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Sum rules for spin-1/2 quantum gases in states with well-defined spins. II. Spin-dependent
two-body interactions
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Sums of matrix elements of spin-dependent two-body momentum-independent interactions and sums of their
products are calculated analytically in the basis of many-body states with given total spin—the states built from
spin and spatial wave functions belonging to multidimensional irreducible representations of the symmetric
group, unless the total spin has the maximal allowed value. As in the first part of the series [V. A. Yurovsky, Phys.
Rev. A 91, 053601 (2015)], the sum dependence on the many-body states is given by universal factors, which are
independent of the Hamiltonians of noninteracting particles. The sum rules are applied to perturbative analysis
of energy spectra and to calculation of two-body spin-dependent local correlations.
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I. INTRODUCTION

The present paper continues analyses (see Ref. [1] for
a more comprehensive introduction and definitions) of the
sum rules for many-body systems of indistinguishable spin- 1

2
particles. The particles can be composite, e.g., atoms or
molecules, and the spin can be either a real angular momentum
of the particle or a formal spin, whose projections are attributed
to the particle’s internal states (e.g., hyperfine states of atoms).
In the latter case, the spin 1

2 means that only two internal states
are present in the system. This formal spin is not related to the
real, physical, spin of the particles, which can be either bosons
or fermions.

The many-body wave functions are represented here, as
well as in [1], as a sum of products of the collective
spin and spatial functions. These functions depend on spin
projections and coordinates, respectively, of all particles and
belong to multidimensional, non-Abelian representations of
the symmetric group (see [2–5]), unless the total spin has the
maximal allowed value. For spin- 1

2 particles, the representation
is unambiguously determined by the total many-body spin.
This approach is applicable to the Hamiltonians which are
separable to spin-independent and coordinate-independent
parts. It differs from the conventional approach (see [6]
and [1]), where each particle is characterized by its spin
projection and coordinate, and the total wave function is
symmetrized for bosons or antisymmetrized for fermions over
permutations of all particles. The total many-body spin is
undefined in this case. As follows from the Heitler’s results [7]
(see also [1]), an exact wave function for particles with spin-
independent interactions cannot be obtained in the approach
with defined individual spin projections. Many-body states
with defined total spin [8–15], including the collective spin
and spatial wave functions [16–19], were applied to spinor
quantum gases (see [20–30]). Such states were also proposed
for implementation of permutation quantum computers [31].
Other kings of entangled states with nontrivial symmetry have
been analyzed for quantum-degenerate gases of spin-1 [32] and
spin-2 [33] bosons. A more comprehensive review is presented
in Ref. [1].

The well-known mean-field approach (see [6,24]), where
the interactions between particles are replaced by the self-
consistent field, is generally applied to states with defined

individual spin projections and undefined total spins. It can
be applied to certain states with defined total spins if the
interactions are spin independent. For bosons, the many-body
mean-field wave function contains a single spatial orbital,
determined by the Gross-Pitaevskii equation (see [24]). For
fermions, the Hartree-Fock wave function (see [6]) contains
double-occupied spatial orbitals. Such wave functions have
the total spin S = N/2 or S = 0 for N spin- 1

2 bosons
or fermions, respectively, and describe quantum-degenerate
gases with multiple occupations of the spatial orbitals. The
present approach describes states with arbitrary total spins and
is suitable for nondegenerate gases.

For spin-independent two-body interactions between parti-
cles, sums of matrix elements directly follow from Heitler’s
results [7], while the sum of the matrix element squared moduli
was calculated in [1]. Matrix elements of spin-dependent
interactions depend on the total spin projections of the coupled
many-body states. For spin-dependent one-body interactions
with external fields, this dependence was factorized using the
Wigner-Eckart theorem and sums of the matrix elements and
their squared moduli were calculated [1].

The present work is devoted to spin-dependent two-body
interactions between particles. As well as in Ref. [1], the matrix
elements are calculated in the basis of noninteracting particles
with single occupation of spatial modes. The interactions are
expressed in terms of irreducible spherical tensors and their
matrix elements are related to ones for the maximal allowed
projections of the total spins using the Wigner-Eckart theorem
in Sec. II. Sums of these matrix elements and their squared
moduli are calculated in Sec. III for zero-range spin-dependent
interactions. The sum rules are applied to perturbative analysis
of energy spectra in Sec. IV. Average two-body spin-dependent
correlations are analyzed in this section too. These correlations
allow us to distinguish between the many-body states with
defined total spins and individual spin projections. Appendixes
contain the calculation of sums, used in Sec. III.

References to equations in the previous paper [1] (Paper I
of this series) are referred to as “(I.x)”. The present paper,
as well as [1], uses the following notation for the universal
factors. In the ratios of the 3j -Wigner symbols X

(S,S ′,q)
Szk

, giving
the dependence on the total spin projections, S and S ′ are the
maximal and minimal total spins of the coupled states, q is
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the rank of the spherical tensor, and Sz and Sz + k are the spin
projections for S and S ′, respectively. The factors Y

(S,m)
i [Â]

and Y
(S,m)
i [Â,B̂], respectively, appear in the sum rules for the

matrix elements of Â and products of the matrix elements of
Â and B̂ for the maximal allowed spin projections. Here Â

and B̂ are arbitrary operators, S is the maximal total spin of
the coupled states, and m is the number of changed spatial
quantum numbers (it is omitted if the factor is independent of
m). If the sum rule contains several factors Y , they are specified
by the subscript i.

II. SPIN-PROJECTION DEPENDENCE

Let |↑〉 and |↓〉 denote two spin states of the particles.
Permutation-invariant momentum-independent two-body in-
teractions between particles with arbitrary spin dependence
can be decomposed into irreducible spherical tensors of ranks
0, 1, and 2 using general relations [34] between irreducible
spherical and Cartesian tensors. In the present case the
Cartesian tensors are proportional to the products ŝα(j )ŝα′(j ′)
of the spin components of two particles, where α and α′ can
be either x, y, or z. The z component of the j th particle spin
is

ŝz(j ) = 1
2 (|↑(j )〉〈↑(j )| − |↓(j )〉〈↓(j )|), (1)

while ŝx(j ) = 1
2 [ŝ+(j ) + ŝ−(j )] and ŝy(j ) = − i

2 [ŝ+(j ) −
ŝ−(j )] are expressed in terms of the spin raising and lowering
operators

ŝ+(j ) = |↑(j )〉〈↓(j )|, ŝ−(j ) = |↓(j )〉〈↑(j )|.
There are two zero-rank tensors (spherical scalars),

V̂ =
∑
j �=j ′

V +(rj − rj ′ ) (2)

and

V̂
(0)

0 = − 1√
3

(V̂zz + V̂ +
+−),

where

V̂zz =
∑
j �=j ′

V +(rj − rj ′ )ŝz(j )ŝz(j
′),

(3)
V̂ +

+− =
∑
j �=j ′

V +(rj − rj ′ )ŝ+(j )ŝ−(j ′).

Here

V ±(r) = 1
2 [V (r) ± V (−r)]

are the even and odd parts of the two-body potential function
V (r),

The three components of the rank-1 spherical tensor V̂ (1)

can be expressed as

V̂
(1)

0 = 1√
2

∑
j �=j ′

V −(rj − rj ′ )ŝ+(j )ŝ−(j ′),

V̂
(1)
±1 = −

∑
j �=j ′

V −(rj − rj ′ )ŝz(j )ŝ±(j ′).

Finally,

V̂
(2)

0 = 1√
6

(2V̂zz − V̂ +
+−),

V̂
(2)
±1 = ∓

∑
j �=j ′

V +(rj − rj ′ )ŝz(j )ŝ±(j ′),

V̂
(2)
±2 = 1

2

∑
j �=j ′

V +(rj − rj ′ )ŝ±(j )ŝ±(j ′)

are the five components of the rank-2 spherical tensor V̂ (2). The
even or odd rank tensors depend, respectively, on the even or
odd components V ±(r) of the potential. Therefore the rank-1
tensor vanishes in the case of even two-body interaction, while
the scalars and rank-2 tensor vanish for the odd interaction.

The interactions conserving the z projection of the total
many-body spin are expressed in terms of the scalars and zero
components of the tensors,

V̂� ≡
∑
j �=j ′

V (rj − rj ′ )|↑(j )〉|↑(j ′)〉〈↑(j )|〈↑(j ′)|

=
√

2

3
V̂

(2)
0 − 1√

3
V̂

(0)
0 + V̂ +

0 + 1

4
V̂ , (4a)

V̂� ≡
∑
j �=j ′

V (rj − rj ′ )|↓(j )〉|↓(j ′)〉〈↓(j )|〈↓(j ′)|

=
√

2

3
V̂

(2)
0 − 1√

3
V̂

(0)
0 − V̂ +

0 + 1

4
V̂ , (4b)

V̂↑↓ ≡
∑
j �=j ′

V (rj − rj ′ )|↑(j )〉|↓(j ′)〉〈↑(j )|〈↓(j ′)|

= −
√

2

3
V̂

(2)
0 + 1√

3
V̂

(0)
0 − V̂ −

0 + 1

4
V̂ , (4c)

V̂+− ≡
∑
j �=j ′

V (rj − rj ′ )|↑(j )〉|↓(j ′)〉〈↓(j )|〈↑(j ′)|

= −
√

2

3
V̂

(2)
0 − 2√

3
V̂

(0)
0 +

√
2V̂

(1)
0 . (4d)

Here

V̂ ±
0 =

∑
j �=j ′

V ±(rj − rj ′ )ŝz(j )

are zero components of spherical vectors (see [34]). Equa-
tions (4a) and (4b) lead to the relation

V̂ +
0 = 1

2 (V̂� − V̂�). (5)

The interactions changing the spin of one of the colliding
particles,

V̂−↑ ≡
∑
j �=j ′

V (rj − rj ′ )|↓(j )〉|↑(j ′)〉〈↑(j )|〈↑(j ′)|

= V̂
(2)
−1 + V̂

(1)
−1 + 1√

2
V̂−1,

V̂−↓ ≡
∑
j �=j ′

V (rj − rj ′ )|↓(j )〉|↓(j ′)〉〈↑(j )|〈↓(j ′)|

= −V̂
(2)
−1 − V̂

(1)
−1 + 1√

2
V̂−1,

(6)

033618-2



SUM RULES FOR SPIN- . . . . II. SPIN-DEPENDENT ... PHYSICAL REVIEW A 92, 033618 (2015)

involve also

V̂±1 = ∓ 1√
2

∑
j �=j ′

V (rj − rj ′ )ŝ±(j ),

which form a spherical vector together with V̂0 = V̂ +
z + V̂ −

z

(see [34]).
The interaction

V̂−− ≡
∑
j �=j ′

V (rj − rj ′ )|↓(j )〉|↓(j ′)〉〈↑(j )|〈↑(j ′)|

= 2V̂
(2)
−2 (7)

changes spins of both colliding particles. Other spin-changing
interactions are obtained by the Hermitian conjugation of
Eqs. (6) and (7), taking into account that(

V̂
(2)
−2

)† = V̂
(2)
+2 ,

(
V̂

(2)
−1

)† = −V̂
(2)
+1 ,

(8)(
V̂

(1)
−1

)† = V̂
(1)
+1 , V̂

†
−1 = −V̂+1.

Consider matrix elements between wave functions �
(S)
nSz

with the defined projection Sz of the total spin S. The explicit
form of �

(S)
nSz

, given by Eq. (I.16), is not used here. The multi-
index n labels different functions with the same S and Sz.
According to the Wigner-Eckart theorem (see [35]), the matrix
elements of the spherical scalars are diagonal in spins and
independent of the spin projection,〈

�
(S ′)
n′S ′

z

∣∣V̂ ∣∣�(S)
nSz

〉 = δSS ′δSzS ′
z

〈
�

(S)
n′S

∣∣V̂ ∣∣�(S)
nS

〉
,〈

�
(S ′)
n′S ′

z

∣∣V̂ (0)
0

∣∣�(S)
nSz

〉 = δSS ′δSzS ′
z

〈
�

(S)
n′S

∣∣V̂ (0)
0

∣∣�(S)
nS

〉
.

