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Half-skyrmion and vortex-antivortex pairs in spinor condensates
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We propose a simple experimental scheme to generate spin textures in the ground state of interacting ultracold
bosonic atoms loaded in a two-dimensional harmonic trap. Our scheme is based on two copropagating Laguerre-

Gauss laser beams illuminating the atoms and coupling two of their internal ground state Zeeman sublevels.
Using a Gross-Pitaevskii description, we show that the ground state of the atomic system has different topological
properties depending on the interaction strength and the laser beam intensity. A half-skyrmion state develops at
low interactions while a vortex-antivortex pair develops at large interactions.
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I. INTRODUCTION

Because of their ability to materialize abstract theoretical
models into carefully designed and controlled experiments,
ultracold quantum gases have successfully pervaded many
diverse fields of physics ranging from lattice and spin systems,
quantum information, quantum simulators, to gauge fields and
Anderson localization to cite a few [1]. This is particularly true
in the condensed-matter realm where they became a key player
in many-body physics as exemplified by the first observation
of the Mott-superfluid transition [2—4].

In recent years, the physics of the quantum Hall effects has
become one important focus of the ultracold atoms community.
Because atoms are neutral, one needed effective schemes to
mimic the action of a magnetic field. A first idea was to
set quantum gases into rapid rotation [5] but it faded away
because more promising alternatives using light-atom coupling
were quickly proposed and experimentally studied [6—12]. A
large variety of Hamiltonians, including non-Abelian ones,
either in lattices or in the bulk [13-16], have been now
proposed to mimic magnetic field configurations like artificial
Dirac monopoles [17,18], spin-orbit (SO) coupling [19-21] or
topological phases [22,23]. For instance, for atoms loaded in
a square optical lattice, SO coupling leads to highly nontrivial
properties like ground states breaking time reversal invariance
and/or magnetic textures with topological properties, like a
skyrmion crystal [24-26]. Such skyrmionic structures have
been experimentally observed in excitations of cold atomic
gases [27], but not yet in the ground state. From a theorerical
point of view, some papers have proposed to generate these
topological configurations with cold atomic gases either in
transient excitations, which decay eventually to a nontopolog-
ical configuration [28], or directly in the ground state [29,30].
However the actual experimental implementation of the latter
proposal remains quite challenging.

In the present paper, we provide a rather simple ex-
perimental setup to generate spin textures in the ground
state of interacting ultracold bosonic atoms loaded in a
two-dimensional harmonic trap. Our scheme is based on
two copropagating Laguerre-Gauss laser beams illuminating
the atoms and coupling two of their internal ground state
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Zeeman sublevels. At the mean-field level, i.e., using a Gross-
Pitaevskii description, we show that the ground state of the
atomic system has different topological properties depending
on the interaction strength and the laser beam intensity. A
half-skyrmion state, also known as a Mermin-Ho vortex [31],
develops at low interactions while a meron pair develops at
large interactions.

In the following, we first introduce our model and its
effective Hamiltonian, then we briefly present the essential
properties of the single particle states. Next, we analyze
the topological properties of the ground state in the weak
interaction limit. Finally, we show that at large interactions
there is a transition to a ground state made of a vortex-
antivortex pair separated by a finite distance. The separation
between the two opposite vortices vanishes at the transition
and increases with the interaction.

II. MODEL HAMILTONIAN
A. Experimental Setup

We consider here bosonic ultracold atoms with 3 internal
ground state levels, for instance the F = 1 states of 3'Rb.
We assume the atoms are harmonically trapped in the two-
dimensional plane (x,y) and tightly confined in the third
direction z (chosen as the quantization axis) so that the atomic
dynamics is effectively two dimensional. The atoms are further
subjected to a static magnetic field along z splitting the Zeeman
degeneracy and are illuminated by two far-detuned laser beams
(blue detuning) copropagating along z with opposite circular
polarizations. These two laser beams create a resonant Raman
coupling between the Zeeman sublevels mp = +1; see Fig. 1
(A scheme). In the rotating-wave approximation, and after
adiabatic elimination of the excited state, the effective 2 x 2
Hamiltonian describing the dynamics in the (x,y) plane for the
mp = £1 ground state manifold reads [6,7,13,16,27,32-36]
(see the Appendix):
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FIG. 1. (Color online) The two lowest single-particle energies (in
units of iw) as a function of the dimensionless Rabi frequency 2. The
horizontal red dashed line corresponds to the non degenerate spinor
state ¢y where gy = — fo, see text. The black solid line corresponds
to theidegenerate spinor states ¢, and 7 ¢, see text.The two energy
branches cross at the critical value Q. ~ 3.35.

