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Reservoir interactions during Bose-Einstein condensation: Modified critical scaling
in the Kibble-Zurek mechanism of defect formation
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As a test of the Kibble–Zurek mechanism (KZM) of defect formation, we simulate the Bose–Einstein
condensation transition in a toroidally confined Bose gas by using the stochastic projected Gross–Pitaevskii
equation, with and without the energy-damping reservoir interaction. Energy-damping alters the scaling of the
winding-number distribution with the quench time—a departure from the universal KZM theory that relies
on equilibrium critical exponents. Numerical values are obtained for the correlation-length critical exponent
ν and the dynamical critical exponent z for each variant of reservoir interaction theory. The energy-damping
reservoir interactions cause significant modification of the dynamical critical exponent of the phase transition,
while preserving the essential KZM critical scaling behavior. Comparison of numerical and analytical two-point
correlation functions further illustrates the effect of energy damping on the correlation length during freeze-out.
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I. INTRODUCTION

The Kibble–Zurek mechanism (KZM) describes defect
formation in the symmetry-breaking dynamics of a system
undergoing a second-order phase transition [1,2]. The theory
exploits critical slowing down near the transition, whereby the
system relaxation time diverges and the system becomes es-
sentially frozen, allowing the description of critical dynamics
in terms of equilibrium critical exponents [3]; thus the quench
phenomena are set by the universality class of the system. The
critical exponents determine the density of defects introduced
by symmetry breaking during the quench and thus are central to
the testable predictions of KZM. Bose–Einstein condensation
(BEC) is a U (1) symmetry-breaking transition whereby the
phase of the order parameter acquires independent values over
finite-sized domains, the size of which depends on the speed of
the quench. Theoretical treatments of KZM in Bose–Einstein
condensation have used a description of the Bose gas that can
be reduced to a form of stochastic Ginzburg–Landau (G-L)
theory [4–11], involving a Gross–Pitaevskii equation coupled
to a grand canonical reservoir providing a source of particles
and thermal noise. Fundamentally, the model is a mean-field
theory driven by the simplest possible reservoir coupling, and
analyses of defect formation confirm the equilibrium scaling
hypothesis of KZM. A basic question then arises: what is the
role of a specific system’s reservoir interactions in determining
the critical dynamics during a quench?

A rigorous and tractable reservoir interaction theory has
been developed for the dilute Bose gas from first principles in
the form of the stochastic projected Gross–Pitaevskii equation
(SPGPE) [12–16]. The theory is a synthesis of quantum kinetic
theory [17] and the projected Gross–Pitaevskii equation [18]
and provides a tractable approach for numerical simulations
of critical dynamics that includes all significant reservoir
interaction processes. The SPGPE describes the evolution of a
high-temperature partially condensed system within a classical
field approximation, is valid on either side of the critical point,
and in three dimensions (3D) has been used to quantitatively
model the phase transition [8] and high-temperature dynamics
[19] observed in experiments. The complete SPGPE includes a

number-damping reservoir interaction (G-L type) described in
previous works [8,19], and an additional interaction involving
exchange of energy with the reservoir [20]; the latter is a
number-conserving interaction that can have a significant
influence on system evolution far from equilibrium [15,21,22],
such as occurs in the region of critical slowing down near the
transition.

In this work we investigate the effect of the energy-
damping reservoir interaction on the outcome of quenches
across the Bose–Einstein condensation transition. We consider
a toroidally trapped Bose gas consisting of a quasi-one-
dimensional (quasi-1D) superfluid fraction immersed in a 3D
thermal cloud. This system may be modelled by using the
effective 1D-SPGPE description for elongated systems [22].
A finite persistent current circulating around the ring provides
a clear signature of symmetry breaking [23]. We perform
quenches of the reservoir chemical potential for a range of
quench times, with and without the energy-damping terms, to
produce a statistical distribution of the final winding number of
the persistent current. The Kibble–Zurek mechanism predicts
a power-law relation between the quench time and the standard
deviation of the final winding number. We numerically
determine the power-law exponent for these relations by using
the two reservoir interaction theories and compare with the
predictions of mean-field theory. Inclusion of energy damping
causes the power-law exponents to depart from the mean-field
values. In particular, the dynamical critical exponent extracted
from the complete SPGPE simulations differs from that
predicted by mean-field theory, does not conform to a known
universality class, and suggests nonuniversal modifications
to the critical dynamics. The effects of energy damping are
further exemplified by comparing the dynamics of condensate
number and two-point correlations for the two theories.