The matrix elements of the spherical vectors and the
rank-1 tensor follow the same relations (I.23) as the one-body
interactions,〈

�
(S ′)
n′S ′

z

∣∣Âk

∣∣�(S)
nSz

〉 = δS ′
zSz+kX

(S,S ′,1)
Szk

〈
�

(S ′)
n′S ′

∣∣ÂS ′−S

∣∣�(S)
nS

〉
, (9)

where the factors

X
(S,S ′,q)
Szk

= (−1)S
′−Sz−k

(
S S ′ q

Sz −Sz − k k

)

×
(

S S ′ q

S −S ′ S ′ − S

)−1

are expressed in terms of the 3j -Wigner symbols. Here Â0

can be either V̂ ±
0 , V̂0, or V̂

(1)
0 , and Â±1 can be V̂±1, or V̂

(1)
±1 .

According to the properties of the 3j -Wigner symbols, the
matrix elements (9) vanish if |S − S ′| > 1 (in agreement to
the selection rules [19]). The factors X

(S,S ′,1)
Szk

for S ′ � S are
presented in Table I in Ref. [1]. The Hermitian conjugate
of Eq. (9), together with Eq. (8) and relations (V̂ ±

0 )† = V̂ ±
0 ,

(V̂0)† = V̂0, and (V̂ (1)
0 )† = −V̂

(1)
0 , give us the matrix elements

for S ′ = S + 1.
The matrix elements of the components of the rank-2

spherical tensor V̂
(2)
k can be expressed in terms of the matrix

elements for the maximal allowed spin projections (S ′ � S) in
the same way,〈

�
(S ′)
n′S ′

z

∣∣V̂ (2)
k

∣∣�(S)
nSz

〉 = δS ′
zSz+kX

(S,S ′,2)
Szk

〈
�

(S ′)
n′S ′

∣∣V̂ (2)
S ′−S

∣∣�(S)
nS

〉
. (10)

According to the properties of the 3j -Wigner symbols, the
matrix elements (10) vanish if |S − S ′| > 2 (in agreement to
the selection rules [19]). The nonvanishing factors X

(S,S ′,2)
Szk

,
calculated with the 3j -Wigner symbols [6,35], are presented
in Table I. The symmetry properties of the 3j -Wigner
symbols [6,35] lead to the relation

X
(S,S ′,q)
Sz−k = (−1)S−S ′+qX

(S,S ′,q)
−Szk

,

providing the factors X
(S,S ′,2)
Szk

for k < 0. The matrix elements
for S + 1 � S ′ � S + 2 are given by Hermitian conjugation
of Eq. (10), taking into account Eq. (8) and the relation
(V̂ (2)

0 )† = V̂
(2)

0 .
Thus, each permutation-invariant two-body interaction

between particles is expressed in terms of irreducible spher-
ical tensors. Their matrix elements for arbitrary total spin
projections are related to ones for the maximal allowed spin
projections using the Wigner-Eckart theorem. The next section
deals with the later matrix elements.

III. SUM RULES

A. Matrix elements for zero-range interactions

The sums of the matrix elements and sums of their squared
moduli will be evaluated here for zero-range spin-dependent
two-body interactions with the even potential function

V (r) = δ(r), (11)

where r is a D-dimensional vector. This function is generally
used for description of interactions of cold atoms in free
space, when D = 3, and under tight pancake- or cigar-shape
confinement, when D = 2 or D = 1, respectively. In the three-
and two-dimensional cases the δ function has to be properly
renormalized.

For the even potential function, we have V +(r) = V (r),
V −(r) = 0, and, therefore, V̂

(1)
k = V̂ −

0 = 0, V̂+− = V̂ +
+−. Be-

sides, the identity |↑(j )〉〈↑(j )| + |↓(j )〉〈↓(j )| = 1 leads to the
relation

V̂↑↓ = 1
2 (V̂ − V̂� − V̂�). (12)

The zero range of interaction allows us to relate the
matrix elements of V̂↑↓ and V̂+−, defined by (4c) and (4d),
respectively, in the following way. Wave functions of indistin-
guishable particles � obey to the quantum exclusion principle
Pjj ′� = ±�, where the sign + or − is taken for bosons or
fermions, respectively. Therefore

〈� ′|V̂+−|�〉 = ±
∑
j �=j ′

〈� ′|↑(j )〉|↓(j ′)〉δ(rj − rj ′ )

×〈↓(j )|〈↑(j ′)|Pjj ′ |�〉.
The permutation operator Pjj ′ permutes both spins and the
coordinates rj and rj ′ . However, the δ function sets rj = rj ′

and the coordinate permutation has no effect. Acting to the left,
permutation Pjj ′ of spins is restricted by the bra 〈↓(j )|〈↑(j ′)|
of the interaction operator, therefore

〈� ′|V̂+−|�〉 = ±
∑
j �=j ′

〈� ′|↑(j )〉|↓(j ′)〉δ(rj − rj ′ )

× 〈↓(j ′)|〈↑(j )|�〉 = ±〈� ′|V̂↑↓|�〉.
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TABLE I. Coefficients X
(S,S′,2)
Szk

in Eq. (10).

S − S ′

k 0 1 2

0 3S2
z −S(S+1)
S(2S−1) − Sz

S−1

√
3 S2−S2

z

S(2S−1)

√
3[(S−1)2−S2

z ](S2−S2
z )

2S(S−1)(2S−1)(2S−3)

1 − (1+2Sz)
√

6(S+Sz+1)(S−Sz)
2S(2S−1)

S+2Sz+1
S−1

√
(S−Sz−1)(S−Sz)

2S(2S−1) −
√

(S−Sz−2)(S−Sz−1)(S2−S2
z )

S(S−1)(2S−1)(2S−3)

2
√

6(S−Sz−1)(S−Sz)(S+Sz+1)(S+Sz+2)
2S(2S−1) − 1

S−1

√
[S2−(Sz+1)2](S−Sz−2)(S−Sz)

2S(2S−1)

√
(S−Sz−3)(S−Sz−2)(S−Sz−1)(S−Sz)

4S(S−1)(2S−1)(2S−3)

Then (4c) and (4d) for the even potential function, together
with (12), lead to

〈� ′|V̂ (0)
0 |�〉 = − 1

4
√

3
〈� ′|V̂ |�〉,

〈� ′|V̂ (2)
0 |�〉 =

√
3

2
〈� ′|1

2
(V̂� + V̂�) − 1

3
V̂ |�〉,

〈� ′|V̂0|�〉 = 1

2
〈� ′|V̂� − V̂�|�〉 (13)

for bosons. Thus, matrix elements of scalars and zero compo-
nents of the vector and tensors are expressed in terms of V̂ ,
V̂�, and V̂�. The nonzero components of the vector and tensor
are obtained from (6) and (7),

V̂
(2)
−1 = 1

2
(V̂−↑ − V̂−↓),

V̂−1 = 1√
2

(V̂−↑ + V̂−↓),

V̂
(2)
−2 = 1

2
V̂−− (14)

and their Hermitian conjugates.
For fermions, matrix elements of V̂�, and V̂� are equal to

zero, in agreement with the Pauli principle—two particles with
the same spin cannot have equal coordinates. This leads to the
zero matrix elements of the spherical vector and tensors. The
matrix elements of the spherical scalars are related as

〈� ′|V̂ (0)
0 |�〉 =

√
3

4
〈� ′|V̂ |�〉. (15)

The sums of the matrix elements of V̂ and sums of
their squared moduli are derived in Ref. [1]. Other relevant
interactions are analyzed below.

B. Matrix elements for noninteracting bosons

Let us evaluate matrix elements of V̂�, V̂�, V̂−↑, V̂−↓, and
V̂−− between wave functions

�̃
(S)
r{n}Sz

= f
−1/2
S

∑
t

�̃
(S)
tr{n}�

(S)
tSz

(16)

[see Eq. (I.17)] of noninteracting bosons with defined projec-
tion Sz of the total spin S, where fS is the dimension of the
respective irreducible representation of the symmetric group.
The representations and functions within the representations,
respectively, are labeled by the standard Young tableaux r and t

of the shape λ = [N/2 + S,N/2 − S] (see [4,5]). For bosons,

the spatial functions of N noninteracting particles (I.11) are
represented in the form

�̃
(S)
tr{n} =

(
fS

N !

)1/2 ∑
P

D[λ]
rt (P)

N∏
j=1

ϕnPj
(rj ), (17)

where P are permutations of N symbols, ϕn(r) are the spatial
orbitals, and the relation for the Young orthogonal matrices

D[λ]
tr (P−1) = D[λ]

rt (P) (18)

[see (I.7)] is used (see Ref. [1] for other notation). Each matrix
element, e.g., the one of V̂�, can be decomposed into the
spatial and spin parts,〈

�̃
(S ′)
r ′{n′}S ′

z

∣∣V̂�
∣∣�̃(S)

r{n}Sz

〉
= (fSfS ′ )−1/2

∑
t,t ′

∑
i �=i ′

〈
�̃

(S ′)
t ′r ′{n′}

∣∣V (ri − ri ′ )
∣∣�̃(S)

tr{n}
〉

× 〈
�

(S ′)
t ′Sz

∣∣↑(i)〉|↑(i ′)〉〈↑(i)|〈↑(i ′)
∣∣�(S)

tSz

〉
δSzS ′

z
. (19)

Using Eq. (17), the spatial matrix elements can be expressed
as〈
�̃

(S ′)
t ′r ′{n′}

∣∣V (ri − ri ′ )
∣∣�̃(S)

tr{n}
〉

=
√

fSfS ′

N !

∑
R,Q

D
[λ′]
r ′t ′ (Q)D[λ]

rt (R)

×
∫

dDrid
Dri ′ϕ

∗
n′
Qi

(ri)ϕ
∗
n′
Qi′

(ri ′ )V (ri − ri ′ )ϕnRi
(ri)ϕnRi′ (ri ′ )

×
∏

i ′ �=i ′′ �=i

δn′
Qi′′ ,nRi′′ . (20)

The Kronecker δ symbols appear here due to the orthogonality
of the spatial orbitals ϕn and the absence of equal quantum
numbers in each of the sets {n} and {n′}. Due to the δ symbols,
all but two spatial quantum numbers remain unchanging.
Supposing that the unchanged ni ′′ are in the same positions in
the sets {n} and {n′}, one can see that the Kronecker symbols
allow only Q = R or Q = RPii ′ . Therefore〈

�̃
(S ′)
t ′r ′{n′}

∣∣V (ri − ri ′ )
∣∣�̃(S)

tr{n}
〉

=
√

fSfS ′

N !

∑
R

D[λ]
rt (R)

[
D

[λ′]
r ′t ′ (R) + D

[λ′]
r ′t ′ (RPii ′)

]

×〈n′
Ri ′n

′
Ri |V |nRi ′nRi〉

∏
Ri ′ �=j ′′ �=Ri

δn′
j ′′ ,nj ′′ , (21)
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where for the zero-range potential (11) the matrix elements

〈n′
1n

′
2|V |n1n2〉 = 〈n′

2n
′
1|V |n1n2〉

=
∫

dDrϕ∗
n′

1
(r)ϕ∗

n′
2
(r)ϕn1 (r)ϕn2 (r)

are invariant over permutations of n′
1 and n′

2, as well as of n1

and n2.
All matrix elements are related by the Wigner-Eckart

theorem to ones for the maximal allowed spin projection, S ′
z =

S ′, Sz = S. The spinor matrix elements include projections of
the spin wave-functions (I.14), derived in [36],

�
(S)
tSz

= CSSz

∑
P

D
[λ]
t[0](P)

N/2+Sz∏
j=1

|↑(Pj )〉
N∏

j=N/2+Sz+1

|↓(Pj )〉,

with the normalization factor

CSSz
= 1

(N/2 + Sz)!(N/2 − S)!

√
(2S + 1)(S + Sz)!

(N/2 + S + 1)(2S)!(S − Sz)!
. (22)

The projection

〈↑(i)|〈↑(i ′)
∣∣�(S)

tS

〉 = CSS

∑
P

D
[λ]
t[0](P)

λ1∑
l �=l′

δi,Plδi ′,Pl′

λ1∏
l �=j �=l′

|↑(Pj )〉
N∏

j=λ1+1

|↓(Pj )〉

(recall that λ1,2 = N/2 ± S) can be transformed, using substitution P = QPlλ1−1Pl′λ1 , to the form

〈↑(i)|〈↑(i ′)
∣∣�(S)

tS

〉 = CSS

∑
Q

λ1∑
l �=l′

D
[λ]
t[0](QPlλ1−1Pl′λ1 )δi,Q(λ1−1)δi ′,Qλ1

λ1−2∏
j=1

|↑(Qj )〉
N∏

j=λ1+1

|↓(Qj )〉.