where M is the mass of the atoms, w the harmonic trapping
frequency and r = /x2 + y? the radial distance in the plane
and where we have used the pseudospin representation
[{)=|mp = —1) and |1) = |mp = 1). In the specific case
of Laguerre-Gauss beams [27,37] with equal (real) strength
Qo and carrying opposite orbital angular momentum =£#A, the
respective Rabi frequencies read:

Q QO 7 1(kz+<ﬂ)’ 92 — QO %el(sztp)7 (2)
where R is the size of the “doughnut” core, k the laser wave
number, and ¢ the polar angle of vector r = (x,y). We assume
here that the transverse size of the laser beams is much larger
than the atomic cloud.

In the following, we use the harmonic oscillator quantum
of energy Aw, the harmonic length a;,, = /h/Mw, and h/ay,
as energy, space and momentum units. We also denote the
usual Pauli spin matrices by o,, 0y, and o,. The dimensionless
single-particle effective Hamiltonian then reads:

12, 1.2 122 1 e
Hy = (5p° + 5r°)1 + 59Q%r 20 1 ) O

with 2 = Qz/(ZMa)szA) and where p = —iV. As easily
checked, this Hamiltonian is invariant under a combined
space and spip rotation, namely, Hy = R(¢o)HoR(¢o) where
R(¢pg) = el#L=+9) jg the operator associated to a rotation
by an angle ¢y around z both in coordinate and spin space.
Here L, = —i0/0¢ is the orbital angular momentum operator
around z. Applying the unitary transformation U (p) = €%,
one gets the unitary-equivalent Hamiltonian Hy = U HyU'
with

-1 2o \" 1 1

Ho==(pl+%0.) + -0+ +-0%%,. @
2 r 2 2

In this new gauge, Hy can be viewed as the Hamiltonian of a

particle subjected to the artificial gauge potential A = —rlé(/, o;

[16] associated to two infinite strings carrying opposite
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magnetic fluxes ® = £2m, one along the positive z axis,
the other one along the negative z axis. The corresponding
magnetic field is simply given by B = 27 4(r)é; o,.

B. Single-particle eigenstates

Since Hj is invariant under a combined spin and space
rotation, its spinor eigenstates in the pseudospin basis (| ),
[1)) have the general structure:

_ (S (D)) _ (e e

fulr) = (¢m¢<r)) = (gmmew > N

where m is an integer. Inspection of the coupled Schrodinger
equations for the eigenstates shows that both radial functions
fm(r) and g, (r) can be chosen real. H is also invariant under
the operator 7 = 0,C, Hy= 7T Hy7T ', where C represent
complex conjugation. This implies that both ¢,,(r) and 7 ¢,, (r)
are eigenstates of Hy with the same eigenenergy e, (€2). Since
T ¢>m(r) + ¢_,(r), we have g, = = f_,, and we can restrict
the ar analysis to the m > 0 sector. Noting that P (r)and 7 [ (r)
are orthogonal spinors when m # 0, we conclude that their
corresponding eigenenergy is doubly degenerate when Q2 > 0.
Figure 2 displays the two lowest eigenenergies of Hj as a
function of the dimensionless Rabi frequency 2. Below 2, ~
3.35, the ground state manifold is doubly degenerate and is
spanned by the two spinor states ¢;(r) and 7 ¢;(r). We find
that f1(r) reaches a finite value at the origin » = 0 while g, (r)
vanishes. This means that the spin-down component of ¢ (r),
g1(r) exp(2ip), depicts a vortex with vorticity equal to 2 while
the spin-up component of 7 ¢ (r), g1 (r) exp(—2ig), depicts the
opposite vortex. A convenient parametrization of the spinor

proves to be ﬂ (r) = /ni(r) X1 (r) where
B(r)
_ (xn @Y _  —cos
K = (Xw(l')) a ( 120 sin ﬁ(’)) ©
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FIG. 2. (Color online) The two lowest single-particle energies (in
units of fw) as a function of the dimensionless Rabi frequency 2. The
horizontal points (in red) correspond to the nondegenerate spinor state
¢o where gy = — fo; see text. The star symbols (in blue) correspond
to the degenerate spinor states ¢, and 7 ¢1; see text. The two energy
branches cross at the critical value . ~ 3.35.
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and n(r) = flz(r) + g%(r) is the total density. As n;(r) is
finite at the origin and g, (r) vanishes, we must have 5(0) = 0.
We also find B(co) = /2 corresponding to ny = n at large
distances. A configuration satisfying such boundary conditions
is known as a Mermin-Ho vortex [31], also called a half-
skyrmion since one has §(o0) = m for a “full” skyrmion. The
local spin texture is defined by