II. THEORY

A. The Kibble–Zurek mechanism

We first review aspects of KZM relevant for this work. We
consider a system driven across a second-order phase transition
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by a quench of the chemical potential from −μ0 to μ0. We
define the reduced parameter ε(t)

ε(t) = μ(t)

μ0
= t

τQ

, (1)

where 2τQ is the quench duration and t ∈ [−τQ,τQ]. The
equilibrium correlation length and dynamical relaxation time
are related to the reduced parameter by

ξ (t) = ξ0

|ε(t)|ν , (2)

and

τ (t) = τ0

|ε(t)|zν , (3)

respectively, where ν and z are critical exponents defining
the universality class of the phase transition, and ξ0 and τ0

are constants that depend on the microscopic details of the
system. Initially the system follows the quench adiabatically.
However, as the system approaches the critical point, μ = 0,
the relaxation time diverges and there is thus an instant during
the quench where the relaxation time is equal to the time
remaining reach the critical point. This time t = −t̂ is called
the freeze-out time, after which the system cannot keep up with
the external parameter and thus remains “frozen” (impulse
regime) until time +t̂ after the transition when it can again
respond to the environment, as shown in Fig. 1(a). The freeze-
out time satisfies the equation

t̂ ≡ τ (−t̂), (4)

which may be solved [23] to give

t̂ = (
τ0τ

zν
Q

) 1
1+zν = τ 1−α

0 τα
Q, (5)

where

α ≡ zν

1 + zν
. (6)

The adiabatic-impulse approximation assumes that the
system ceases to follow the equilibrium solution adiabatically
precisely at −t̂ , when the dynamics are frozen until the system
returns to adiabatic following at t̂ . By using the freeze-out time
we can obtain the freeze-out chemical potential and correlation
length

μ̂ = μ0

(
τ0

τQ

) 1
1+zν

, (7)

and

ξ̂ = ξ0

(
τQ

τ0

) ν
1+zν

. (8)

The density of topological defects can be estimated as the size
of the symmetry-broken domains at the freeze-out time [see
Fig. 1(b)] and is then given by

n = ξ̂ d

ξ̂D
= 1

ξD−d
0

(
τ0

τQ

) ν
1+zν

, (9)

where D is the dimensionality of the system and d is the
dimensionality of the defects. This is typically an overestimate
of what is observed, and thus ξ̂ is commonly replaced by sξ̂ ,
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FIG. 1. (Color online) (a) Adiabatic-impulse model of dynamical
symmetry breaking in KZM. The boundary between regions t̂ is
defined as the instant when the time remaining until the critical
point is equal to the system relaxation time, i.e., when t̂ = τ (−t̂ ).
(b) Schematic of defect formation during Bose–Einstein condensation
in a ring trap. The scale of regions acquiring a U (1) symmetry-broken
phase is set by the coherence length at the freeze-out time, ξ̂ = ξ (−t̂ ).
Phase differences between adjacent domains, �θi , are resolved
through the formation of defects. (c) Reservoir interactions in the
stochastic projected Gross–Pitaevskii theory of the dilute Bose gas.
The number-damping (γ ) interaction drives condensate growth. The
number-conserving energy-damping process (ε) has a significant role
far from equilibrium.

where s ∼ O(1 to 10) depends upon the model [4–6,10]. From
(5) it is apparent that τQ may be chosen small enough such that
the freeze-out time is larger than the total ramp time (t̂ > τQ).
This implies a fast quench limit, below which the system will
effectively experience a jump in the chemical potential, rather
than a ramp. To be in the regime where KZM scaling should
apply, the quench time must satisfy τQ > τ0.

In a 1D Bose gas, the defects that form as a result of merging
domains are gray solitons [9,24]. According to (9), the density
of solitons after a quench should scale as

ns ∝ τ
−ν

1+zν

Q . (10)

The problem arises that gray solitons are unstable [9,25–27],
and thus in the presence of any dissipation, the solitons will
vanish following the quench. This inhibits verification of KZM
via soliton counting as it is not clear how long after the quench
to measure the number of solitons; it must be long enough that
the solitons are formed such that they can be distinguished
from density fluctuations due to noise, but short enough that the
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number of solitons has not appreciably decayed. Fortunately,
if the system has periodic boundary conditions, a net winding
of the system can emerge postquench as a topologically stable
[28] remnant of the domains that can also be used to test the
theory [10,23].

We consider a 1D Bose gas in a toroid of circumference
L. At the freeze-out time the domain size is given by (8),
and thus the number of domains is N ≈ L/ξ̂ . The probability
distribution for the phase of one domain is uniform between
−π and π , with variance

σ 2(θ ) =
∫ π

−π

θ2

2π
dθ = π2

3
. (11)

The variance of the phase difference between two neighboring
domains �θi = θi+1 − θi is then σ 2(�θi) = 2π2/3, and the
variance of the accumulated phase around the toroid is

σ 2(θc) =
∑
N−1

σ 2(�θi) = (N − 1)
2π2

3
≈ N

2π2

3
≈ L

ξ̂

2π2

3
.