The permutations Plλ1−1 and Pl′λ1 permute symbols in the first row of the Young tableau [0]. Therefore, D
[λ]
t[0](QPlλ1−1Pl′λ1 ) =

D
[λ]
t[0](Q) [see Eq. (I.8)], the summand in the equation above is independent of l and l′, and the projection can be expressed as

〈↑(i)|〈↑(i ′)
∣∣�(S)

tS

〉 = λ1(λ1 − 1)CSS

∑
Q

D
[λ]
t[0](Q)δi,Q(λ1−1)δi ′,Qλ1

λ1−2∏
j=1

|↑(Qj )〉
N∏

j=λ1+1

|↓(Qj )〉.

The projections involved into matrix elements for other interactions are evaluated in the same way,

〈↓(i)|〈↓(i ′)
∣∣�(S)

tS

〉 = λ2(λ2 − 1)CSS

∑
Q

D
[λ]
t[0](Q)δi,Q(λ1+1)δi ′,Q(λ1+2)

λ1∏
j=1

|↑(Qj )〉
N∏

j=λ1+3

|↓(Qj )〉,

〈↑(i)|〈↓(i ′)
∣∣�(S)

tS

〉 = λ1λ2CSS

∑
Q

D
[λ]
t[0](Q)δi,Qλ1δi ′,Q(λ1+1)

λ1−1∏
j=1

|↑(Qj )〉
N∏

j=λ1+2

|↓(Qj )〉.

In the spin matrix elements of V̂�,〈
�

(S)
t ′S

∣∣↑(i)〉∣∣↑(i ′)
〉〈↑(i)|〈↑(i ′)

∣∣�(S)
tS

〉
= [λ1(λ1 − 1)CSS]2

∑
Q

D
[λ]
t[0](Q)δi,Q(λ1−1)δi ′,Qλ1

∑
R

D
[λ]
t ′[0](R)δi,R(λ1−1)δi ′,Rλ1

∑
P ′,P ′′

δR,QP ′P ′′ ,

the last Kronecker symbol appears due to orthogonality of the spin states and means that the permutations R and Q can be
different by permutations of particles in the same spin state. They are the permutations P ′ of the first λ1 − 2 symbols and P ′′ of
the last λ2 ones. As the permutations P ′ and P ′′ do not permute symbols between rows in the Young tableau [0], the equality
D

[λ]
t ′[0](QP ′P ′′) = D

[λ]
t ′[0](Q) [see Eq. (I.8)] can be applied, leading to

〈
�

(S)
t ′S

∣∣↑(i)〉|↑(i ′)〉〈↑(i)|〈↑(i ′)
∣∣�(S)

tS

〉 = λ1!λ2!λ1(λ1 − 1)C2
SS

∑
Q

D
[λ]
t[0](Q)D[λ]

t ′[0](Q)δi,Q(λ1−1)δi ′,Qλ1 .

Let us substitute this equation and Eq. (21) into Eq. (19), perform the summation over t and t ′, using the relation∑
t

D
[λ]
r ′t (P)D[λ]

tr (Q) = D
[λ]
r ′r (PQ), (23)
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[see Eq. (I.6)] and substitute P = Q−1R−1, j = Ri, and j ′ = Ri ′. Then the Kronecker symbols lead to Pj = Q−1i = λ1 − 1
and Pj ′ = Q−1i ′ = λ1. Equations

PPii ′P−1 = PPiPi ′ (24)

(see [5]) and (I.8) lead then to D
[λ]
r ′[0](RPii ′Q) = D

[λ]
r ′[0](P−1Q−1Pii ′Q) = D

[λ]
r ′[0](P−1Pλ1λ1−1) = D

[λ]
r ′[0](P−1). Then using Eq. (18)

we get 〈
�̃

(S ′)
r ′{n′}S ′

∣∣V̂�
∣∣�̃(S)

r{n}S
〉 = 2δS ′Sλ1!λ2!λ1(λ1 − 1)C2

SSV
[λ][λ]
r ′{n′}r{n}(λ1 − 1,λ1) (25)

with

V
[λ′][λ]
r ′{n′}r{n}(l,l

′) =
∑
j �=j ′

∑
P

D
[λ′]
[0]r ′ (P)D[λ]

[0]r (P)δl,Pj δl′,Pj ′ 〈n′
j n

′
j ′ |V |njnj ′ 〉

∏
j ′ �=j ′′ �=j

δn′
j ′′ ,nj ′′ . (26)

Matrix elements of other operators are calculated in the same way,〈
�̃

(S ′)
r ′{n′}S ′

∣∣V̂�
∣∣�̃(S)

r{n}S
〉 = 2δS ′Sλ1!λ2!λ2(λ2 − 1)C2

SSV
[λ][λ]
r ′{n′}r{n}(λ1 + 1,λ1 + 2),〈

�̃
(S ′)
r ′{n′}S ′

∣∣V̂−↑
∣∣�̃(S)

r{n}S
〉 = 2δS ′S−1λ1!λ2!(λ1 − 1)(λ2 + 1)CSSCS−1S−1V

[λ′][λ]
r ′{n′}r{n}(λ1 − 1,λ1),

(27)〈
�̃

(S ′)
r ′{n′}S ′

∣∣V̂−↓
∣∣�̃(S)

r{n}S
〉 = 2δS ′S−1λ1!λ2!λ2(λ2 + 1)CSSCS−1S−1V

[λ′][λ]
r ′{n′}r{n}(λ1,λ1 + 1),〈

�̃
(S ′)
r ′{n′}S ′

∣∣V̂−−
∣∣�̃(S)

r{n}S
〉 = 2δS ′S−2λ1!λ2!(λ2 + 1)(λ2 + 2)CSSCS−2S−2V

[λ′][λ]
r ′{n′}r{n}(λ1 − 1,λ1),

where λ′ = [N/2 + S ′,N/2 − S ′].

C. Sums of the matrix elements and their squares and products

For the matrix elements which are diagonal in the total spin
and r , one can calculate their sums and write them out in the
form

∑
r

〈
�̃

(S)
r{n′}S

∣∣V̂a

∣∣�̃(S)
r{n}S

〉

= Y (S)[V̂a]
2fS

N (N − 1)

×
∑
j<j ′

〈n′
j n

′
j ′ |V |njnj ′ 〉

∏
j ′ �=j ′′ �=j

δn′
j ′′ ,nj ′′ , (28a)

where V̂a is any two-body interaction, which does not change
the spin projection. In each term of the sum over j and j ′,
only two spatial quantum numbers can be changed. For the
operators V̂� and V̂� the factors

Y (S)[V̂�] = 2λ1(λ1 − 1), Y (S)[V̂�] = 2λ2(λ2 − 1),

calculated using Eqs. (25), (27), (22), (26), (23), and (18),
are proportional to the numbers λ1(λ1 − 1) and λ2(λ2 − 1) of
particle pairs with spins ↑ and ↓, respectively. For the spherical
tensor components, the factors are calculated with Eq. (13),

Y (S)
[
V̂

(2)
0

] =
√

2

3
S(2S − 1), Y (S)[V̂0] = 2S(N − 1).

(28b)

The sum of the matrix elements of the spin-independent
interactions (I.45a) can be expressed for bosons and the
zero-range potentials (11) in the form (28a) too with

Y (S)[V̂ ] = 3
2N (N − 2) + 2S(S + 1). (28c)

The sums of squared moduli of the matrix elements (25)
and (27) and their products are proportional to the sums of

products of the functions (26), which can be expressed as∑
r,r ′

V
[λ′][λ]
r ′{n′}r{n}(l1,l

′
1)V [λ′][λ]

r ′{n}r{n′}(l2,l
′
2)

=
∑
j1 �=j ′

1

∑
j2 �=j ′

2

	
(S ′,S)
j1j

′
1j2j

′
2
(l1,l

′
1,l2,l

′
2)〈n′

j1
n′

j ′
1
|V |nj1nj ′

1
〉

×
∏

j ′
1 �=j ′′

1 �=j1

δn′
j ′′
1
,nj ′′

1
〈n′

j2
n′

j ′
2
|V |nj2nj ′

2
〉∗

∏
j ′

2 �=j ′′
2 �=j2

δn′
j ′′
2
,nj ′′

2
,

(29)

where

	
(S ′,S)
j1j

′
1j2j

′
2
(l1,l

′
1,l2,l

′
2) =

∑
r,r ′

∑
P

D
[λ′]
[0]r ′ (P)D[λ]

[0]r (P)δl1,Pj1δl′1,Pj ′
1

×
∑
Q

D
[λ′]
[0]r ′ (Q)D[λ]

[0]r (Q)δl2,Qj2δl′2,Qj ′
2
.

(30)

The sums of squared moduli contain different func-
tions 	

(S ′,S)
j1j

′
1j2j

′
2
, namely 	

(S,S)
j1j

′
1j2j

′
2
(λ1 − 1,λ1,λ1 − 1,λ1) for V̂�,

	
(S,S)
j1j

′
1j2j

′
2
(λ1 + 1,λ1 + 2,λ1 + 1,λ1 + 2) for V̂�, 	

(S−1,S)
j1j

′
1j2j

′
2
(λ1 −

1,λ1,λ1 − 1,λ1) for V̂−↑, 	
(S−1,S)
j1j

′
1j2j

′
2
(λ1,λ1 + 1,λ1,λ1 + 1) for

V̂−↓, and 	
(S−2,S)
j1j

′
1j2j

′
2
(λ1 − 1,λ1,λ1 − 1,λ1) for V̂−−. Calculation

of the sums of squared moduli of the matrix elements of
spherical vectors and tensors with (13) and (14) requires
also sums over r and r ′ of the products of matrix elements.
The latter sums contain 	

(S,S)
j1j

′
1j2j

′
2
(λ1 − 1,λ1,λ1 + 1,λ1 + 2)

for products of the matrix elements of V̂� by V̂� and
	

(S−1,S)
j1j

′
1j2j

′
2
(λ1 − 1,λ1,λ1,λ1 + 1) for V̂−↑ by V̂−↓. The sums

	
(S ′,S)
j1j

′
1j2j

′
2

are calculated in Appendix A.

The sums of products of matrix elements of V̂ [expressed
by (I.44) with the zero-range potential function (11)] by V̂�
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or V̂� are proportional to the sum∑
r,r ′

V
[λ][λ]
r ′{n′}r{n}(l,l

′)
〈
�̃

(S)
r{n}S

∣∣V̂ |�̃(S)
r ′{n′}S

〉

=
∑
j1 �=j ′

1

∑
j2 �=j ′

2

[
(N − 2)! + 	

(S)
j1j

′
1j2j

′
2
(l,l′)

]〈n′
j1
n′

j ′
1
|V |nj1nj ′

1
〉

×
∏

j ′
1 �=j ′′

1 �=j1

δn′
j ′′
1
,nj ′′

1
〈n′

j2
n′

j ′
2
|V |nj2nj ′

2
〉∗

∏
j ′

2 �=j ′′
2 �=j2

δn′
j ′′
2
,nj ′′

2
,

(31)

where

	
(S)
j1j

′
1j2j

′
2
(l,l′) =

∑
r,r ′

∑
P

D
[λ]
[0]r ′ (P)D[λ]

[0]r (P)δl,Pj1δl′,Pj ′
1

×D
[λ]
rr ′ (Pj2j

′
2
) (32)

is calculated in Appendix B. Equation (31) contains
	

(S)
j1j

′
1j2j

′
2
(λ1 − 1,λ1) and 	

(S)
j1j

′
1j2j

′
2
(λ1 + 1,λ1 + 2) for V̂� and

V̂�, respectively. The sums of squared moduli of the matrix
elements and their products are expressed in different forms if
the set of spatial quantum numbers is changed ({n} �= {n′}) or
conserved ({n} = {n′}).