Sr) = x1()'o x1(r)
—sin B(r)(cos2¢ é; +sin2¢ é,) +cos B(r)é,, (7)

with modulus |S(r)| = 1. It characterizes a two-dimensional
(2D) Skyrmion with topological charge [38]

0= /dzrq(r) = /dzrei-f W, ®)

where i,j = x,y and where €/ is the antisymmetric tensor.
Using the parametrization given by Eq. (7), the topological
charge density is simply

ij S (S x9;9) _ _deosﬂ(r)

9
8 2mr dr ©)

q(r)=e€
We thus find that, for Q < €2., the topological properties of
the ground state spin texture of our noninteracting system are
described by a Mermin-Ho vortex with unit topological charge
Q = cos B(0) — cos B(o0) = 1.

Above 2., the ground state manifold is nondegenerate and
the eigenstate is now the spinor ¢y(r) where go(r) = — fo(r).
Since fy(r) vanishes at the origin, we see that the two spin
components, ¢o1(r) = fo(r)e™ and ¢o,(r) = — fo(r)e*™?,
describe opposite vortices with unit vorticity.

III. INTERACTING BOSONS

We assume here that the atoms in the mp = &1 Zeeman
states interact through a fully SU(2)-symmetric interaction
and are not coupled to the mr = 0 state. The corresponding
second-quantized Hamiltonian reads

Hy = %/dzr wiwiw,w,, (10)

where g is the dimensionless interaction strength and where
summation over the dummy pseudospin indices a and b
is understood. Here \Ili and V¥, stand for the creation and
destruction operators of a particle at point r in spin compo-
nent a = 1,|. They satisfy the usual bosonic commutation
relations [\I!a,\llg] = §4,. We next assume that, in the zero
temperature limit, all the bosons condense into a single spinor
coherent state ®(r) with spin components ®4(r) and @ (r),
and we describe the interacting system within a mean-field
approach. The Gross-Pitaevskii (GP) energy functional reads

E[g,®()] = / d’r [@H@%@@)Z] (11)

where ®T® = n(r) = n4(r) + ny (1) = [ D40 + |D () is
subjected to the normalization condition f d*rn(r) = 1.
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A. Weak interaction regime
1. Case @ < Q.

In the limit g — 0, only states with an energy separation
|6E| >~ g or lower are efficiently coupled. Therefore, in first
approximation, we expect the ground state ¢,(r) to belong
to the single-particle ground state manifold. We thus look
for the simple ansatz ¢,(r) = o ¢1(r) + B 7 ¢:1(r), where the
minimization parameters o and S are two constant complex
numbers satisfying |«|> + |B|> = 1. It is easy to check that
the corresponding GP energy functional is always larger
than the one computed with ¢;(r) alone [which is also
equal to that computed with 7 ¢;(r) alone]. This means
that, when g — 0, the 7 symmetry is spontaneously broken:
¢g(r)=¢_1(r) (a=1) or ¢u(r) = T@(r) (B = 1). The spin
texture associated to this weakly interacting GP ground state
is a Mermin-Ho vortex with unit topological charge. We have
numerically computed the exact GP ground state and checked
that the previous ansatz provides a qualitatively correct picture
at small values of the interaction strength g. For instance,
the density profiles n(r), ny(r), ny(r) and the topological
charge density g(r) of the exact GP spinor ground state are
displayed in Fig. 3 for g = 0.1 and 2 = 2. One can clearly
see that n4 remains finite whereas n| vanishes at the center
of the trap; in addition, the ground state depicts a nontrivial
topological charge density, with a total topological charge
Q = [d’r q(r) = 1. This emphasizes that the GP ground
state has the same topology as a Mermin-Ho vortex with unit
topological charge.