(12)

The winding is related to the accumulated phase by W =
θc/(2π ), and thus the variance of the winding is given by

σ 2(W) = 1

(2π )2
σ 2(θc) ≈ 1

6

L

ξ̂
, (13)

giving the scaling for the standard deviation of the winding
distribution

σ (W) =
√

L

6ξ0
τ

ν
2(1+zν)

0 τ
−ν

2(1+zν)

Q ∝ τ
−β

Q , (14)

where

β ≡ ν

2(1 + zν)
. (15)

Following a quench, the system may be left to return to a
stable state which may contain some nonzero winding. This
winding can then be measured experimentally by interferom-
etry [29,30]. The downside to measuring the winding over the
defects themselves is that the variance of winding number is a
higher-order moment and thus more trajectories are required to
obtain good statistics. Furthermore, the power-law exponent
for the winding is half that for defects, making the scaling
more susceptible to error.

B. Stochastic projected Gross–Pitaevskii equation
in one dimension

The stochastic projected Gross–Pitaevskii equation
(SPGPE) uses C-field methods to model Bose gases at finite
temperature [12,15]. The modes of the system are divided
into two distinct regions; the coherent region (C) consisting
of modes with energy less than a specified cutoff (εcut),
and the incoherent region (I) which contains the thermalized
high-energy modes; the incoherent region acts as a thermal
reservoir to the C field. The SPGPE has been successfully
numerically implemented [14,15] despite its complexities.
When considering systems that are tightly confined in one or
more dimensions, the numerical implementation can be made
more efficient by reducing the dimensionality of the SPGPE
equations of motion [22].

The 1D SPGPE is obtained by assuming the low-energy
fraction of the system affording a SPGPE description is in the
harmonic oscillator ground states for the two tightly trapped
dimensions, enabling integrating over these dimensions [22].
The transverse dimensions are confined by a parabolic trap
with harmonic oscillator frequency ω⊥ and oscillator length
a⊥ = [�/(mω⊥)]1/2. The resulting equation of motion is

(S)�dψ(x,t) = Px{(i + γ )(μ − L)ψ(x,t)dt + �dWγ (x,t)

− iVε(x,t)ψdt + i�ψ(x,t)dWε(x,t)}, (16)

where (S) denotes Stratonovich integration. The 1D projection
operator Px implements the energy cutoff εcut in the remaining
dimension x. The Hamiltonian evolution, with reservoir
chemical potential as energy reference, is generated by

Lψ(x,t) ≡ [H(x) + g1|ψ(x,t)|2 − μ]ψ(x,t), (17)

where H(x) = −�
2∂2

x /(2m) + Vext(x) is the single-particle
Hamiltonian with external potential Vext(x), and g1 = 2�ω⊥as

is the 1D interaction strength with s-wave scattering length
as . The reservoir is described by chemical potential (μ),
temperature (T ), and cutoff energy (εcut), and the functions

γ = 8a2
s

λ2
dB

∞∑
j=1

eβμ(j+1)

e2βεcutj
�

[
eβμ

e2βεcut
,1,j

]
, (18a)

Vε(x,t) = −�

∫
dx ′ε(x − x ′)∂x ′j (x ′,t), (18b)

j (x,t) = i�

2m
[ψ∂xψ

∗ − ψ∗∂xψ], (18c)

ε(x) = M
2π

∫
dkeikrS1(k), (18d)

S1(k) ≡ erfcx

( |k|a⊥√
2

)
(8πa2

⊥)−1/2, (18e)

M ≡ 16πa2
s

eβ(εcut−μ) − 1
, (18f)

where λdB = [2π�
2/(mkBT )]1/2, β = 1/(kBT ), �[z,x,a] =∑∞

k=0 zk/(a + k)x is the Lerch transcendent, and

erfcx(x) ≡ ex2
erfc(x) (19)

is the scaled complementary error function. The noise terms
are Gaussian, with nonvanishing correlations

〈dW ∗
γ (x,t)dWγ (x ′,t)〉 = 2γ kBT

�
δ(x,x ′)dt, (20)

〈dWε(x,t)dWε(x ′,t)〉 = 2kBT

�
ε(x − x ′)dt, (21)

where δ(x,x ′) = ∑
n∈C φn(x)φ∗

n(x ′) is the δ function for the C
region.

The first two terms on the right-hand side (RHS) of (16) give
the simple growth or number-damping SPGPE defined by (17)
and (18a), and describing particle exchange with the I region
[the PGPE is recovered as the special case γ ≡ 0]. The final
two terms on the RHS of (16) are the energy-damping terms,
describing energy-exchanging interactions between the C field
and the thermal cloud without particle exchange. These terms
involve a potential, (18b), and depend upon the divergence
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of the current (18c), with strength determined by the rate
function (18d), scattering kernel (18e), and amplitude (18f).
Both processes involve an associated noise, (20) and (21), and
satisfy the fluctuation-dissipation theorem. The two reservoir
interaction processes are shown schematically in Fig. 1(c).