D. Changing set of spatial quantum numbers

If the sets of spatial quantum numbers {n} and {n′} are
different by two elements, the product of Kronecker symbols
in (29) and (31) does not vanish only if either j1 = j2, j ′

1 = j ′
2,

or j1 = j ′
2, j ′

1 = j2. Since 	
(S ′,S)
jj ′jj ′ (l1,l′1,l2,l

′
2) is independent of

particular values of j and j ′ (see Appendix A), the sum (29)
attains the form∑

r,r ′
V

[λ′][λ]
r ′{n′}r{n}(l1,l

′
1)V [λ′][λ]

r ′{n}r{n′}(l2,l
′
2)

= 2	
(S ′,S)
2 (l1,l

′
1,l2,l

′
2)

∑
j<j ′

|〈n′
j n

′
j ′ |V |njnj ′ 〉|2

×
∏

j ′ �=j ′′ �=j

δn′
j ′′ ,nj ′′

with

	
(S ′,S)
2 (l1,l

′
1,l2,l

′
2) = 	

(S ′,S)
jj ′jj ′ (l1,l

′
1,l2,l

′
2) + 	

(S ′,S)
jj ′jj ′ (l1,l

′
1,l

′
2,l2).

(33)

Then for any two-body spin-dependent interactions V̂a and
V̂b, the sums of squared moduli of the matrix elements and
their products can be written out in the form∑

r,r ′

〈
�̃

(S ′)
r ′{n′}S ′

∣∣V̂a

∣∣�̃(S)
r{n}S

〉〈
�̃

(S ′)
r ′{n′}S ′

∣∣V̂b

∣∣�̃(S)
r{n}S

〉∗

= Y (S,2)[V̂a,V̂b]
2fS ′

N (N − 1)

∑
j<j ′

|〈n′
j n

′
j ′ |V |njnj ′ 〉|2

×
∏

j ′ �=j ′′ �=j

δn′
j ′′ ,nj ′′ (34a)

with S ′ � S. Each term in the sum above changes two of
the spatial quantum numbers, conserving other ones. Since S

and S ′ are equal to the spin projections, S ′ is unambiguously
determined by the operators V̂a and V̂b, such that S ′ = S

for V̂ , V̂�, and V̂� and S ′ = S + k for V̂
(2)
k and V̂k . The

factors Y (S,2)[V̂a,V̂b] are expressed in terms of the sums
	

(S ′,S)
2 (l1,l′1,l2,l

′
2). For example, the factor Y (S,2)[V̂�,V̂�] takes

the form

Y (S,2)[V̂�,V̂�] = 4
[
λ!λ2!λ1(λ1 − 1)C2

SS

]2 N (N − 1)

fS

×	
(S,S)
2 (λ1 − 1,λ1,λ1 − 1,λ1).

Similarly, the sum (31) leads to the factor

Y (S,2)[V̂�,V̂ ] = 4λ1!λ2!λ1(λ1 − 1)C2
SS

N (N − 1)

fS

× [
(N − 2)! + 	

(S)
jj ′jj ′ (λ1 − 1,λ1)

]
.

The factors in the sums of squared moduli and products of
matrix elements of other operators are expressed in a similar
form. Explicit expressions for the factors are obtained using
the normalization factors (22) and sums 	

(S ′,S)
jj ′jj ′ and 	

(S)
jj ′jj ′ ,

calculated in Appendixes A and B, respectively. For example,

Y (S,2)[V̂�,V̂�] = 2

2S + 3

[
N2(2S + 1)

+ 2
N (4S3 + 8S2 + S − 1) + 2S(2S3 + 5S2 − 5)

S + 1

]
.

Equations (13) and (14) lead to the following factors in the
sums of squared moduli of the matrix elements of spherical
tensor components and their products:

Y (S,2)
[
V̂

(2)
0 ,V̂

(2)
0

] = S(2S − 1)

6(2S + 3)

(
3

(N + 2)2

S + 1
− 4S

)
, (34b)

Y (S,2)[V̂0,V̂0] = S

(
4S + N2 − 4

S + 1

)
, (34c)

Y (S,2)
[
V̂

(2)
0 ,V̂0

] =
√

2

3

(N + 2)S(2S − 1)

S + 1
, (34d)

Y (S,2)
[
V̂

(2)
0 ,V̂

] = 4

√
2

3
S(2S − 1), (34e)

Y (S,2)[V̂0,V̂ ] = 8S(N − 1), (34f)

Y (S,2)[V̂ (2)
−1 ,V̂

(2)
−1

] = (N + 2)(N − 2S + 2)(S − 1)

2(S + 1)
, (34g)

Y (S,2)[V̂−1,V̂−1] = (N − 2)(N − 2S + 2), (34h)

Y (S,2)
[
V̂

(2)
−1 ,V̂−1

] =
√

2(N − 2S + 2)(S − 1), (34i)

Y (S,2)[V̂ (2)
−2 ,V̂

(2)
−2

] = 1

2
(N − 2S + 2)(N − 2S + 4). (34j)

The sum of squared moduli of the matrix elements of the spin-
independent interactions (I.47a) can be expressed in the case
of bosons with the zero-range potentials (11) in the form (39a)
too with

Y (S,2)[V̂ ,V̂ ] = 6N (N − 2) + 8S(S + 1). (34k)

The case of a single changed quantum number will be
considered elsewhere.

033618-7



VLADIMIR A. YUROVSKY PHYSICAL REVIEW A 92, 033618 (2015)

E. Conserving set of spatial quantum numbers

If the set of spatial quantum numbers is unchanged, {n} =
{n′}, the Kronecker symbols in sums (29) and (31) are equal
to 1 for any j1, j2, j ′

1, and j ′
2. Then these sums contain∑

j1 �=j ′
1

∑
j2 �=j ′

2

	j1j
′
1j2j

′
2
Vj1j

′
1
Vj2j

′
2

= 	4

⎛
⎝∑

j �=j ′
Vjj ′

⎞
⎠

2

+ (	3 − 4	4)
∑

j ′ �=j �=j ′′
Vjj ′Vjj ′′

+ (	2 − 	3 + 2	4)
∑
j �=j ′

V 2
jj ′ , (35)

where the matrix elements of zero-range interactions (11) are
symmetric over permutations of nj and nj ′ ,

Vjj ′ = 〈njnj ′ |V |njnj ′ 〉 = 〈nj ′nj |V |njnj ′ 〉 = 〈njnj ′ |V |nj ′nj 〉
=

∫
dDr|ϕnj

(r)ϕnj ′ (r)|2, (36)

and 	j1j
′
1j2j

′
2

can be either 	
(S ′,S)
j1j

′
1j2j

′
2
(l1,l′1,l2,l

′
2) or 	

(S)
j1j

′
1j2j

′
2
(l,l′)

[see Eqs. (30) and (32)] with arbitrary superscripts and
arguments. These functions depend on relations between
their subscripts, rather than the subscript specific values (see
Appendixes A and B). Then 	4 = 	j1j

′
1j2j

′
2

for j1 �= j2 �= j ′
1

and j1 �= j ′
2 �= j ′

1, 	3 = 	jj ′jj ′′ + 	jj ′j ′′j + 	j ′jjj ′′ + 	j ′jj ′′j
for j ′ �= j �= j ′′ �= j ′, and 	2 = 	jj ′jj ′ + 	jj ′j ′j for j �= j ′.
The sum (35) can be further transformed to∑

j1 �=j ′
1

∑
j2 �=j ′

2

	j1j
′
1j2j

′
2
Vj1j

′
1
Vj2j

′
2

= N (N − 1)[(N − 2)(N − 3)	4 + (N − 2)	3 + 	2]〈V 〉2

+N (N − 1)2(	3 − 4	4)〈
1V 〉2

+N (N − 1)(	2 − 	3 + 2	4)(〈
2V 〉2.

Here

〈V 〉 = 2

N (N − 1)

∑
j<j ′

Vjj ′ (37)

is the average value of the matrix elements (36) and

〈
1V 〉2 = 1

N

N∑
j=1

⎛
⎝ 1

N − 1

∑
j ′ �=j

Vjj ′ − 〈V 〉
⎞
⎠

2

〈
2V 〉2 = 2

N (N − 1)

∑
j<j ′

(Vjj ′ − 〈V 〉)2 (38)

measure their average deviations [in consistency with
(I.48)]. Then the sums of squared moduli of the matrix
elements and their products can be written out in the
form

∑
r,r ′

〈
�̃

(S ′)
r ′{n}S ′

∣∣V̂a

∣∣�̃(S)
r{n}S

〉〈
�̃

(S ′)
r ′{n}S ′

∣∣V̂b

∣∣�̃(S)
r{n}S

〉∗
= fS ′

(
Y

(S,0)
0 [V̂a,V̂b]〈V 〉2 + Y

(S,0)
1 [V̂a,V̂b]〈
1V 〉2

+Y
(S,0)
2 [V̂a,V̂b]〈
2V 〉2

)
(39a)

with S ′ � S. The factors Y
(S,0)
i here are calculated using results

of Appendixes A, B, and C. The first factor can be represented
for all considered V̂a and V̂b as

Y
(S,0)
0 [V̂a,V̂b] = δSS ′Y (S)[V̂a]Y (S)[V̂b] (39b)

[see Eq. (28)]. Since S ′ − S is unambiguously determined
by V̂a and V̂b (S ′ = S for V̂ and S ′ = S + k for V̂

(2)
k and

V̂k), Y
(S,0)
0 [V̂a,V̂b] = 0 for k �= 0 components of the spherical

vectors and tensors, when S �= S ′. Other factors are expressed
as

Y
(S,0)
1

[
V̂

(2)
0 ,V̂

(2)
0

] = − (N − 1)(N − 2S)(N + 2S + 2)S(2S − 1)

3(N − 2)(N − 3)(2S + 3)

(
3
N + 3

S + 1
− 8S

)
, (39c)

Y
(S,0)
2

[
V̂

(2)
0 ,V̂

(2)
0

] = (N − 2S)(N + 2S + 2)S(2S − 1)

6(N − 2)(N − 3)(2S + 3)

(
3N

N − 1

S + 1
− 8S

)
, (39d)

Y
(S,0)
1 [V̂0,V̂0] = (N − 1)(N − 2S)(N + 2S + 2)S

S + 1
, (39e)

Y
(S,0)
1

[
V̂

(2)
0 ,V̂0

] =
√

2

3

(N − 1)(N − 2S)(N + 2S + 2)S(2S − 1)

(N − 2)(S + 1)
, (39f)

Y
(S,0)
1

[
V̂

(2)
0 ,V̂

] = 2

√
2

3

(N − 1)(N − 2S)(N + 2S + 2)S(2S − 1)

(N − 2)(N − 3)
, (39g)

Y
(S,0)
2

[
V̂

(2)
0 ,V̂

] = −
√

2

3

(N − 2S)(N + 2S + 2)S(2S − 1)

(N − 2)(N − 3)
, (39h)

Y
(S,0)
1 [V̂0,V̂ ] = 2

(N − 1)(N − 2S)(N + 2S + 2)S

N − 2
, (39i)

Y
(S,0)
1

[
V̂

(2)
−1 ,V̂

(2)
−1

] = (N − 1)(N − 2S + 2)(S − 1)
2(N + 1)S2 − N (N + 3)

(N − 2)(N − 3)(S + 1)
, (39j)

Y
(S,0)
2

[
V̂

(2)
−1 ,V̂

(2)
−1

] = (N − 1)(N − 2S)(N + 2S)(N − 2S + 2)(S − 1)

2(N − 2)(N − 3)(S + 1)
, (39k)
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Y
(S,0)
1 [V̂−1,V̂−1] = N (N − 1)(N − 2S + 2), (39l)

Y
(S,0)
1

[
V̂

(2)
−1 ,V̂−1

] =
√

2N (N − 1)(N − 2S + 2)(S − 1)

(N − 2)
, (39m)

Y
(S,0)
1

[
V̂

(2)
−2 ,V̂

(2)
−2

] = − (N − 1)2(N − 2S + 2)(N − 2S + 4)

(N − 2)(N − 3)
, (39n)

Y
(S,0)
2

[
V̂

(2)
−2 ,V̂

(2)
−2

] = (N − 1)(N − 2S + 2)(N − 2S + 4)

2(N − 3)
. (39o)

The vanishing factors are omitted above, namely
Y

(S,0)
2 [V̂a,V̂b] = 0 when V̂a or V̂b is V̂k . The sum of squared

moduli of the matrix elements of the spin-independent inter-
actions (I.47b) can be expressed for bosons and the zero-range
potentials (11) in the form (39a) too with

Y
(S,0)
1 [V̂ ,V̂ ] = − (N − 1)(N − 2S)(N + 2S + 2)

(N − 3)

×
(

3 − 4S
S + 1

N − 2

)
, (39p)

Y
(S,0)
2 [V̂ ,V̂ ] = (N − 2S)(N + 2S + 2)

× 3N (N − 4) − 4S(S + 1) + 12

2(N − 2)(N − 3)
. (39q)

They are equal to the factors (I.47c).
Thus, sums of matrix elements and their squared moduli are

expressed in terms of universal factors, which are independent
of the spatial orbitals, and sums of one-body matrix elements
(or their squared moduli), which are independent of many-
body spins and the spin dependence of the interaction. The
sum rules, combined with the spin-projection dependencies (9)
and (10), provide information on each matrix element for any
two-body spin-dependent interaction between the particles.