Starting from one of the single-particle ground states
selected in the limit g — 0, we now increase the interac-
tion strength g. Spinor ¢y can no longer be ignored now,
especially when  is close to Q. and ¢, T¢;(r), and
¢o are almost degenerate. An updated ansatz simply reads
¢Tg(r) =api(r) + BT ¢1(r) + ydo(r) with constant complex
parameters satisfying |a|?> + |8]> + |y|> = 1. We find that
there exists a critical interaction strength g.(£2) such that
¢g = ¢ (or T¢) when g < g. and ¢, = ¢pp when g > g..
The reason for this phase transition is that the spinor ¢y carries
less interaction energy than ¢, and 7 ¢; . Indeed its total density
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FIG. 3. (Color online) (a) Radial density profiles of the GP
spinor ground state for an interaction strength ¢ =0.1 and a
potential energy 2 = 2, obtained from an exact numerical calculation.
(b) Corresponding topological charge density ¢(r); see Egs. (7) and
(9). Only the spin-down density n(r) is vanishing at the origin,
indicating that the spin-down component hosts a vortex with a
vorticity equal to 2. The total topological charge is Q = [ d*r q(r) =
1. The length unit is set by a;,, = A/ Mw.
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no(r) is vanishing at the trap center whereas the total density
n1(r)is maximum there. At the mean-field level, this transition
is first order since the states have different vorticities.

For each €2, the critical interaction strength g. is obtained
by equating the two energy functionals Eq. (11) obtained in
each symmetry sector m (m = 0,1). It amounts to solving the
functional equation

[ dPr [ Ho®, — Of Ho®]
Vo — Vi

Here, ®,, is the GP ground state obtained in the sym-
metry sector m at the interaction strength g. and V,, =
1 [d*r (@) ®,)% In practice, ®,, is obtained by running
the imaginary-time evolution algorithm, starting from the
single-particle states ¢,,. The invariance of the GP equation
under a combined spin and space rotation ensures that the
imaginary-time evolved state always remains inside the chosen
symmetry sector. We solve Eq. (12) iteratively by starting
from g© = 0. The first estimate of the critical interaction
gV = F[0] is thus simply obtained by computing the energy
functionals with the single-particle ground states. The result
is shown in Fig. 4 (dashed line). One may notice that this
first-iteration prediction for g, is not really weak unless 2
is very close to €2.. This means that approximating the true
GP ground state by one of the single-particle states becomes
questionable. A more accurate estimate is thus obtained by
doing a second iteration step g? = F[g"]. The result is
shown in Fig. 4 (continuous line) and is in very good agreement
with the exact value for g. (star symbols) obtained by finding,

8¢ = Flgcl. 12)

2.5

*
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FIG. 4. (Color online) Critical value g. for the transition from
the m =1 to the m = 0 spinor states as a function of 2. Dashed
line: prediction obtained by comparing the GP energies computed
with the single-particle spinors. The agreement is fair only for Q
very close to €2.. Continuous line: prediction obtained by comparing
the GP energies computed with the GP ground states found, in each
sectorm = 0 orm = 1, at the interaction strength given by the dashed
line. Star symbols: prediction obtained by minimizing the GP energy
functional. As one can see the agreement with the continuous line
is very good. The inset shows the corresponding spin-up density
n4(r) below and above the critical line. The length unit is set by

an, = Vh/Mo.

PHYSICAL REVIEW A 92, 033615 (2015)

for each €2, the global minimum of the GP energy functional as
a function of g and monitoring the symmetry and topological
properties of the corresponding ground states.

2. > Q,

In this case, the single-particle ground state is ¢ and it
qualitatively describes the properties of the GP ground state in
the weakly interacting regime. This is confirmed by our exact
numerical results which show that the GP ground state indeed
hosts a vortex in each of its components, but with opposite
vorticity.

B. Strong interaction regime

In the strong interacting regime, higher single-particle states
are coupled and no simple ansatz can be made. In this case we
obtain the interacting ground state ¢, by direct minimization

of the GP energy functional Eq. (11). This is achieved by
imaginary-time evolution of the corresponding GP equation.
Figure 5 shows the ground state density of the up and down
components and their relative phase (6, — 6;) when g = 100
and Q = 4. As one can see, each component density vanishes
at an off-centered location, at which the other component
reaches its maximum, reducing thereby the overlapping area
between the two components and therefore their interaction
energy. The two points at which the densities vanish are
located at symmetric positions x = +x,, with respect to the
center of the trap. In addition, the relative phase between the
two components exhibits two clear 27 jumps along the two
segments ] —00, —x,,] and [x,,,+oo[ on axis x.

