Ii ,Ij ) represents the spherical tensor operator of rank 2, formed by the vector
operators Ii and Ij . Moreover, eQi is the electric quadrupole moment of nucleus i, qi characterizes the negative of the electric
field gradient at nucleus i, ci represents the strength of the nuclear spin-rotation coupling for the ith nucleus, and c3 and c4 are,
respectively, the strengths of the nuclear tensor and scalar spin-spin interaction. The matrix elements of the hyperfine interaction
in the uncoupled basis are [21,23,38]

〈M1M2NMN |ĤQ|M ′
1M

′
2N

′M ′
N 〉 =

∑
i=1,2

(eQq)i
4

δMīM
′̄
i

∑
p

(−1)p−MN +Ii−Mi

√
(2N + 1)(2N ′ + 1)

×
(

N 2 N ′
−MN p M ′

N

)(
Ii 2 Ii

−Mi −p M ′
i

)(
N 2 N ′
0 0 0

)(
Ii 2 Ii

−Ii 0 Ii

)−1

, (A3)

〈M1M2NMN |ĤIN |M ′
1M

′
2N

′M ′
N 〉 = δNN ′

∑
q

(−1)q+N−MN

√
N (N + 1)(2N + 1)

(
N 1 N

−MN q M ′
N

)

×
∑
i=1,2

ci(−1)Ii−Mi δMīM
′̄
i

√
Ii(Ii + 1)(2Ii + 1)

(
Ii 1 Ii

−Mi −q M ′
i

)
, (A4)

〈M1M2NMN |Ĥt |M ′
1M

′
2N

′M ′
N 〉 = −c3

√
6
√

I1(I1 + 1)(2I1 + 1)
√

I2(I2 + 1)(2I2 + 1)
√

(2N + 1)(2N ′ + 1)

×
(

N 2 N ′
0 0 0

) ∑
p

(−1)p−MN +I1−M1+I2−M2

(
N 2 N ′

−MN p M ′
N

)

×
∑
m

〈1,m; 1,−p − m|2,−p〉
(

I1 1 I1

−M1 m M ′
1

)(
I2 1 I2

−M2 −p − m M ′
2

)
, (A5)

〈M1M2NMN |Ĥsc|M ′
1M

′
2N

′M ′
N 〉 = c4δNN ′δMNM ′

N

√
I1(I1 + 1)(2I1 + 1)

√
I2(I2 + 1)(2I2 + 1)

× (−1)I1−M1+I2−M2
∑

p

(−1)p
(

I1 1 I2

−M1 p M ′
1

)(
I2 1 I2

−M2 −p M ′
2

)
, (A6)

where ī = 3 − i.
Finally, the Hamiltonian describes the Zeeman term is

ĤZ = −grμNN · B −
2∑

i=1

giμN Ii · B(1 − σi), (A7)

where μN is the nuclear magnetic moment, gr is the rotational
g factor of the molecule, gi is the nuclear g factor for the ith
nucleus, and σi is the nuclear shielding parameter. Clearly, ĤZ

is diagonal in the uncoupled basis.

For convenience, we list in Table I, the molecular
parameters for several bialkali molecules. As can be seen,
the rotational constants are of order 1 GHz and therefore
define the largest energy scale of the internal states. In
addition, with the help of Eqs. (A3)–(A6), we note that (i)
ĤIN does not couple states with different N and it plays a
very small role in the spectra due to the smallness of the
parameters c1 and c2; (ii) Ĥt often has a negligible effect as
c3 is usually of order 10–100 Hz; (iii) ĤQ does not affect
the N = 0 level, however, it dominates for the N = 1 level;
and (iv) Ĥsc splits the various levels according to their total
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TABLE I. Molecular parameters for bialkali polar molecules.
Subscripts 1 and 2 refer to the less electronegative and to the more
electronegative atom [20,36,39].

Molecule 7Li 133Cs 40K 87Rb 41K 87Rb 87Rb 133Cs

I1 3/2 4 3/2 3/2
I2 7/2 3/2 5/2 7/2
g1 2.171 −0.324 0.143 1.834
g2 0.738 1.834 0.541 0.738
Bv (GHz) 5.636 1.114 1.104 0.504
(eqQ)1 (kHz) 18.5 452 −298 −872
(eqQ)2 (kHz) 188 −1308 −1520 51
σ1 (ppm) 108.2 1321 1321 3531
σ2 (ppm) 6242.5 3469 3469 6367
c1 (Hz) 32 −24.1 10.4 98.4
c2 (Hz) 3014 420.1 413.1 194.1
c3 (Hz) 140 −48.2 21.3 192.4
c4 (Hz) 1610 −2030.4 896.2 17345.4
gr 0.0106 0.0140 0.0138 0.0062
d (Debye) 5.52 0.566 0.566 1.25

nuclear spin I , and it is the dominant hyperfine contribution
for N = 0 in the absence of external electric field.