IV. MULTIPLET ENERGIES AND CORRELATIONS
FOR WEAKLY INTERACTING GASES

A. Average multiplet energies and energy widths

Consider a general spin-dependent two-body interaction,
conserving the particle spins,

V̂tot = 1
2g�V̂� + 1

2g�V̂� + g↑↓V̂↑↓, (40)

where the potentials are defined by Eqs. (4a)–(4c) with
the zero-range potential function (11). Here the interaction
strengths gσσ ′ are proportional to the s-wave elastic scattering
lengthes aσσ ′ for corresponding pairs of spin states. For
example, in three-dimensional geometry gσσ ′ = 4π�

2aσσ ′/m,
where m is the particle’s mass. The factors 1

2 in Eq. (40) appears
due to double counting of the interacting pairs in V̂� (4a) and
V̂� (4b).

In the case of weak interaction, the average multiplet
energy can be evaluated in the zero order of the degenerate
perturbation theory, in the same way as in the case of
spin-independent interactions [see derivation of Eq. (I.52)]

ĒSSz
= 1

fS

∑
r

〈
�̃

(S)
r{n}Sz

∣∣V̂tot

∣∣�̃(S)
r{n}Sz

〉
(41)

(in the case of spin-dependent interactions the energies depend
on the total spin projection Sz).

For bosons with zero-range interactions, matrix elements
of the potentials are related to ones of the irreducible spherical
tensor components by Eqs. (4a)–(4c) and (13),

〈� ′|V̂�|�〉 = 〈� ′|
√

2

3
V̂

(2)
0 + V̂0 + 1

3
V̂ |�〉,

〈� ′|V̂�|�〉 = 〈� ′|
√

2

3
V̂

(2)
0 − V̂0 + 1

3
V̂ |�〉,

〈� ′|V̂↑↓|�〉 = 〈� ′| −
√

2

3
V̂

(2)
0 + 1

6
V̂ |�〉.

These equations allow us to expand the interaction V̂tot in terms
of irreducible spherical tensors, which matrix elements can be
related to the ones for the maximal allowed spin projections
by Eqs. (9) and (10). Then the sum rules (28) lead to

ĒSSz
=1

2

(
gY (S)[V̂ ] + g−X

(S,S,1)
Sz0 Y (S)[V̂0]

+
√

2

3
g+X

(S,S,2)
Sz0 Y (S)

[
V̂

(2)
0

])〈V 〉,

where g = (g� + g� + g↑↓)/3, g+ = g� + g� − 2g↑↓,
g− = g� − g�, and the average matrix element 〈V 〉 is
defined by Eq. (37). Substituting the coefficients X and Y

from Table I in [1], Table I, and Eq. (28) one gets

ĒSSz
=g

[
3

4
N (N − 2) + S(S + 1) − 1

3
S(S + 1)

g+
g

+ Sz(N − 1)
g−
g

+ S2
z

g+
g

]
〈V 〉. (42)

Here the first two terms in the square brackets provide the aver-
age multiplet energy (I.52) for spin-independent interactions.
Spin dependence of the interactions leads to the third term,
which is independent of the total spin projection Sz, as well
as to the linear and quadratic in Sz shifts (the fourth and fifth
terms, respectively). The corrections are proportional to the
ratios g±/g, which are determined by the scattering lengths.
For example, g+/g ≈ −0.001 and g−/g ≈ −0.049 for 87Rb.
In this case, the two states, generally used in experiments,
|↑〉 = |F = 2,mf = −1〉 and |↓〉 = |F = 1,mf = 1〉, have
the scattering lengths [37] a� ≈ 95.5aB , a� ≈ 100.4aB , and
a↑↓ ≈ 98.0aB , where aB is the Bohr radius. One-body spin-
dependent interactions with external fields lead only to linear
shifts [see Eq. (I.54)].
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The root-mean-square multiplet width can be evaluated in
the same way as in the case of spin-independent interactions
[see derivation of Eq. (I.53)]

〈
ESSz
〉2 = 1

fS

∑
r,r ′

∣∣〈�̃(S)
r ′{n}Sz

∣∣V̂tot

∣∣�̃(S)
r{n}Sz

〉∣∣2 − Ē2
SSz

.

Expanding the interaction V̂tot in terms of irreducible spherical
tensors, expressing their matrix elements in terms of the ones
for the maximal allowed spin projections, and applying the
sum rules (39) we get

〈
ESSz
〉2=1

4

2∑
i=1

[
g2Y

(S,0)
i [V̂ ,V̂ ]+(

g−X
(S,S,1)
Sz0

)2
Y

(S,0)
i [V̂0,V̂0]

+ 2

3

(
g+X

(S,S,2)
Sz0

)2
Y

(S,0)
i

[
V̂

(2)
0 ,V̂

(2)
0

]

+ 2g−gX
(S,S,1)
Sz0 Y

(S,0)
i [V̂0,V̂ ] + 2

√
2

3
g+gX

(S,S,2)
Sz0

× Y
(S,0)
i

[
V̂

(2)
0 ,V̂

] + 2

√
2

3
g+g−X

(S,S,1)
Sz0 X

(S,S,2)
Sz0

× Y
(S,0)
i

[
V̂

(2)
0 ,V̂0

]]〈
iV 〉2.

Here the matrix element deviations 〈
iV 〉2 are defined by
Eq. (38) and the terms proportional to 〈V 〉2 are canceled
due to relation (39b). The first term in the square brackets
gives the width for the spin-independent interactions (I.53).
Corrections due to spin dependence of the interactions are
proportional to the small parameters g±/g. Leading terms in
the coefficients before each power of Sz can be obtained using
explicit expressions for X from Table I in [1] and Table I,

〈
ESSz
〉2 =g2

4

2∑
i=1

[
Y

(S,0)
i [V̂ ,V̂ ] − 2

√
2

3

S + 1

2S − 1

× Y
(S,0)
i

[
V̂

(2)
0 ,V̂

]g+
g

+ 2

S
Y

(S,0)
i [V̂0,V̂ ]

g−
g

Sz

+ 2
√

6

S(2S − 1)
Y

(S,0)
i

[
V̂

(2)
0 ,V̂

]g+
g

S2
z + 2

√
6

S2(2S − 1)

× Y
(S,0)
i

[
V̂

(2)
0 ,V̂0

]g−g+
g2

S3
z + 6

S2(2S − 1)2

× Y
(S,0)
i

[
V̂

(2)
0 ,V̂

(2)
0

]g2
+

g2
S4

z

]
〈
iV 〉2. (43)

The consideration above was devoted to the case of
bosons. For fermions, matrix elements of V̂�, and V̂� vanish,
according to the Pauli principle (see Sec. III A). Then, due to
Eqs. (4c) and (15) matrix elements of V̂tot are equal to ones
of g↑↓V̂ . Therefore, the muliplet average energies and energy
widths are independent of Sz and can be calculated using Eqs.
(I.52) and (I.53) for spin-independent interactions.

B. Average correlations

The probabilities of finding two particles with given (either
equal or different) spins in the same point, the two-body
local spin-dependent correlations are expectation values of

operators

ρ̂σ1σ2 = δ(r1 − r2)|σ1(1)〉|σ2(2)〉〈σ1(1)|〈σ2(2)|. (44)

The spin projection σj can be either ↑ or ↓. Due to permutation
symmetry of the total wave functions, the expectation values
of ρ̂σ1σ2 are proportional to matrix elements of the spin-
dependent potentials V̂σ1σ2 with the potential function (11). The
multiplet-averaged correlations can be evaluated in the same
way as the average multiplet energy (41). However, Eq. (41)
already contains all necessary information, as, according
to the Hellmann-Feinman theorem [38,39], the correlations
are proportional to derivatives of the average energy over
respective coupling constants

ρ̄(S,Sz)
σ1σ2

= 1

fS

∑
r

〈
�̃

(S)
r{n}Sz

∣∣ρ̂σ1σ2

∣∣�̃(S)
r{n}Sz

〉

= 1 + δσ1σ2

N (N − 1)

∂

∂gσ1σ2

ĒSSz
.

Then the dependence of the multiplet-averaged correlations

ρ̄
(S,Sz)
� =

(
1

3
Y (S)[V̂ ] + X

(S,S,1)
Sz0 Y (S)[V̂0]

+
√

2

3
X

(S,S,2)
Sz0 Y (S)[V̂ (2)

0

]) 1

N (N − 1)
〈ρ2(0)〉,

ρ̄
(S,Sz)
� =

(
1

3
Y (S)[V̂ ] − X

(S,S,1)
Sz0 Y (S)[V̂0]

+
√

2

3
X

(S,S,2)
Sz0 Y (S)[V̂ (2)

0

]) 1

N (N − 1)
〈ρ2(0)〉,

ρ̄
(S,Sz)
↑↓ =

(
1

6
Y (S)[V̂ ] −

√
2

3
X

(S,S,2)
Sz0 Y (S)

[
V̂

(2)
0

])

× 1

N (N − 1)
〈ρ2(0)〉

on the total many-body spin S and its projection Sz is
factorized to the universal factors, which are independent of
the spatial Hamiltonian and occupied spatial orbitals. These
factors are expressed in terms of the coefficients X and Y .
The dependence on the spatial state is given by the average
two-body density [19], 〈ρ2(0)〉, which is independent of S and
Sz and equal to the average matrix element 〈V 〉 (37) for the
potential function (11), 〈ρ2(0)〉 = 〈V 〉. Similar factorization
was proved [19] for spin-independent local correlations of
particles with arbitrary spins. Substitution the coefficients X

and Y from Table I in [1], Table I, and Eq. (28) leads to explicit
expressions for the universal factors in terms of S and Sz,

ρ̄
(S,Sz)
� = 〈ρ2(0)〉

N (N − 1)

(
1

2
N (N − 2) + 2(N − 1)Sz + 2S2

z

)
,

ρ̄
(S,Sz)
� = 〈ρ2(0)〉

N (N − 1)

(
1

2
N (N − 2) − 2(N − 1)Sz + 2S2

z

)
,

ρ̄
(S,Sz)
↑↓ = 〈ρ2(0)〉

N (N − 1)

(
1

4
N (N − 2) + S(S + 1) − 2S2

z

)
. (45)

The local spin-independent correlations [19] are multiplet-
averaged expectation values of δ(r1 − r2) and can be calcu-
lated with the characters from Table II in [1] for both bosons
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and fermions (the signs + and −, respectively, below),

ρ̄
[λ]
2 (0) =

(
1 ± χS({2})

fS

)
〈ρ2(0)〉

=
(

1 ± 4S2 + N2 + 4S − 4N

2N (N − 1)

)
〈ρ2(0)〉. (46)

They are related to spin-dependent correlations, ρ̄
[λ]
2 (0) =

ρ̄
(S,Sz)
� + ρ̄

(S,Sz)
� + 2ρ̄

(S,Sz)
↑↓ , as can be proved in the same way

as (12), and are independent of Sz.
In an alternative description, each particle is characterized

by its spin projection and coordinate, and the total wave
function is symmetrized for bosons or antisymmetrized for
fermions over permutations of all particles [see Eq. (I.19)],

�̃{n}{σ } = (N !)−1/2
∑
P

sgn(P)
N∏

j=1

ϕnPj
(rj )|σPj (j )〉, (47)

where the factor sgn(P) is the permutation parity for fermions
and sgn(P) ≡ 1 for bosons. Given total spin projection Sz,
the set {σ } contains N↑ = N/2 + Sz spins ↑ and N↓ =
N/2 − Sz spins ↓. For these wave functions the correlations
are calculated as expectation values of the operators (44) and
averaged over all distinct choices of N↑ particles with spin up,
leading to

ρ̄
(N↑,N↓)
� =1 + sgn(P12)

N (N − 1)
N↑(N↑ − 1)〈ρ2(0)〉,

ρ̄
(N↑,N↓)
� =1 + sgn(P12)

N (N − 1)
N↓(N↓ − 1)〈ρ2(0)〉,

ρ̄
(N↑,N↓)
↑↓ = 〈ρ2(0)〉

N (N − 1)
N↑N↓.