C. Two-point correlations of one-dimensional stochastic
projected Gross–Pitaevskii equation

Although finding analytic solutions to the full 1D SPGPE
(16) is very difficult, some analytic progress can be made for
the number-damping SPGPE

�dψ(x,t) = Px{(i + γ )(μ − L)ψ(x,t)dt + �dWγ (x,t)}.
(22)

We assume that we are on the symmetric side of the transition
(μ < 0), allowing us to approximate g1|ψ |2 ≈ 0, as the
number density of the C field is very low. Transforming to
momentum space we obtain the equation of motion

�dφ(k,t) = (i + γ )

(
μ(t) − �

2k2

2m

)
φ(k,t)dt + �dU (k,t),

(23)
where

φ(k,t) = (2π )−1/2
∫

dxe−ikxψ(x,t) (24)

is the C-field wave function in momentum space and

dU (k,t) = (2π )−1/2
∫

dxe−ikxdWγ (x,t) (25)

is the number-damping noise in momentum space. The general
solution to (23) is

φ(k,t) = e− ∫ t

0 ds�(k,s)φ(k,0)

+
∫ t

0
dse− ∫ t

s
ds ′�(k,s ′)dU (k,s), (26)

where

�(k,t) = (i + γ )
1

�

(
�

2k2

2m
+ |μ(t)|

)
. (27)

We first consider the equilibrium system with a constant
negative chemical potential. The coefficient (27) is then time
independent, making the time integrals in Eq. (26) trivial.
Taking 〈φ∗(k,t)φ(k′,t ′)〉 from (26) and letting t,t ′ → ∞, while
keeping |t − t ′| constant and finite, we then transform back to
position space to obtain the stationary two-point correlation
function

〈ψ∗(x,t)ψ(x ′,t ′)〉s = kBT

2|μ|ξ G

( |x−x ′|
ξ

, (1−i/γ )
|t − t ′|

τ

)
,

(28)

where

G(x,t) ≡ 1

π

∫
dke−ikx e−(1+k2)t

1 + k2

= 1

2
e−2t

[
e2t−xerfc

(
2t−x

2
√

t

)
+ e2t+xerfc

(
2t+x

2
√

t

)]
,

(29)

and we have identified the steady-state correlation length

ξ ≡
√

�2

2m|μ| (30)

and relaxation time

τ ≡ �

γ |μ| . (31)

To verify that this expression has the correct limits, we see
that G(0,t) = erfc(

√
t), so that using erfc(z) → e−z2

/
√

πz for
large |z| gives

〈ψ∗(x,t)ψ(x,t ′)〉s → kBT

2|μ|ξ
e−(γ−i)|μ||t−t ′ |/�

√
π (γ − i)|μ||t − t ′|/�

, (32)

confirming that τ is the relaxation time. Similarly, G(x,0) =
e−|x|, and hence at equal times we recover

〈ψ∗(x,t)ψ(x ′,t)〉s = 〈ψ∗(x,t)ψ(x ′,t)〉 = kBT

2|μ|ξ e−|x−x ′ |/ξ ,

(33)

confirming ξ as the correlation length. Comparing (30) and
(31) with (2) and (3), respectively, reveals the values of the
critical exponents for the number-damping SPGPE theory;
namely, the correlation-length critical exponent ν = 1/2 and
the dynamical critical exponent z = 2. We also obtain the
constants of proportionally for the scaling relations

ξ0 = �√
2mμ0

, (34)

τ0 = �

γμ0
. (35)

We now turn to the dynamics of the linear quench described by
(1) for which one may find the equal-time correlation function
on the symmetric side of the transition within the same linear
approximation as used above [9]. The number-damped SPGPE
has the formal solution (26) for (27) with μ(t) = μ0ε(t).
Carrying out the integrals in Eq. (26) and taking the limit
|μ0| → ∞, we find that the equal-time correlation function
can be written as

〈ψ∗(x,t)ψ(x ′,t)〉s = kBT

2|μ̂|ξ̂ f

( |x − x ′|
ξ̂

,
ξ̂

ξ (t)