To gain further insight, we introduce again the pseudospin
representation and decompose the GP spinor components as

0 1
S

(a) 4 (c)
2

440 a4 -2 0
xXr xr

\)

FIG. 5. (Color online) Density profile of (a) the spin-down com-
ponent and (b) the spin-up component of the GP ground state spinor
at @ = 4 and g = 100. They describe a meron pair: each component
hosts a vortex, the two vortices are separated by a distance 2x,, and
have opposite vorticities. The relative phase (8, — 6;) (inunits of 7r) is
shown in (c). There are two clear 27 jumps on each side of the meron
pair, emphasizing that the vortex charge is 1. One may note that
the total relative phase accumulated along a loop encircling the two
vortices is 4, a situation that differs from the usual meron pair [29]
where the phase jump happens when one crosses the line connecting
the vortex centers. The length unit is set by a;,, = VA/Mw.
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FIG. 6. (Color online) Topological properties of the GP ground
state for 2 =4 and g = 100. (a) Spin texture components (S;,S,)
in the plane (x,y). Around the left vortex S = —e,, the tex-
ture corresponds to (S,,Sy) o< (6x,8y), whereas it corresponds to
(Sy,8y) o< (—éx,—dy) around the right vortex S =e,; see text.
(b) The corresponding topological charge density; see Eqs. (8) and
(18). The distribution is odd with respect to the x coordinate, which
emphasizes the creation of a vortex-antivortex pair with vanishing
total topological charge. The length unit is set by aj, = vA/Mo.

be.a = /1 Xa With x, = |x4l€% (@ = 1,]). The total density
isn= |<1§¢|2 + |¢¢|2 and the spinor x thus satisfies |XT|2 +
| x ¢|2 = 1. The corresponding local spin texture S = x fo X
reads

Sy =2|x4llxy 1 cos(@, — 04),
Sy =2|x4llx, | sin(@, — 64), (13)
Se =P = Ixy

and has unit modulus |S| = 1. This local spin is parallel
to axis z, namely, S = ¢, (respectively, S = —¢,) at space
points where n, (respectively, n4) vanishes. The relative
phase (0, — 64) is undefined at these two points and they
correspond to a vortex-antivortex pair. These properties appear
clearly in Fig. 6(a) where the spin components (S,,S,) are
plotted in the plane (x,y). Writing r = (—x,, + 8x,5y), we
find (S,,Sy) o (8x,8y) around the left vortex S = —é.. By
the same token, writing r = (x,, + 8x,8y), we find (S;,S,)
(—8x,—38y) around the right vortex S = +e,. The topological
charge density, computed with Eq. (8), is displayed in Fig. 6.
It emphasizes that the GP ground state spinor depicts two
vortices with opposite vorticity (with respect to S;), such that
the total topological charge vanishes.

PHYSICAL REVIEW A 92, 033615 (2015)

In the pseudospin representation [30,39], the GP energy
functional reads
2

1
E =/d2r|:§(Vﬁ)2 + g(VS)Z NELL %n

2 e
(14)
1l 2o . 8 2
+ EQ r (I + Sy cos2¢ + S, sin 2¢) + En ,
where
(VS £ (VS)? + (VS,) + (VS (15)
The effective velocity field is given by [30,39]
1 S8, VS, — S, VSy)
=—|V® ,
v, 2[ + S+ S)Z, (16)

and depends on the gradient of the total phase ® = 6; + 6,
and of the pseudospin. In analogy with the meron pair solution
discussed in [29,40,41], we parametrize the spin texture as
follows:

_ —r2cos2¢p + AZear _ —r2sin2¢p
Sx = r2 4+ A2e—ar? ’ y r2 4+ A2e—ar?’
17)
2he" /2 r cos ©
S, =———F——F—7

72 + )\’2 e—arz
The usual meron pair parametrization is obtained for o = 0.
The corresponding topological charge density is
WX wxr?
Y ,
(4 pu?)? w4 p?)?