The transposition parity sgn(P12) = 1 leads to the factor 2 in
ρ̄

(N↑,N↓)
� and ρ̄

(N↑,N↓)
� for bosons. For fermions, sgn(P12) = −1

and correlations of particles with the same spins vanish,
according to the Pauli exclusion principle. Using relations
between Sz and N↑↓, one can see that the average correlations
of bosons with the same spins are the same as for wave
functions with defined collective spins and individual spin
projections, ρ̄

(S,Sz)
� = ρ̄

(N↑,N↓)
� , ρ̄

(S,Sz)
� = ρ̄

(N↑,N↓)
� . However,

average correlations of particles with opposite spins are
different,

ρ̄
(S,Sz)
↑↓ = ρ̄

(N↑,N↓)
↑↓ + 〈ρ2(0)〉

N (N − 1)

(
S2 − S2

z + S − N

2

)
.

The same is valid for average local spin-independent corre-
lations, calculated as a sum of spin-dependent correlations.
For the defined individual spin projections we have for both

bosons and fermions (the signs + and −, respectively, below)

ρ̄
(N↑,N↓)
� + ρ̄

(N↑,N↓)
� + 2ρ̄

(N↑,N↓)
↑↓

=
(

1 ± N2 + 4S2
z − 2N

2N (N − 1)

)
〈ρ2(0)〉,

which depends on the total spin projection, unlike ρ̄
[λ]
2 (0) [see

Eq. (46)]. For fermions, the average correlations of particles
with opposite spins, being equal to a half spin-independent
one, are different for the two kinds of states too. Thus the
spin-independent correlations, as well as the correlations of
particles with opposite spins, allow us to determine the kind
of the many-body state.

V. CONCLUSIONS

Matrix elements of spin-dependent two-body interactions
[Eqs. (4), (6), and (7)] in the basis with collective spin and
spatial wave functions (16) can be calculated with group-
theoretical methods. These matrix elements agree to the
selection rules [19]. The interactions can be decomposed into
irreducible spherical tensors, whose explicit dependencies on
the total spin projection [Eqs. (9) and (10)] are obtained using
the Wigner-Eckart theorem. Analytic expressions are derived
for sums of these matrix elements (28) and their squared
moduli [Eqs. (34) and (39)] over wave functions with the
fixed total spin, its projection, and the set of spatial orbitals.
Dependence on the many-body states in these sums is given
by the 3j Wigner symbols and the universal factors Y (S),
Y (S,2), Y

(S,0)
0 , Y

(S,0)
1 , and Y

(S,0)
2 . These factors are independent

of details of one-body Hamiltonians and are expressed in
terms of the total spin and number of particles. The sum
rules can be applied to the evaluation of changes of the
spin-multiplet average energies (42) and energy widths (43)
due to weak spin-dependent interactions. Mutiplet-averaged
two-body spin-dependent correlations (45), calculated with
the sum rules, are factorized to universal factors, which are
independent of the spatial orbitals, and the average density,
which is independent of many-body spins. The difference
between these correlations and ones for the many-body states
with defined individual spin projections allows identification
of the many-body state kind. Other possible applications of
the sum rules include estimates of the spin-multiplet depletion
rates due to spin-dependent two-body perturbations.
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APPENDIX A: CALCULATION OF THE SUMS (30)

The sums (30) and (32) contain the Young orthogonal matrix elements D
[λ]
[0][0](R), which have been calculated by Goddard [40]

in the following way. Each permutation R can be represented as

R =
nex∏
k=1

Pi ′k i
′′
k
P ′P ′′, (A1)

where P ′ are permutations of symbols in the first row of the Young tableau [0] (λ1 first symbols), P ′′ are permutations of symbols
in the second row (λ2 last symbols), and Pi ′k i

′′
k

transpose symbols between the rows as i ′k � λ1 and i ′′k > λ1. Then [40] the matrix
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element is inversely proportional to the binomial coefficient,

D
[λ]
[0][0](R) = (−1)nex

(
λ1

nex

)−1

= (−1)nex
nex!(λ1 − nex)!

λ1!
. (A2)

Using relations (23) and (18) and substitution R = QP−1, the sum (30) can be represented in the following form:

	
(S ′,S)
j1j

′
1j2j

′
2
(l1,l

′
1,l2,l

′
2) =

∑
R

D
[λ′]
[0][0](R)D[λ]

[0][0](R)
∑
P

δl1,Pj1δl′1,Pj ′
1
δl2,RPj2δl′2,RPj ′

2
,

where λ = [N/2 + S,N/2 − S] and λ′ = [N/2 + S ′,N/2 − S ′]. Only the sums with j1 �= j ′
1 and j2 �= j ′

2 are used here. This
implies l1 �= l′1 and l2 �= l′2. The sum remains unchanged on simultaneous permutation of arguments and corresponding subscripts,

	
(S ′,S)
j1j

′
1j2j

′
2
(l1,l′1,l2,l

′
2) = 	

(S ′,S)
j ′

1j1j2j
′
2
(l′1,l1,l2,l

′
2) = 	

(S ′,S)
j1j

′
1j

′
2j2

(l1,l′1,l
′
2,l2).

If j1 = j2 and j ′
1 = j ′

2,

	
(S ′,S)
jj ′jj ′ (l1,l

′
1,l2,l

′
2) = (N − 2)!

∑
R

D
[λ′]
[0][0](R)D[λ]

[0][0](R)δl2,Rl1δl′2,Rl′1 , (A3)

since there are (N − 2)! permutations P such that l1 = Pj1 and l′1 = Pj ′
1. This sum is independent of j and j ′. Due to

the invariance mentioned above, 	
(S ′,S)
jj ′j ′j (l1,l′1,l2,l

′
2) = 	

(S ′,S)
jj ′jj ′ (l1,l′1,l

′
2,l2) and 	

(S ′,S)
jj ′jj ′ (l′1,l1,l

′
2,l2) = 	

(S ′,S)
jj ′jj ′ (l1,l′1,l2,l

′
2). The identity

	
(S,S ′)
jj ′jj ′ (l1,l′1,l2,l

′
2) = 	

(S,S ′)
jj ′jj ′ (l2,l′2,l1,l

′
1) can be proved by the substitution R = R−1.

If j ′
1 = j ′

2, but j1 �= j2, we have∑
P

δl1,Pj1δl′1,Pj ′δl2,RPj2δl′2,RPj ′ = δl′2,Rl′1

∑
l1 �=l �=l′1

δl2,Rl

∑
P

δl1,Pj1δl,Pj2δl′1,Pj ′ = (N − 3)!δl′2,Rl′1

∑
l

δl2,Rl(1 − δll1 − δll′1 ).

Then

	
(S ′,S)
j1j ′j2j ′(l1,l

′
1,l2,l

′
2) =

∑
R

D
[λ′]
[0][0](R)D[λ]

[0][0](R)(N − 3)!δl′2,Rl′1

(
1 − δl2,Rl1 − δl2,Rl′1

)
= 1

(N − 1)(N − 2)
	

(S ′,S)
jj (l′1,l

′
2) − 1

N − 2
	

(S ′,S)
jj ′jj ′ (l1,l

′
1,l2,l

′
2)

(δl′2,Rl′1δl2,Rl′1 = 0, since l2 �= l′2) is independent of j ′ and j1 �= j2. Here the sum

	
(S ′,S)
jj (l,l′) = (N − 1)!

∑
R

D
[λ′]
[0][0](R)D[λ]

[0][0](R)δl′,Rl (A4)

is calculated in Appendix C. The sum

	
(S ′,S)
3 (l1,l

′
1,l2,l

′
2) = 	

(S ′,S)
j ′j1j ′j2

(l1,l
′
1,l2,l

′
2) + 	

(S ′,S)
j ′j1j2j ′ (l1,l

′
1,l2,l

′
2) + 	

(S ′,S)
j1j ′j ′j2

(l1,l
′
1,l2,l

′
2) + 	

(S ′,S)
j1j ′j2j ′(l1,l

′
1,l2,l

′
2)

in Eq. (35) can be expressed as

	
(S ′,S)
3 (l1,l

′
1,l2,l

′
2) = 1

(N − 1)(N − 2)
	

(S ′,S)
1 (l1,l

′
1,l2,l

′
2) − 2

N − 2
	

(S ′,S)
2 (l1,l

′
1,l2,l

′
2), (A5)

where

	
(S ′,S)
1 (l1,l

′
1,l2,l

′
2) = 	

(S ′,S)
jj (l1,l2) + 	

(S ′,S)
jj (l′1,l2) + 	

(S ′,S)
jj (l1,l

′
2) + 	

(S ′,S)
jj (l′1,l

′
2) (A6)

and 	
(S ′,S)
2 (l1,l′1,l2,l

′
2) is defined by Eq. (33).

Finally, if j1 �= j2 �= j ′
1 and j1 �= j ′

2 �= j2, the sum is expressed using the following identity:∑
P

δl1,Pj1δl′1,Pj ′
1
δl2,RPj2δl′2,RPj ′

2
=

∑
l1 �=l �=l′1

δl2,Rl

∑
l1 �=l′ �=l′1

δl′2,Rl′
∑
P

δl1,Pj1δl′1,Pj ′
1
δl,Pj2δl′,Pj ′

2

= (N − 4)!
∑
l,l′

δl2,Rlδl′2,Rl′
(
1 − δll1

)(
1 − δll′1

)(
1 − δl′l1

)(
1 − δl′l′1

)
.

Then 	
(S ′,S)
j1j

′
1j2j

′
2
(l1,l′1,l2,l

′
2) ≡ 	

(S ′,S)
4 (l1,l′1,l2,l

′
2) [see Eq. (35)] is independent of j1, j2, j ′

1, and j ′
2 and

	
(S ′,S)
4 (l1,l

′
1,l2,l

′
2) =

∑
R

D
[λ′]
[0][0](R)D[λ]

[0][0](R)(N − 4)!(1 − δl2,Rl1 − δl2,Rl′1 − δl′2,Rl1 − δl′2,Rl′1 + δl2,Rl1δl′2,Rl′1 + δl2,Rl′1δl′2,Rl1 )

=N !(N − 4)!

fS

δλλ′ − 1

(N − 1)(N − 2)(N − 3)
	

(S ′,S)
1 (l1,l

′
1,l2,l

′
2) + 1

(N − 2)(N − 3)
	

(S ′,S)
2 (l1,l

′
1,l2,l

′
2) (A7)

[see Eqs. (I.5), (33) and (A6)]. Therefore, each sum (30) is expressed in terms of (A3) and (A4).
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Let us at first calculate the sums (A3) for S = S ′. If l1 = l2 = λ1 − 1, l′1 = l′2 = λ1, the Kronecker symbols in Eq. (A3)
select the permutations of the form (A1) with P ′ which do not affect l1 and l′1 and l1 �= i ′k �= l′1. Therefore there are (λ1 − 2)!
permutations P ′, λ2! permutations P ′′, and number of distinct choices of the sets of i ′k and i ′′k are given by the binomial coefficients
(λ1−2

nex
) and (λ2

nex
), respectively. Then Eq. (A3) can be transformed as follows:

	
(S,S)
jj ′jj ′(λ1 − 1,λ1,λ1 − 1,λ1) =(N − 2)!

λ2∑
nex=0

(λ1 − 2)!λ2!

(
λ1 − 2

nex

)(
λ2

nex

)(
λ1

nex

)−2

= N !(N − 2)!

fSλ1(λ1 − 1)

[
1 − 2λ2

(λ1 − 1)(λ1 − λ2 + 3)
+ 4λ2

λ1(λ1 − 1)(λ1 − λ2 + 2)(λ1 − λ2 + 3)

]
.