To obtain the level structure shown in Fig. 1, we diagonalize
Ĥin in the uncoupled basis. The resulting eigenstates clearly
show that M1 and M2 are good quantum numbers when B

is larger than 40 G. Now we may focus on states with the
same nuclear magnetic quantum numbers M1 and M2. Using
Eqs. (A3)–(A6), it can be verified that the hyperfine interaction
is diagonal in Hilbert space formed by four rotational levels in
the N = 0 and 1 manifolds with given Mi . A convenient choice
of the nuclear magnetic quantum numbers is to let Mi = Ii ,
which corresponds to the lowest nuclear Zeeman levels of
the LiCs molecule. Within this Hilbert space, the effective
Hamiltonian describing the internal degrees of the molecule
now becomes

Ĥin = 2Bv

∑
q=0,±1

|1,q〉〈1,q| + �δ1,−1|1,1〉〈1,1|

+ �δ0,−1|1,0〉〈1,0|. (A8)

APPENDIX B: DERIVATION OF THE PSEUDOSPIN-1/2
SINGLE-PARTICLE HAMILTONIAN

Here we show that by applying a σ+-polarized microwave
field,

E(t) = Emwe−iωmwte1 + c.c., (B1)

the reduced four-level system can be further simplified to a
pseudospin-1/2 one, where Emw is the position-independent
amplitude and the spherical vectors ê0 = ẑ and ê±1 = ∓(x̂ ±
iŷ)/

√
2 are defined in the space-fixed frame, representing the

σ+ (ê1), π (ê0), and σ− (ê−1) polarization of the microwave
with respect to the quantization z axis. The microwave field
couples to the dipole moment dd̂ of the molecule through the
Hamiltonian

Ĥmw = −dd̂ · E(t)

= −Emw(d1e
−iωmwt + d

†
1e

iωmwt ), (B2)

where dq = dd̂ · êq = dC(1)
q (θ,ϕ) with C(1)

q (θ,ϕ) =√
4π
3 Y1,q(θ,ϕ). Now, the single-molecule Hamiltonian

in the microwave field becomes

Ĥin + Ĥmw =2Bv

∑
q=0,±1

|1,q〉〈1,q|

+ �δ1,−1|1,1〉〈1,1| + �δ0,−1|1,0〉〈1,0|
− ��(e−iωmwt |1,1〉〈0,0| + H.c.), (B3)

where the Rabi frequency is �� = Emw〈1,1|d1|0,0〉 =
dEmw/

√
3.

To proceed further, we rewrite the Hamiltonian (B3) in
terms of the annihilation operators ψ̂NMN

as

Ĥin + Ĥmw =2Bv

∑
q=0,±1

ψ̂
†
1qψ̂1q

+ �δ1,−1ψ̂
†
11ψ̂11 + �δ0,−1ψ̂

†
10ψ̂10

− ��(ψ̂†
11ψ̂00e

−iωmwt + H.c.). (B4)

We note that the spontaneous emissions of the excited
rotational levels (N = 1) are ignored due to the long lifetime
of the rotational state. By introducing a rotating frame defined
by the unitary transformation

U = exp(−iĤ ′t/�) (B5)

with Ĥ ′ = ��ψ̂
†
00ψ̂00 + 2Bv

∑
q=0,±1 ψ̂

†
1qψ̂1q , we obtain the

time-independent Hamiltonian

Ĥin + Ĥmw → U†(Ĥin + Ĥmw)U − i�U† ∂

∂t
U ,

= �[−�ψ̂
†
00ψ̂00 − �(ψ̂†

11ψ̂00 + H.c.)

+ δ1,−1ψ̂
†
11ψ̂11 + δ0,−1ψ̂

†
10ψ̂10]. (B6)

In the rotating frame, the equations of motion for the
annihilation operators are

i ˙̂ψ00 = −�ψ̂00 − �ψ̂11,

i ˙̂ψ11 = δ1,−1ψ̂11 − �ψ̂00,

i ˙̂ψ10 = δ0,−1ψ̂10,

i ˙̂ψ1−1 = 0.