)
, (36)

where

f (x,y) = 1√
π

∫
dkeikxerfcx(k2 + y2), (37)

and �
2/[2mξ (t)2] ≡ |μ(t)|. In the early part of the quench,

ξ (t) � ξ̂ , and we can use erfc(z) → e−z2
/
√

πz to find the
asymptotic form for y � 1:

f (x,y) → 1

y2π

∫
dkeikx 1

1 + k2/y2
= e−|x|y

y
, (38)

and

〈ψ∗(x,t)ψ(x ′,t)〉 = kBT

2|μ(t)|ξ (t)
e−|x−x ′ |/ξ (t), (39)

the adiabatic form expected from (33). In the impulse regime,
(37) is transcendental and must be numerically evaluated;
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FIG. 2. (Color online) Single trajectories of the C field during a quench (τQ = e5ω−1
⊥ ), showing (a) number density and (c) phase for the

number-damping SPGPE, and (b) number density and (d) phase for the full SPGPE. During initial density growth there are numerous solitons,
evident as low-density notches with an associated phase jump, that quickly decay leaving a persistent current. The decay of solitons appears to
be more rapid for the full SPGPE simulations.

however, the dependence upon only |x − x ′|/ξ̂ is a clear
signature of universal scaling in the approach to the critical
point. Numerically, one finds that in the freeze-out regime
f (x,y) depends only very weakly on y in the neighborhood
y � 1, and the functional form freezes into an impulse regime
for 0 � y � 1. For μ > 0 (1 < y) we must rely on numerical
simulations of the SPGPE.

III. SIMULATIONS

A. Stochastic projected Gross–Pitaevskii equation simulations

We consider a system with toroidal geometry, where
the radial extent of the system is much smaller than the
circumference of the toroid; the transverse trapping frequency
is ω⊥/(2π ) = 200 Hz, while the circumference is L = 200a⊥
where a⊥ is the transverse harmonic oscillator width. The
dimensionally reduced system is then equivalent to a partially
degenerate 1D Bose gas in a homogeneous trap of length L

with periodic boundary conditions, embedded in a 3D thermal
cloud. We use atomic parameters for 87Rb, giving the 1D
interaction parameter g1 = 0.0139�ω⊥a⊥. We chose a grid of
M = 1024 points, which gives ≈4 points per correlation length
prior to and following the quench (the correlation length takes
its smallest value prior to the quench). The chemical potential
is quenched from μ = −�ω⊥ to μ = �ω⊥, i.e., μ0 = �ω⊥.

The temperature is held constant throughout all simulations at
T = 0.5Tc, where Tc is the transition temperature for the ideal
Bose gas confined to a 3D toroidal trap:

Tc = �ω̄

kB

(
N

ζ (5/2)

)2/5

, (40)

with ω̄ being the geometric mean frequency of the toroid,

ω̄5 = 2π�

mL2
ω4

⊥, (41)

ζ (z) being the Riemann zeta function, and N being the number
of particles [31]. To determine Tc we used the Thomas–Fermi
value of the particle number N = μL/g1 corresponding to the
postquench parameters, giving a value of N ≈ 14 400. For the
number-damping SPGPE these parameters give an average
C-field population of NC ≈ 14 300 and condensate number
N0 ≈ 12 600 in equilibrium postquench, while the inclusion
of energy damping reduces these values to NC ≈ 13 100 and
N0 ≈ 10 200.

To obtain a thermalized initial state we use the C-field
wave function ψ(x) = 0, which is then evolved by using
the 1D SPGPE with a high number-damping rate (18a) of
γ = 1 for 1000 units of the relaxation time (31) to allow the
system to come to equilibrium with the thermal cloud in its
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prequench state. For the quench we set the number-damping
rate to a value more suitable for dynamics, γ = 10−2, and
begin the chemical-potential ramp (1). Once the quench
is finished (t = τQ) we allow the system to evolve for a
further 10 units of the relaxation time, which we have seen
is sufficient for any postquench dynamics to cease. For
the number-damping SPGPE, the energy damping is not
included, so an energy-damping rate (18f) of M = 0 is used
for the entirety of the simulation. For the full SPGPE, we also
include energy-damping terms, with rate M = γ = 10−2

for the entirety of the dynamics. We note that γ ∼ M for
experimentally relevant parameters [15].

B. Results and analysis

The qualitative behavior observed over the course of the
quench is illustrated by the density and phase of the C field
ψ(x,t), shown for example trajectories of the number-damping
SPGPE and full SPGPE in Fig. 2; postquench we see the
emergence of decaying gray solitons in the density and
eventually a stable persistent current is evident in the phase.
In order to analyze the SPGPE simulations further we first
consider the condensate population, a quantity that can be
computed throughout the quench dynamics in our 1D system,
allowing extraction of the freeze-out time t̂ numerically.