If l1 = l′2 = λ1 − 1, l′1 = l2 = λ1, the permutations

R = Pl1l2

km∏
k=1

Pi ′k i
′′
k
P ′P ′′ (A8)

satisfy the Kronecker symbols if P ′ do not affect l1 and l′1 and l1 �= i ′k �= l′1. Since Pl1l2 is a transposition of symbols in the first
row of the Young tableau [0], nex = km and

	
(S,S)
jj ′jj ′(λ1 − 1,λ1,λ1,λ1 − 1) = 	

(S,S)
jj ′jj ′(λ1 − 1,λ1,λ1 − 1,λ1)

If l1 = l2 = λ1 + 1, l′1 = l′2 = λ1 + 2, the proper permutations are given by (A1) with P ′′ which do not affect l1 and l′1 and
l1 �= i ′′k �= l′1, and with no additional restrictions to P ′ and i ′k . There are λ1! permutations P ′, (λ2 − 2)! permutations P ′′, and
number of distinct choices of the sets of i ′k and i ′′k are given by the binomial coefficients (λ1

nex
) and (λ2−2

nex
), respectively. Then

	
(S,S)
jj ′jj ′ (λ1 + 1,λ1 + 2,λ1 + 1,λ1 + 2) =(N − 2)!

λ2∑
nex=0

λ1!(λ2 − 2)!

(
λ1

nex

)(
λ2 − 2

nex

)(
λ1

nex

)−2

= N !(N − 2)!

fSλ2(λ2 − 1)

[
1 − 2

λ1 − λ2 + 3

]
.

If l1 = l′2 = λ1 + 1, l′1 = l2 = λ1 + 2, the Kronecker symbols are satisfied by the permutations (A8) with the same restrictions to
P ′′ and i ′′k as in the previous case. Since Pl1l2 is a transposition of symbols in the second row of the Young tableau [0], nex = km

and

	
(S,S)
jj ′jj ′ (λ1 + 1,λ1 + 2,λ1 + 2,λ1 + 1) = 	

(S,S)
jj ′jj ′(λ1 + 1,λ1 + 2,λ1 + 1,λ1 + 2).

If l1 = λ1 − 1, l′1 = λ1, l2 = λ1 + 1, and l′2 = λ1 + 2, the permutations

R = Pl1l2Pl′1l
′
2

km∏
k=1

Pi ′k i
′′
k
P ′P ′′ (A9)

satisfy the Kronecker symbol if P ′ do not affect l1 and l′1 and l1 �= i ′k �= l′1. If l2 �= i ′′k �= l′2 for any k, Pl1l2 and Pl′1l
′
2
are additional

transpositions between the rows of the Young tableau [0], and nex = km + 2. Otherwise, if one of i ′′k is equal to l2, Pl1l2Pi ′k l2 =
Pi ′k l2Pi ′k l1 , nex = km + 1. By the same reason nex = km + 1 if one of i ′′k is equal to l′2. If two of i ′′k are equal to l2 and l′2, nex = km.
Then

	
(S,S)
jj ′jj ′(λ1 − 1,λ1,λ1 + 1,λ1 + 2) =(N − 2)!

λ2∑
km=0

(λ1 − 2)!λ2!

(
λ1 − 2

km

)[(
λ2 − 2

km

)(
λ1

km + 2

)−2

+ 2

(
λ2 − 2

km − 1

)(
λ1

km + 1

)−2

+
(

λ2 − 2

km − 2

)(
λ1

km

)−2]
= 2N !(N − 2)!

fSλ1(λ1 − 1)(λ1 − λ2 + 2)(λ1 − λ2 + 3)
.

This derivation is valid for the case of l1 = λ1 − 1, l′1 = λ1, l2 = λ1 + 2, and l′2 = λ1 + 1 as well, giving

	
(S,S)
jj ′jj ′(λ1 − 1,λ1,λ1 + 2,λ1 + 1) = 	

(S,S)
jj ′jj ′(λ1 − 1,λ1,λ1 + 1,λ1 + 2).

Consider now the case of S ′ = S − 1. If l1 = l2 = λ1 − 1, l′1 = l′2 = λ1, the Kronecker symbols in Eq. (A3) select the
permutations of the form (A1) with P ′ which do not affect l1 and l′1 and l1 �= i ′k �= l′1. Then

	
(S−1,S)
jj ′jj ′ (λ1−1,λ1,λ1−1,λ1) = (N−2)!

λ2∑
nex=0

(λ1−2)!λ2!

(
λ1−2

nex

)(
λ2

nex

)(
λ1

nex

)−1(
λ1−1

nex

)−1

= N !(N − 2)!
(
λ2

1−λ1λ2+λ1−2
)

fSλ1(λ1−1)2(λ1−λ2 + 2)
.
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If l1 = l′2 = λ1 − 1, l′1 = l2 = λ1, the permutations (A8) satisfy the Kronecker symbols if P ′ do not affect l1 and l′1 and
l1 �= i ′k �= l′1. SincePl1l2 is an additional transposition between the rows of the Young tableau [0] of the shape λ′ = [λ1 − 1,λ2 + 1],
nex = km and n′

ex = km + 1. As a result,

	
(S−1,S)
jj ′jj ′ (λ1 − 1,λ1,λ1,λ1 − 1) = − (N − 2)!

λ2∑
km=0

(λ1 − 2)!λ2!

(
λ1 − 2

km

)(
λ2

km

)(
λ1

km

)−1(
λ1 − 1

km + 1

)−1

= − N !(N − 2)!(λ1 + 2)

fSλ1(λ1 − 1)2(λ1 − λ2 + 2)
.

If l1 = l2 = λ1, l′1 = l′2 = λ1 + 1, the Kronecker symbols in Eq. (A3) are satisfied by the permutations of the form (A1) with
P ′ which do not affect l1, P ′′ which do not affect l′1, i ′k �= l1, and i ′′k �= l′1. Then

	
(S−1,S)
jj ′jj ′ (λ1,λ1 + 1,λ1,λ1 + 1) =(N − 2)!

λ2∑
nex=0

(λ1 − 1)!(λ2 − 1)!

(
λ1 − 1

nex

)(
λ2 − 1

nex

)(
λ1

nex

)−1(
λ1 − 1

nex

)−1

=N !(N − 2)!(λ1 − λ2 + 1)

fSλ1λ2(λ1 − λ2 + 2)
.

If l1 = l′2 = λ1, l′1 = l2 = λ1 + 1, the permutations (A8) satisfy the Kronecker symbols if P ′ do not affect l1, P ′′ do not affect
l′1, i ′k �= l1, and i ′′k �= l′1. Since Pl1l2 is an additional transposition between the rows of the Young tableau [0] of the shape λ,
nex = km + 1 and n′

ex = km. As a result,

	
(S−1,S)
jj ′jj ′ (λ1,λ1 + 1,λ1 + 1,λ1) = − (N − 2)!

λ2∑
km=0

(λ1 − 1)!(λ2 − 1)!

(
λ1 − 1

km

)(
λ2 − 1

km

)(
λ1

km + 1

)−1(
λ1 − 1

km

)−1

= − N !(N − 2)!

fSλ1λ2(λ1 − λ2 + 2)
.

If l1 = λ1 − 1, l′1 = l′2 = λ1, l2 = λ1 + 1, the proper permutations are given by (A8) with P ′ which do not affect l1 and l′1
and l1 �= i ′k �= l′1. Pl1l2 is an additional transposition between the rows of the Young tableau [0] of the shapes λ and λ′ and
nex = n′

ex = km + 1, unless i ′′k = λ1 + 1, when nex = n′
ex = km. Then

	
(S−1,S)
jj ′jj ′ (λ1 − 1,λ1,λ1 + 1,λ1) =(N − 2)!

λ2∑
km=0

(λ1 − 2)!λ2!

(
λ1 − 2

km

)[(
λ2 − 1

km

)(
λ1

km + 1

)−1(
λ1 − 1

km + 1

)−1

+
(

λ2 − 1

km − 1

)(
λ1

km

)−1(
λ1 − 1

km

)−1]
= N !(N − 2)!

fSλ1(λ1 − 1)(λ1 − λ2 + 2)
.

If l1 = λ1 − 1, l′1 = l2 = λ1, l′2 = λ1 + 1, the Kronecker symbols are satisfied by the permutations (A9) with the same restrictions
to P ′ and i ′k as in the previous case. Since Pλ1λ1−1Pλ1λ1+1 = Pλ1λ1+1Pλ1−1λ1+1nex = n′

ex = km + 1, unless i ′′k = λ1 + 1, when
nex = n′

ex = km, as in the previous case, and

	
(S−1,S)
jj ′jj ′ (λ1 − 1,λ1,λ1,λ1 + 1) = 	

(S−1,S)
jj ′jj ′ (λ1,λ1 − 1,λ1,λ1 + 1).

The last relevant case is S ′ = S − 2. If l1 = l2 = λ1 − 1, l′1 = l′2 = λ1, the Kronecker symbols in Eq. (A3) select the
permutations of the form (A1) with P ′ which do not affect l1 and l′1 and l1 �= i ′k �= l′1. Then

	
(S−2,S)
jj ′jj ′ (λ1 − 1,λ1,λ1 − 1,λ1) = (N − 2)!

λ2∑
nex=0

(λ1 − 2)!λ2!

(
λ1 − 2

nex

)(
λ2

nex

)(
λ1

nex

)−1(
λ1 − 2

nex

)−1

= N !(N − 2)!

fSλ1(λ1 − 1)
.

If l1 = l′2 = λ1 − 1, l′1 = l2 = λ1,the Kronecker symbols are satisfied by the permutations (A8) with the same restrictions to
P ′ and i ′k as in the previous case. Now Pl1l2 is a transposition within the same row of the Young tableau [0] of the shapes λ or
λ′ = [λ1 − 2,λ2 + 2]. Therefore

	
(S−2,S)
jj ′jj ′ (λ1 − 1,λ1,λ1,λ1 − 1) = 	

(S−2,S)
jj ′jj ′ (λ1,λ1 − 1,λ1,λ1 − 1).

APPENDIX B: CALCULATION OF THE SUMS (32)

The sum (32) is expressed using the relations (23) and (18) as

	
(S)
j1j

′
1j2j

′
2
(l,l′) =

∑
P

D
[λ]
[0][0](PPj2j

′
2
P−1)δl,Pj1δl′,Pj ′

1

Only the sums with j1 �= j ′
1 and j2 �= j ′

2 are used here. This implies l �= l′.
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If j1 = j2 and j ′
1 = j ′

2, or j1 = j ′
2 and j1 = j ′

2, there are (N − 2)! permutations P which satisfy the Kronecker symbols, and
the identity (24) leads to

	
(S)
jj ′jj ′(l,l′) = 	

(S)
jj ′j ′j (l,l′) = (N − 2)!D[λ]

[0][0](Pll′).

Therefore

	
(S)
jj ′jj ′ (λ1 − 1,λ1) = 	

(S)
jj ′jj ′(λ1 + 1,λ1 + 2) = (N − 2)!,

since l and l′ are in the same row of the Young tableau [0] of the shape λ [see Eq. (I.8)]. Then

	
(S)
2 (λ1 − 1,λ1) = 	

(S)
2 (λ1 + 1,λ1 + 2) = 2(N − 2)! (B1)

in Eq. (35).
If j1 = j2, but j1 �= j ′

2 �= j ′
1,

	
(S)
jj ′

1jj
′
2
(l,l′) =

∑
l �=l′′ �=l′

D
[λ]
[0][0](Pll′′ )

∑
P

δl,Pj δl′,Pj ′
1
δl′′,Pj ′

2
= (N − 3)!

∑
l �=l′′ �=l′

D
[λ]
[0][0](Pll′′ ).

Similarly,

	
(S)
jj ′

1j2j
(l,l′) = 	

(S)
j1jj2j

(l,l′) = 	
(S)
j1jjj

′
2
(l,l′) = 	

(S)
jj ′

1jj
′
2
(l,l′).

If l = λ1 − 1, l′ = λ1, for l′′ � λ1 − 2, l and l′′ are in the same row of the Young tableau [0] of the shape λ, and D
[λ]
[0][0](Pll′′) = 1.

For l′′ > λ1, l and l′′ are in different rows of this Young tableau, and D
[λ]
[0][0](Pll′′ ) = −1/λ1 [see Eq. (A2)]. Then

	
(S)
jj ′

1jj
′
2
(λ1 − 1,λ1) = (N − 3)!

(
λ1 − 2 − λ2

λ1

)
.

Similarly,

	
(S)
jj ′

1jj
′
2
(λ1 + 1,λ1 + 2) = (N − 3)!(λ2 − 3).