—ar2/2

(18)

q(r)=—

where u = e The vortex-antivortex nature of the
meron pair results in a topological density ¢(r) which is an
odd function of coordinate x; see Fig. 6(b). As a consequence,
the total topological charge is Q = [dr q(r) = 0.

The spin texture Eq. (17) corresponds to the GP spinor
condensate:

nou—re’’? b = n u+re?

2 Jrry 2 ¢ 2 Jrry
The meron pair is polarized along axis x due to the o, term
in Eq. (4) which describes an effective magnetic field along x.

The locations of the two vortex cores are determined by the
two extremas of S,. They are found at (%x,,,0) where [29]

¢ = (19)

x2 =22, (20)

The relative phase is given by

u2 — r2eliv

V02 + 12 — 4u?r2 cos? g
and is singular at the two vortex cores (Z£x,,0). Writ-
ing (x,y) = (£x,, + 8x,8y), a first-order expansion gives
0, — 64y =8¢ + m around (x,,0) and 6, — 6y = ¢ around
(—xm,0), where §¢ = arctan (§y/dx) is the local polar angle.
When circling around each vortex core, the accumulated
relative phase is 27. Similarly, in the large distance limit
r > X, the relative phase is 8, — 64, = 2¢ + 7 and a full loop
around the two vortices generates a total phase change of 47.
This is slightly different from the usual meron pair situation
[29], where the relative phase reaches a constant value at large

Ot = 1)
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FIG. 7. (Color online) The size 2x,, of the meron pair, in units of
the harmonic length a;,, = +/h/Mw, as afunction of g for Q2 = 4. The
system exhibits a second-order phase transition at g &~ 20 between a
ground state with topological properties similar to the m = 0 single-
particle state and a meron pair with two opposite and oft-centered
vortices.

distance, which corresponds to a spin texture pointing in a fixed
direction. In the present case, (S,,S,) ~ (—cos2¢,—sin2¢).
This difference explains why, in the present situation, the phase
jumps happen on each outer side of the meron pair and not in
between the two vortices; see Fig. 5(b). Apart from this, the GP
ground state properties are similar to those of the meron pair
already studied in a double-layer quantum Hall system [29,42].

By fitting our numerical data with ansatz Eq. (17), we have
determined the parameters A and o as a function of 2 and g.
The results are shown in Fig. 7 for Q2 = 4. One can clearly
see a phase transition happening at g =~ 20. Below, the GP
ground state exhibits topological properties similar to the m =
0 single-particle state. Above, the GP ground state describes
a meron pair with two off-centered and opposite vortices. It
means that the energy cost to separate and shift away the
vortex cores is less than the interaction energy. Above the
transition point, the value of A increases with g, which means
that the size 2x,, of the meron pair increases. Finally, from
the pseudospin point of view, the transition occurs between
a uniformly vanishing S.(r) component and a well-defined
structure S,(r). Therefore we expect the spin susceptibility
along axis z to diverge at the transition and the phase transition
is second order.

C. Phase diagram

Our previous analysis at strong and weak couplings have
identified three topologically distinct ground states: the m = 1
vortex (also known as the Mermin-Ho vortex), the m =0
vortex-antivortex, and the meron pair. A natural question to
address next is then the phase diagram of the system in the
(£2,g) parameter plane. To this end, we have performed a nu-
merical minimization of Eq. (11) for some particular values of
2 and g. Our results are summarized in Fig. 8 and suggest the
existence of a tricritical point (2*,¢*) where the three phases
meet. As can be seen, the system always enters the meron
pair phase at sufficiently strong interaction. For Q2 < Q*, the
system starts in the Mermin-Ho phase at low interactions and
then, by increasing g, undergoes a first-order transition directly
to the meron pair phase. Instead, for Q* < Q < €., one finds
first a first-order transition between the Mermin-Ho phase
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FIG. 8. (Color online) The topology of the ground states obtained
at some particular values of €2 and g. Triangles: Mermin-Ho vortex
(MH); full circles: meron pair (MP); diamonds: m =0 vortex-
antivortex (V V). Our results suggest the existence of a tricritical point
where the three phases meet. The inset shows a qualitative sketch of
the phase diagram that we infer from our results. The transition from
the MH phase to the MP and V'V phases are first-order (solid line).
The transition from the V'V phase to the MP phase is second-order
(dashed line).

and the m = 0 vortex-antivortex phase, then followed by a
second-order transition between the m = 0 vortex-antivortex
phase and the meron pair phase. For Q > €., the system
starts in the m = O vortex-antivortex phase and undergoes a
second-order phase transition to the meron pair phase.