We find the condensate mode and population using the
Penrose–Onsager criterion [32], starting from the one-body
density matrix

ρ(x,x ′,t) = 〈ψ(x,t)ψ∗(x ′,t)〉, (42)

where the angled brackets denote ensemble averaging over
trajectories; in the classical field regime this is equivalent
to operator averaging because we may neglect commutators.
Solving the eigenproblem∫

dx ′ρ(x,x ′,t)φk(x ′,t) = nk(t)φk(x,t) (43)

then gives the system orbitals φk(x) and their occupations
nk , with the largest eigenvalue giving the condensate number
N0 ≡ supk nk and associated wave function φ0(x). To construct
the density matrix we performed 103 trajectories per quench
time using both the number-damping 1D SPGPE and full 1D
SPGPE. The mean condensate number for several quenches is
shown in Fig. 3. The curves appear to be of the same functional
form, but with rescaled time axis. This property is known as
self-similarity, where rescaling the time axis by a particular
factor will cause the curves to collapse onto a single curve; in
this case the rescaling factor is the freeze-out time t̂ .

We find the freeze-out time from these curves based on
their self-similarity. A reference condensate number is chosen
relatively close to where the condensate number initially
grows. The time at which this reference is reached should
be linearly proportional to the freeze-out time, and thus obey
a power law

at̂ = a
(
τ0τ

zν
Q

) 1
1+zν , (44)

where a is a constant of order unity. We then use a power-law
fit to obtain the exponent α of (6) and thus the value of zν. This
allows us to determine the actual freeze-out time by using (5)
with the constants ξ0 (34) and τ0 (35).
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FIG. 3. (Color online) The condensate number dynamics for
several quench times, using (a) the number-damping SPGPE and
(b) the full SPGPE. The condensate number was extracted from the
numerical data by using the Penrose–Onsager criterion [see (43)].

We use a reference condensate number of N0 = 100,
occurring rapidly after initial condensate growth. Figure 4
shows the time at which the reference condensate number
is reached against the quench time for several different quench
times. Both theories give results that obey a power law, with
exponent (6) differing between the theories. A least-squares-fit
to the results of simulations using the number-damping SPGPE
gives α = 0.5119 ± 0.0178, consistent with the mean-field
prediction α = 0.5. A least-squares fit for the full SPGPE
gives α = 0.7145 ± 0.0358; a value that is inconsistent with
mean-field theory.

a
t̂ω

⊥

τQω⊥
103 103.2 103.4 103.6

102.8

102.9

103.0

103.1

103.2

103.3

FIG. 4. (Color online) The results of our self-similarity algorithm
with respect to the condensate number for the number-damping
SPGPE and the full SPGPE. The numerical data for the number-
damping (full) SPGPE is represented by blue (red) points, while
the green (cyan) line is a least-squares fit of a power law to the
numerical data. The power-law exponents are α = 0.5119 ± 0.0178
and α = 0.7145 ± 0.0358 for the number-damping SPGPE and full
SPGPE, respectively.
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FIG. 5. (Color online) The condensate number over time for
several quench times using (a) the number-damping SPGPE and
(b) the full SPGPE. The time axis has been scaled by the freeze-out
time as predicted by our self-similarity algorithm for each theory.
The yellow shaded region indicates the impulse regime where KZM
approximates the system dynamics as frozen. For comparison, the
total C-field population is also shown for one of the quenches (black
dashed line).

In Fig. 5 we show the condensate number over time for the
same quenches as in Fig. 3, but this time with the time axis
rescaled by the freeze-out time (5) found by using the values
of zν found above and the constants ξ0 (34) and τ0 (35). The
impulse regime t ∈ [−t̂ ,t̂] is highlighted to emphasize that
condensate growth does not begin until the system has entered
the adiabatic regime. Rescaling the time axis by t̂ results in
the curves lying on top of one another for both theories. Note
that the value for τ0 used in Eq. (44), given by Eq. (35), is
essentially exact for the number-damping SPGPE, while for
the full SPGPE it is only an approximation as the additional
damping terms change the relaxation time; however, the power
law extracted from Fig. 4 is unaltered by this choice. We have
also included the growth of the C-field particle number NC(t)
for one value of the quench time for comparison.

The final winding number is calculated by using W =
θc/(2π ) where θc is the accumulated phase of the final wave
function around the toroid. For the purposes of obtaining
the statistical distribution of the final winding number we
performed 104 trajectories per quench time by using both the
number-damping 1D SPGPE and the full SPGPE. Figure 6

102 103
100.14

100.17

100.2

100.23

100.26

τQω⊥

σ
(W

)

FIG. 6. (Color online) Standard deviation of the final winding for
various quench times. The blue and red data points are the result of
simulations of the number-damping SPGPE and the full SPGPE,
respectively. The green line is a a best fit for the number-damping
SPGPE data in the regime that obeys a power law (14), giving an
exponent of β = 0.1236 ± 0.0098. The cyan line is the equivalent for
the full SPGPE data, giving an exponent of β = 0.0966 ± 0.0128.

shows the standard deviation of the final winding for a range
of quench times. Far from the fast quench limit (τQ = 102), the
winding standard deviation from simulations of both theories
obeys a power law with respect to the quench time. The
exponent (15) differs between the two; the number-damping
SPGPE gives β = 0.1236 ± 0.0098, while the full SPGPE
gives β = 0.0966 ± 0.0128. The mean-field value β = 0.125
is within error of the number-damping SPGPE value, but not
within error of the full SPGPE.