Then

	
(S)
3 (λ1 − 1,λ1) = 4(N − 3)!(λ1 − 2 − λ2/λ1),

	
(S)
3 (λ1 + 1,λ1 + 2) = 4(N − 3)!(λ2 − 3) (B2)

in Eq. (35).
If j1 �= j2 �= j ′

1 and j1 �= j ′
2 �= j ′

1, we have

	
(S)
j1j

′
1j2j

′
2
(l,l′) =

∑
l �=l′′ �=l′

∑
l �=l′′′ �=l′,l′′′ �=l′′

D
[λ]
[0][0](Pl′′l′′′ )

∑
P

δl,Pj1δl′,Pj ′
1
δl′′,Pj2δl′′′,Pj ′

2
= (N − 4)!

∑
l �=l′′ �=l′

∑
l �=l′′′ �=l′,l′′′ �=l′′

D
[λ]
[0][0](Pl′′l′′′ ).

Using the same values of the Young matrix elements as in the previous case, one gets

	
(S)
4 (λ1 − 1,λ1) = 	

(S)
j1j

′
1j2j

′
2
(λ1 − 1,λ1) = (N − 4)!

[
(λ1 − 2)(λ1 − 3) + λ2(λ2 − 1) − 2(λ1 − 2)

λ2

λ1

]
,

	
(S)
4 (λ1 + 1,λ1 + 2) = 	

(S)
j1j

′
1j2j

′
2
(λ1 + 1,λ1 + 2) = (N − 4)![(λ2 − 2)(λ2 − 5) + λ1(λ1 − 1)]. (B3)

APPENDIX C: CALCULATION OF THE SUMS (A4)

The sum (A4), expressed as

	
(S ′,S)
jj (l,l′) = (N − 1)!

∑
R

D
[λ′]
[0][0](R)D[λ]

[0][0](R)δl′,Rl , (C1)

is denoted for consistency with the sum 	
(S ′,S)
jj [see Eq. (I.A1)], which is its special case for l = l′ = λ1. Since D

[λ]
[0][0](R−1) =

D
[λ]
[0][0](R) and δl′,Rl = δl,R−1l′ , the substitution R = R−1 transposes arguments l and l′. Therefore

	
(S ′,S)
jj (l,l′) = 	

(S ′,S)
jj (l′,l). (C2)

Consider at first the case S = S ′. If l = l′ � λ1, the Kronecker symbol in Eq. (C1) selects the permutations of the form (A1)
with P ′ which do not affect l and i ′k �= l. Therefore there are (λ1 − 1)! permutations P ′, λ2! permutations P ′′, and number of
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distinct choices of the sets of i ′k and i ′′k are given by the binomial coefficients (λ1−1
nex

) and (λ2

nex
), respectively. Then this sum, being

independent of the particular values of l, is equal to 	
(S,S)
jj (λ1,λ1) ≡ 	

(S,S)
jj , calculated in the Appendix in Ref. [1],

	
(S,S)
jj (l,l) = N !(N − 1)!

fSλ
2
1

[
λ1 − λ2

λ1 − λ2 + 2

]
.

If l �= l′, but l � λ1 and l′ � λ1, the Kronecker symbol in Eq. (C1) selects permutations

R = Pll′

km∏
k=1

Pi ′k i
′′
k
P ′P ′′, (C3)

with the same restrictions to P ′ and i ′k . Since both l and l′ are in the first row of the Young tableau [0], 	
(S,S)
jj (l,l′) = 	

(S,S)
jj (l,l)

in this case.
If l = l′ > λ1, the Kronecker symbol in Eq. (C1) selects the permutations (A1) with P ′′ which do not affect l′ and i ′′k �= l′.

There are λ1! permutations P ′, (λ2 − 1)! permutations P ′′, and number of distinct choices of the sets of i ′k and i ′′k are given by
the binomial coefficients (λ1

nex
) and (λ2−1

nex
), respectively. Then Eq. (A4) can be represented as

	
(S,S)
jj (l,l) = (N − 1)!

λ2∑
nex=0

λ1!(λ2 − 1)!

(
λ1

nex

)(
λ2 − 1

nex

)(
λ1

nex

)−2

= (N − 1)!((λ2 − 1)!)2
λ2−1∑
nex=0

(λ1 − nex)!

(λ2 − nex − 1)!

= N !(N − 1)!

fSλ2

[
1 − 1

λ1 − λ2 + 2

]
. (C4)

If l �= l′, but l > λ1 and l′ > λ1, the Kronecker symbol in Eq. (C1) selects permutations (C3) with the same restrictions to P ′′

and i ′′k as in the case of l = l′ > λ1. Since both l and l′ are in the second row of the Young tableau [0], 	
(S,S)
jj (l,l′) = 	

(S,S)
jj (l,l)

in this case.
If l � λ1 < l′, the permutations (C3) satisfy the Kronecker symbol in Eq. (C1) if P ′ do not affect l and i ′k �= l. If i ′′k �= l′ for

any k, Pll′ is an additional transposition between the rows of the Young tableau [0], and nex = km + 1. Otherwise, if i ′′k = l′,
since Pll′Pl′i ′k = Pli ′kPll′ , nex = km. Then

	
(S,S)
jj (l,l′) = (N − 1)!

λ2∑
km=0

(λ1 − 1)!λ2!

(
λ1 − 1

km

)[(
λ2 − 1

km

)(
λ1

km + 1

)−2

+
(

λ2 − 1

km − 1

)(
λ1

km

)−2]
= N !(N − 1)!

fSλ1(λ1 − λ2 + 2)
.

The next case is S ′ = S − 1. If l = l′ = λ1, the sum was calculated in Appendix in Ref. [1],

	
(S−1,S)
jj (λ1,λ1) ≡ 	

(S−1,S)
jj = N !(N − 1)!

fSλ1
.

If l = l′ = λ1 − 1, the Kronecker symbol in Eq. (C1) selects permutations

R =
km∏

k=1

Pi ′k i
′′
k
Pλ1i0P ′P ′′, (C5)

if P ′ are permutations of the λ1 − 2 first symbols, P ′′ are permutations of the λ2 last symbols, i0 �= λ1 − 1, i ′k � λ1 − 2, and
i ′′k > λ1. The numbers of transpositions nex and n′

ex between rows of the Young tableau [0] of the shapes λ and λ′, respectively,
depend on i0. If i0 = λ1, nex(i0) = n′

ex(i0) = km . If i0 � λ1 − 2, nex(i0) = km, n′
ex(i0) = km + 1, unless i0 = i ′k for any k. In the last

case, nex(i0) = km and, since Pi ′k i
′′
k
Pλ1i

′
k
= Pλ1i

′
k
Pλ1i

′′
k
, n′

ex(i0) = km. Similarly, if i0 > λ1, n′
ex(i0) = km, nex(i0) = km + 1, unless

i0 = i ′′k , when nex(i0) = km. Thus for 2km + 1 values of i0 we have nex(i0) = n′
ex(i0) = km, for λ1 − 2 − km values nex(i0) = km,

n′
ex(i0) = km + 1, and for λ2 − km values nex(i0) = km + 1, n′

ex(i0) = km. Then the sum (A4) is expressed as

	
(S−1,S)
jj (λ1 − 1,λ1 − 1) = (N − 1)!

λ2∑
km=0

(λ1 − 2)!λ2!

(
λ1 − 2

km

)(
λ2

km

)[
(2km + 1)

(
λ1

km

)−1(
λ1 − 1

km

)−1

− (λ1 − 2 − km)

(
λ1

km

)−1(
λ1 − 1

km + 1

)−1

− (λ2 − km)

(
λ1

km + 1

)−1(
λ1 − 1

km

)−1]
= N !(N − 1)!

fSλ1(λ1 − 1)2
.

If l = λ1, l′ = λ1 − 1, the Kronecker symbol in Eq. (C1) selects permutations (C3) if P ′ are permutations of the λ1 − 1 first
symbols, P ′′ are permutations of the λ2 last symbols, i ′k � λ1 − 1, and i ′′k > λ1. Now nex = km, n′

ex = km + 1 unless i ′k = λ1 − 1
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for any k, when nex = n′
ex = km. Then

	
(S−1,S)
jj (λ1,λ1 − 1) = (N − 1)!

λ2∑
km=0

(λ1 − 1)!λ2!

(
λ2

km

)(
λ1

km

)−1
[(

λ1 − 2

km − 1

)(
λ1 − 1

km

)−1

−
(

λ1 − 2

km

)(
λ1 − 1

km + 1

)−1
]

= − N !(N − 1)!

fSλ1(λ1 − 1)
.

A general relation can be derived for l � λ1 + 1 and arbitrary l′, when the Kronecker symbol in Eq. (C1) is satisfied by

R = Pl′NPPlN (C6)

with arbitrary P ∈ SN−1, such that PN = N . Then D
[λ]
[0][0](R) = D

[λ]
[0][0](Pl′NP), since both l and N are in the second row of the

Young tableau [0] of the shape λ [see Eq. (I.8)]. If S ′ < S and λ′
1 < λ1, D

[λ′]
[0][0](R) = D

[λ′]
[0][0](Pl′NP) by the same reason. Using

Eq. (23), the sum can be expressed as

	
(S ′,S)
jj (l,l′) = (N − 1)!

∑
r,r ′

D
[λ]
[0]r (Pl′N )D[λ′]

[0]r ′(Pl′N )
∑

P∈SN−1

D
[λ]
r[0](P)D[λ′]

r ′[0](P).

As P are elements of the subgroup SN−1 of permutations of N − 1 first symbols, a reduction to subgroup (see [4]) can be used,
D

[λ]
rt (P) = D

[λ̄]
r̄ t̄ (P), where the Young tableaux r̄ and t̄ , corresponding to the same Young diagram λ̄, are obtained by the removal

of the symbol N from the tableaux r and t , respectively. (D[λ]
rt (P) = 0 if r̄ and t̄ correspond to different Young diagrams due to

different placement of the symbol N in r and t .) The summation over P can be then performed using the orthogonality relation
(see [4,5]) ∑

Q∈SN−1

D
[λ̄′]
t̄ ′ r̄ ′ (Q)D[λ̄]

t̄ r̄ (Q) = N !

fλ̄1−λ̄2
(N − 1)

δt̄ t̄ ′δr̄r̄ ′δλ̄λ̄′ , (C7)

where fS(N − 1) is the representation dimension for N − 1 particles. The symbol N is placed in the end of the second row in
the Young tableau [0]. Therefore, λ̄ = [λ1,λ2 − 1], λ̄′ = [λ′

1,λ
′
2 − 1], and λ̄ = λ̄′ only if λ1 = λ′

1, or S = S ′. As a result,

	
(S ′,S)
jj (l,l′) ∝ δλ̄λ̄′ = 0

whenever l � λ1 + 1 and S ′ < S. Due to Eq. (C2), the sum vanish whenever l′ � λ1 + 1 for arbitrary l too. This general relation
provides the sums appearing in the present calculations

	
(S−1,S)
jj (λ1 − 1,λ1 + 1) = 	

(S−1,S)
jj (λ1,λ1 + 1) = 	

(S−1,S)
jj (λ1 + 1,λ1) = 	

(S−1,S)
jj (λ1 + 1,λ1 + 1) = 0.

Another general relation restricts difference between S and S ′. Equations (23), (C6), and the reduction to subgroup lead
to D

[λ]
[0][0](R) = ∑

r,t D
[λ]
[0]r (Pl′N )D[λ̄]

r̄ t̄ (P)D[λ]
t[0](PlN ) and D

[λ′]
[0][0](R) = ∑

r,t D
[λ′]
[0]r ′(Pl′N )D[λ̄′]

r̄ ′ t̄ ′ (P)D[λ′]
t ′[0](PlN ). Then the sum (C1)

contains ∑
P∈SN−1

D
[λ̄′]
t̄ ′ r̄ ′ (P)D[λ̄]

t̄ r̄ (P) ∝ δλ̄λ̄′

[see Eq. (C7)]. Now the symbol N can be placed in the end of either row of the Young tableau. Then both λ̄ = [λ1,λ2 − 1]
and λ̄ = [λ1 − 1,λ2] are allowed, as well as two similar λ̄′. Therefore, |λ1 − λ′

1| � 1, or |S − S ′| � 1. This provides the sums
appearing in the present calculations

	
(S−2,S)
jj (λ1 − 1,λ1 − 1) = 	

(S−2,S)
jj (λ1 − 1,λ1) = 	

(S−2,S)
jj (λ1,λ1 − 1) = 	

(S−2,S)
jj (λ1,λ1) = 0.
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