From an experimental point of view, the effective 2D
interaction strength is given by g,p = +/8mag/l,, where I,
is the harmonic length of the transverse confinement and ag
is the three-dimensional (3D) scattering length. In the case of
the 8Rb, the value of ag is 5.2 nm and a strong transverse trap
corresponds typically to [, ~ 0.25 um, such that g,p ~ 0.1.
Therefore, with N = 1000 atoms in the trap, which is within
experimental reach, one readily obtains an effective interaction
strength gop x N = 100.

IV. CONCLUSION

In this paper we have proposed an experimental scheme
leading to nontrivial spin textures in the interacting ground
state of a two-component spinor condensate. We have studied
its phase diagram and identified three possible phases. At low
enough coupling parameter €2 and interaction strength g, the
ground state has the topology of a Mermin-Ho vortex. By
increasing g at fixed €2, this Mermin-Ho phase undergoes
a first-order transition either to a meron pair phase or to a
vortex-antivortex phase depending on the value of €2. The
vortex-antivortex and the meron pair phases are separated by a
second-order transition line. A possible extension of the work
is to study the excitations of the system and their topological
properties. Finally, from an experimental point of view, F = 1
spinor condensates have also an effective spin-spin interaction
22S?/2. This interaction term breaks the SU(2) invariance and
converts a pair of bosons in the |mp = —1) and [mp = +1)
spin states into a pair of bosons in the [mp = 0) spin state.
In the present situation, these collision processes correspond
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to losses. In the case of 3'Rb, fortunately g, < g and one
should be able to observe the Mermin-Ho vortex and the
meron pair before the effect of spin-spin interaction sets in.
An alternative would be to lift the energy of the |mr = 0) spin
state and suppress the detrimental pair conversion processes
by rendering them energetically less favorable.
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APPENDIX

This Appendix contains the derivation of the effective atom-
light coupling Hamiltonian (1).

The atom-light coupling Hamiltonian Hyp, of the A scheme
(see Fig. 1) reads

E, Q7 cos(wit) 5 cos(wyt)
Q2 cos(wt) E_, 0 (A1)
Q5 cos(wat) 0 E,

The energies of the atomic levels are denoted by E|, E_j,
and E,, respectively. The Rabi frequencies for the electric-
dipole transition at the laser frequencies w; and w, are €2;
and Q5.

It is convenient to transform the atomic states into the
rotating frame via the unitary transformation

exp(—in,t) 0 0
U@l = 0 exp(—in_t) 0 , (A2)
0 0 exp(—int)

with n,=(Ei1+E_1+wi+)/2, n-i=(E+E_1 +
wry —w1)/2,m =(E1 + E_1 + w —w)/2.

The rotating wave approximation consists in removing
the terms oscillating at frequencies 2w , in the Hamiltonian

PHYSICAL REVIEW A 92, 033615 (2015)

H(t) = Ut(t)HALU(t), such that the effective (time indepen-
dent) Hamiltonian now reads:

L2 @ @
[ -5 ol

Hrwa:
2\, 0o s

(A3)

where A = 2E, — w; — w; — E; — E_1)/2is the one photon
detuning and § = Ey — E_| + wy — w; is the two photon
detuning.

The evolution of the A scheme, in the rotating frame, obeys
the Schrodinger equation

9 Ce
i—U = H.,,2W with W=][c,
at .

(A4)

Typically, (i) the initial state is taken in the m p = %1 subspace,
i.e, with a vanishing population in the excited state |e); (ii) the
one photon detuning A is very large, i.e., |A| > |Q21],|€22],[8].
In this case, the coupling with the excited state can be treated as
a small perturbation for the evolution of the state in the mp =
41 subspace. More precisely, one can show that it results in a
extremely slow evolution of the population in the excited state,
which, at first order, amounts to writing

9 .
—C, = —%(QTC—I + Q;CI +2Ac,) =0.

o7 (AS5)

We can therefore express ¢, as a linear combination of c_; and
c1, and thereby eliminate c, in the evolution of the state, giving
rise to the following effective Hamiltonian for the evolution of
the Zeeman sublevels mp = =+1:

00}

. A6
—28A + |s22|2) (46)
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