The equations (6) and (15) are a pair of simultaneous
equations that relate α and β to the critical exponents ν and z,
giving

z = α

2β
, ν = 2β

1 − α
, (45)

and we can thus determine the values of ν and z from
our numerical simulations of quenches. The number-damping
SPGPE gives the critical exponents ν = 0.5065 ± 0.0586 and
z = 2.071 ± 0.236. These are consistent with the equilibrium
mean-field critical exponents ν = 1/2 and z = 2, a result that
was also found in Ref. [10]. The full SPGPE gives the critical
exponents ν = 0.6767 ± 0.1745 and z = 3.698 ± 0.675, a
significant departure from the equilibrium mean-field theory.

We also numerically calculated the two-point correlation
function by using ensembles of trajectories for several quench
times; this is shown in Fig. 7. For the number-damping
SPGPE, we show the numerical correlation function at the
times t = {−t̂ ,0,t̂} with the analytical correlation function
(36) at the times t = {−t̂ ,0}, where t̂ is calculated by using
the constants ξ0 (34) and τ0 (35) and the numerically obtained
critical exponents ν and z. For the full SPGPE, we do not have
values for the constants ξ0 and τ0, and thus we cannot calculate
the freeze-out time t̂ . Hence we only show the numerical
correlation function at t = 0 and compare this to the analytical
form for the correlation function (36) at the critical point
(t = 0). We see that for number damping at the time t = −t̂
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FIG. 7. (Color online) The two-point correlation function ρ(r,t) = 〈ψ∗(x,t)ψ(x ′,t)〉, where r ≡ x − x ′, at various times for three
different quench times simulated using both the number-damping SPGPE and the full SPGPE. The quench times are (a), (d) τQω⊥ = e6,
(b), (e) τQω⊥ = e7, and (c), (f) τQω⊥ = e8. The top row (a)–(c) shows the normalized numeric correlation function at t = −t̂ (blue), t = 0
(red), and t = t̂ (magenta) resulting from simulations of the number-damping SPGPE, as well as the normalized analytic correlation function
(36) at t = −t̂ (green) and t = 0 (cyan). The bottom row (d)–(f) shows the normalized numeric correlation function at t = 0 (red) resulting
from simulations of the full SPGPE, as well as the normalized correlation function (36) at t = 0 (cyan).

and t = 0, the numerical data shows excellent agreement with
the analytical expression (36), while at t = t̂ the correlation
length has clearly grown beyond what is predicted by (36); this
is unsurprising because (36) was derived under the assumption
that the transition has not yet been reached. For the full SPGPE
we see that the correlation length is less than that predicted by
(36), which is possibly a consequence of the extra noise.

IV. DISCUSSION

Our results indicate that the energy-damping reservoir
interaction can have a significant effect on the Bose–Einstein
condensation transition. While the mean-field critical expo-
nents ν = 1/2 and z = 2 were consistent with the number-
damping SPGPE (as can also be shown analytically), the
inclusion of the energy-damping terms resulted in an increase
in both ν and z to the point where they were no longer
consistent with mean-field theory. Other possible universality
classes include the F model [33] (ν = 2/3, z = 3/2), for
which there has been experimental evidence [34], or the 3D
XY model (ν = 0.6717, z = 1.9550), which is thought to
be the class to which the BEC transition belongs [35]. The
value of the correlation-length critical exponent ν from our
full SPGPE results is consistent with both these universality
classes; however, the value of the dynamical critical exponent
z is not.

Experimental temperature quenches have been performed
in toroidally trapped BECs [30], finding power-law exponents
in agreement with mean-field theory. However, a recent
experiment extracting the freeze-out correlation length (8) of
a quenched Bose gas in a box trap [34] produced power-
law exponents more consistent with the F model [33]. Our
results suggest that the microscopic reservoir interactions, in

particular the energy-damping process, induce nonuniversal
modifications to the critical evolution. The modification is
most evident in the dynamical critical exponent. Further work
is needed to model specific experiments, and it may pose an
experimental challenge to measure signatures of nonuniversal
critical dynamics. In Table I we summarize the power-law
exponents for our simulations and relevant universality classes.

A further question remains as to the role of the values of the
two damping rates γ and M; in this work we have assumed
they are time independent and equal. The precise ratio relevant
for experiments, in principle also changing throughout the
transition, may influence the final prediction for the critical
exponents. A possible extension of this work would be to
investigate the effects on the critical exponents when varying
the ratio γ /M; the true value of this ratio varies depending on
the reservoir parameters of the experimental system of interest
(T , μ, εcut) [15].