Assuming that all molecules are initially prepared in the
|1,1〉 state and |�| � |�|,|δ1,−1|,|δ0,−1|, the |0,0〉 level can
be adiabatically eliminated to yield

ψ̂00 = −�ψ̂11

�
. (B7)

The adiabatic elimination of the |0,0〉 level also induces a
Stark shift, �2/�, to the |1,1〉 level, such that the effective
single-particle Hamiltonian becomes

Ĥin + Ĥmw = �(δψ̂†
11ψ̂11 + δ0,−1ψ̂

†
10ψ̂10), (B8)

with δ = δ1,−1 + �2/�. Choosing δ/2 as the origin of the
energies, the above Hamiltonian can be rewritten as

Ĥin+Ĥmw = �

[
δ

2
ψ̂

†
11ψ̂11+

(
δ0,−1− δ

2

)
ψ̂

†
10ψ̂10− δ

2
ψ̂

†
1−1ψ̂1−1

]
.
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As analyzed in the main text, by choosing an appropriate Stark
shift or magnetic field strength, we may realize the condition
|δ| � |δ0,−1|. Consequently, the |1,0〉 states becomes well
separated from the nearly degenerate |1,±1〉 states, even in the

presence of the molecule-molecule interactions (see below).
After dropping the |1,0〉 state and taking into account the
center-of-mass motion, we finally obtain the effective spin-1/2
single-molecule Hamiltonian, Eq. (2).

APPENDIX C: DERIVATION OF THE DDI IN THE PSEUDOSPIN-1/2 SYSTEM

For convenience, let us first write down the matrix elements of the dipole moment operator d in the rotational state basis
|NMN 〉:

〈NMN |dq |N ′M ′
N 〉 = (−1)2N−MN d

√
(2N + 1)(2N ′ + 1)

(
N 1 N ′

−MN q M ′
N

)(
N 1 N ′
0 0 0

)
. (C1)

In the Hilbert space {|0,0〉,|1,0〉,|1,±1〉}, the dipole-dipole interaction (DDI), in the second-quantized form, reads

Ĥdd = gd

2

√
16π

45

∫
dr1dr2

|R|3 {Y20(R̂)[ψ̂†
00(r1)ψ̂†

11(r2)ψ̂00(r2)ψ̂11(r1) + ψ̂
†
00(r1)ψ̂†

1−1(r2)ψ̂00(r2)ψ̂1−1(r1)

− 2ψ̂
†
00(r1)ψ̂†

10(r2)ψ̂00(r2)ψ̂1,0(r1)] − Y20(R̂)[ψ̂†
00(r1)ψ̂†

00(r2)ψ̂1−1(r2)ψ̂11(r1) + ψ̂
†
00(r1)ψ̂†

00(r2)ψ̂10(r2)ψ̂10(r1) + H.c.]}

−gd

2

√
16π

15

∫
dr1dr2

|R|3 {Y2−1(R̂)[ψ̂†
00(r1)ψ̂†

00(r2)ψ̂1−1(r2)ψ̂10(r1) + ψ̂
†
00(r1)ψ̂†

10(r2)ψ̂00(r2)ψ̂1−1(r1)

− ψ̂
†
00(r1)ψ̂†

11(r2)ψ̂00(r2)ψ̂10(r1) − ψ̂
†
11(r1)ψ̂†

10(r2)ψ̂00(r2)ψ̂00(r1)] + H.c.}

−gd

2

√
8π

15

∫
dr1dr2

|R|3 {Y2−2(R̂)[ψ̂†
00(r1)ψ̂†

00(r2)ψ̂1,−1(r2)ψ̂1,−1(r1) − 2ψ̂
†
11(r1)ψ̂†

00(r2)ψ̂1−1(r2)ψ̂00(r1)

+ ψ̂
†
11(r1)ψ̂†

11(r2)ψ̂00(r2)ψ̂00(r1)] + H.c.}, (C2)

where we have arranged all terms according to the components of the spherical harmonics. From Eq. (C2), it is apparent that the
DDI conserves the total (rotational + orbital) angular momentum. Next, in the presence of the microwave field, we apply the
same unitary transformation, Eq. (B5), which yields the DDI Hamiltonian in the rotating frame as

Ĥdd → U†ĤddU = gd

2

√
16π

45

∫
dr1dr2

|R|3 {Y20(R̂)[ψ̂†
00(r1)ψ̂†

11(r2)ψ̂00(r2)ψ̂11(r1) + ψ̂
†
00(r1)ψ̂†

1−1(r2)ψ̂00(r2)ψ̂1−1(r1)

− 2ψ̂
†
00(r1)ψ̂†

1,0(r2)ψ̂00(r2)ψ̂10(r1)] − Y20(R̂)[ψ̂†
00(r1)ψ̂†

00(r2)ψ̂1−1(r2)ψ̂11(r1)e−2iωmwt

+ ψ̂
†
00(r1)ψ̂†

00(r2)ψ̂10(r2)ψ̂10(r1)e−2iωmwt + H.c.]}

−gd

2

√
16π

15

∫
dr1dr2

|R|3 {Y2−1(R̂)[ψ̂†
00(r1)ψ̂†

00(r2)ψ̂1−1(r2)ψ̂10(r1)e−2iωmwt + ψ̂
†
00(r1)ψ̂†

10(r2)ψ̂00(r2)ψ̂1−1(r1)

− ψ̂
†
00(r1)ψ̂†

11(r2)ψ̂00(r2)ψ̂10(r1) − ψ̂
†
11(r1)ψ̂†

10(r2)ψ̂00(r2)ψ̂00(r1)e2iωmwt ] + H.c.}

−gd

2

√
8π

15

∫
dr1dr2

|R|3 {Y2−2(R̂)[ψ̂†
00(r1)ψ̂†

00(r2)ψ̂1−1(r2)ψ̂1−1(r1)e−2iωmwt − 2ψ̂
†
11(r1)ψ̂†

00(r2)ψ̂1−1(r2)ψ̂00(r1)

+ ψ̂
†
11(r1)ψ̂†

11(r2)ψ̂00(r2)ψ̂00(r1)e2iωmwt ] + H.c.}. (C3)

As estimated in the main text, the rotational splitting 2Bv is much larger than the DDI energy for a typical gas density.
Consequently, the spin dynamics induced by the DDI is much slower than the Rabi oscillations induced by the microwave field.
We may therefore use an effective DDI which is time-averaged over a period of 2π/ωmw, i.e.,

Ĥdd �gd

2

√
16π

45

∫
dr1dr2

|R|3 {Y20(R̂)[ψ̂†
00(r1)ψ̂†

11(r2)ψ̂00(r2)ψ̂11(r1) + ψ̂
†
00(r1)ψ̂†

1−1(r2)ψ̂00(r2)ψ̂1−1(r1)

− 2ψ̂
†
00(r1)ψ̂†

1,0(r2)ψ̂00(r2)ψ̂10(r1)]} − gd

2

√
16π

15

∫
dr1dr2

|R|3 {Y2−1(R̂)[ψ̂†
00(r1)ψ̂†

10(r2)ψ̂00(r2)ψ̂1−1(r1)

− ψ̂
†
00(r1)ψ̂†

11(r2)ψ̂00(r2)ψ̂10(r1)] + H.c.} − gd

2

√
8π

15

∫
dr1dr2

|R|3 [−2Y2−2(R̂)ψ̂†
11(r1)ψ̂†

00(r2)ψ̂1−1(r2)ψ̂00(r1) + H.c.].

(C4)
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The adiabatic elimination of the |0,0〉 level from the interaction Hamiltonian (C4) can be achieved by simply performing the
substitution ψ̂00 = −�ψ̂11/�, which leads to

Ĥdd �κgd

2

√
16π

45

∫
dr1dr2

|R|3 {Y20(R̂)[ψ̂†
11(r1)ψ̂†

11(r2)ψ̂11(r2)ψ̂11(r1) + ψ̂
†
11(r1)ψ̂†

1−1(r2)ψ̂11(r2)ψ̂1−1(r1)

− 2ψ̂
†
11(r1)ψ̂†

1,0(r2)ψ̂11(r2)ψ̂10(r1)]} − κgd

2

√
16π

15

∫
dr1dr2

|R|3 {Y2−1(R̂)[ψ̂†
11(r1)ψ̂†

10(r2)ψ̂11(r2)ψ̂1−1(r1)

− ψ̂
†
11(r1)ψ̂†

11(r2)ψ̂11(r2)ψ̂10(r1)] + H.c.} − κgd

2

√
8π

15

∫
dr1dr2

|R|3 [−2Y2−2(R̂)ψ̂†
11(r1)ψ̂†

11(r2)ψ̂1−1(r2)ψ̂11(r1) + H.c.].

(C5)

As can be seen, the elimination of |0,0〉 level gives rise to the factor κ to the DDI strength, which can be used as a control knob
for the DDI. For the parameter regime considered in this work, the DDI energy κgdn is much smaller than the level splitting
between |1,0〉 and |1,±1〉. Therefore, with the assumption that all molecules are prepared in the |1,1〉 state, the |1,0〉 level is
essentially unoccupied during the time scale considered here. As a result, we may simply drop all terms containing ψ̂10 in Ĥdd,
which eventually leads to the effective DDI Hamiltonian, Eq. (4).
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J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, Phys. Rev.
Lett. 101, 133004 (2008).
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