The energy-damping terms affecting the condensate
population may seem surprising given that the energy-
damping process is number conserving; however, a previous

TABLE I. The power-law exponents for the freeze-out time (5)
and winding standard deviation (14), for both the number-damping
SPGPE and the full SPGPE. We also include the values of these
exponents as predicted by related universality classes.

Exponent α = zν/(1 + zν) β = ν/2(1 + zν)

Number-damping SPGPE 0.5119 ± 0.0178 0.1236 ± 0.0098
Full SPGPE 0.7145 ± 0.0358 0.0966 ± 0.0128
Mean field 0.5 0.125
F model [33] 0.5 0.1667
3D XY [35] 0.5677 0.1452

033616-8



RESERVOIR INTERACTIONS DURING BOSE-EINSTEIN . . . PHYSICAL REVIEW A 92, 033616 (2015)

investigation has shown that the energy-damping terms pro-
voke a faster, more coherent approach to equilibrium [15], as
is also consistent with the role of so-called scattering terms in
quantum kinetic theory [36]. This more efficient equilibration
may explain the lower final winding standard deviation upon
inclusion of these terms, because the defects resulting from
the phase transition are more efficiently damped away.

The presence of an additional noise source reduces the
correlation length at the boundary of the impulse regime
(t = −t̂), reducing the domain size and increasing the number
of defects. It would hence be informative to investigate the
number of solitons over the course of the quenches, as is done
in Ref. [9], and compare the two theories with experimental
data [24]. This is a nontrivial task because distinguishing
solitons from density fluctuations in a noisy system can be
difficult, particularly soon after the transition when the density
is low. Long-time evolution to form a stable winding number
suggests a coarsening dynamics process [37–39].

To the best of our knowledge we have given the most
complete treatment of the reservoir interactions in the BEC
transition, for the special case of an effectively 1D superfluid
forming in a ring trap. Despite its microscopic foundation,
certain details of experimental realizations are missing from
our model. Most notably, our model of the quench ramps the
I-region chemical potential, but includes no further dynamics
of the I region (thus far absent from any SPGPE theory),
and we do not include a rigorous matching of the system to
a specific set of experimental particle-number measurements
(as has been achieved in systems closer to equilibrium without
fitting [19], or in a quench by fitting the condensate growth rate
to experimental data [8]); both of these aspects of modeling
experimental quench dynamics remain open problems within
SPGPE theory.

As this field is attracting increasing interest, it is of some
value to connect the SPGPE model to related recent work.
We note that non-Markovian additive noise was shown to
generate modified dynamical exponents in a G-L model
[40]. Interestingly, quantum quenches may leave important
signatures behind in higher-order operator moments [41]; such
information is almost certainly absent from the classical field
theory used in this work. As the BEC transition is dominated by
classical fluctuations [42], the SPGPE nevertheless provides a
quantitative theory of the transition.

The comparison of microscopic theories of dissipation
with generic models also requires some comment. Recent

work using the holographic duality approach [43] recovered
mean-field power laws for the winding-number scaling in a
model of a quenched superconducting transition. While the
holographic method provides a very general approach with
certain computational advantages, in holographic models the
noise is introduced by hand via the fluctuation-dissipation
theorem (FDT), generating dissipative terms and additive noise
associated with particle growth. Numerical work typically
focuses on a regime that is equivalent to overdamped BEC
dynamics [44], as discussed in Ref. [45]. In contrast, the
SPGPE theory is derived from a first-principles analysis
of the Bose-gas field theory, includes both additive and
multiplicative noise (number damping and energy damping),
and is underdamped; consistency with the FDT is an inherent
property of the SPGPE.

V. CONCLUSIONS

We simulated chemical-potential quenches across the
Bose–Einstein condensation transition in a ring geometry
by numerically solving the dimensionally reduced stochastic
projected Gross–Pitaevskii equation with and without the
energy-damping terms. The final winding statistics of the
number-damping SPGPE were found to obey the mean-
field power-law exponent predictions of the Kibble–Zurek
mechanism. The complete SPGPE, including energy-damping
terms, exhibits a modified power law for the winding statistics.
The freeze-out time was also extracted from the condensate-
number growth curves, with both theories again resulting in a
power law with respect to the quench time but with differing
exponents. While the number-damping SPGPE gave results
consistent with mean-field theory, we were unable to find a
universality class with critical exponents consistent with the
complete SPGPE results. The full SPGPE results are strongly
suggestive of nonuniversal modifications to critical dynamics
of the BEC phase transition, as is most clearly demonstrated
by the modified dynamical exponent z. Our results highlight
the importance of system-specific reservoir interactions in
dynamical critical phenomena, as further suggested by recent
experimental studies of the BEC phase transition [24,30,34].
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