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Using the example of dysprosium atoms in an optical lattice, we show how dipolar interactions between
magnetic dipoles can be used to obtain fractional quantum Hall states. In our approach, dysprosium atoms are
trapped one atom per site in a deep optical lattice with negligible tunneling. Microwave and spatially dependent
optical dressing fields are used to define an effective spin- 1

2 or spin-1 degree of freedom in each atom. Thinking of
spin- 1

2 particles as hard-core bosons, dipole-dipole interactions give rise to boson hopping, topological flat bands
with Chern number 1, and the ν = 1

2 Laughlin state. Thinking of spin-1 particles as two-component hard-core
bosons, dipole-dipole interactions again give rise to boson hopping, topological flat bands with Chern number
2, and the bilayer Halperin (2,2,1) state. By adjusting the optical fields, we find a phase diagram, in which the
(2,2,1) state competes with superfluidity. Generalizations to solid-state magnetic dipoles are discussed.
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I. INTRODUCTION

In addition to their fundamental importance, topological
phases of matter may eventually enable the realization of
fault-tolerant quantum computing [1] and robust quantum
state transfer [2]. Thanks to unprecedented controllability
and purity, synthetic atomic, molecular, and optical systems
are gaining momentum in their ability to exhibit topological
phenomena [3–10]. Dipolar systems, such as Rydberg atoms,
polar molecules, and magnetic atoms, have recently attracted
a particular degree of attention thanks to the strength of the
interactions and the natural link between dipolar interactions
and topology [11–19]. Indeed, thanks to the Einstein–de
Haas effect, dipolar interaction can convert internal angular
momentum into angular momentum describing the rotation
of the two interacting dipoles around each other. It is not
surprising that the resulting rotation can be harnessed for
generating effective gauge fields. However, nearly all dipolar
topological literature to date focuses on interacting topological
states arising from flat Chern bands with a Chern number
equal to one. The exception is Ref. [17], which does consider
bands with higher Chern number, but which provides no path
for making the bands sufficiently flat for realizing interacting
topological phases. In this article, utilizing the magnetic atom
dysprosium [20], we demonstrate how to create a topological
flat band with Chern number C = 2 and to utilize the resulting
band structure to realize the bilayer Halperin (2,2,1) fractional
quantum Hall state [21]. By adjusting applied fields, we find
a phase diagram, in which the (2,2,1) state competes with
neighboring superfluids.

The excitement behind lattice models with flat C = 2 bands
stems from the fact that fractional quantum Hall states (also
referred to as fractional Chern insulators in the context of
lattice models) in C = 1 bands are typically analogous to
continuum fractional quantum Hall states in Landau levels

(which also have C = 1). On the other hand, some fractional
quantum Hall states in C = 2 bands do not have simple
Landau-level analogs [22,23]. In the case of the (2,2,1) state
discussed in this paper, a Landau-level analog does exist
but naturally arises only in bilayer systems. There have
been several proposals for engineering flat C = 2 bands in
solid-state contexts [24–27]. At fractional filling of those
models, there is numerical evidence for the (2,2,1) state
[26,28–30] and for other bosonic [30] and fermionic [27]
fractional quantum Hall states. The purity and controllability
of atomic and molecular systems, as well as access to probes
not available in the solid state, make realizing flat C = 2 bands
in dipolar systems an intriguing direction. Furthermore, as we
will discuss in the Outlook, in combination with extrinsic
defects [31], which are also arguably easier to realize in
atomic and molecular systems than in solid-state systems,
our proposal may open up avenues for realizing other exotic
topological phenomena such as parafermionic zero modes and
Fibonacci anyons.

The goal of this paper is to demonstrate the controllability
and potential of magnetic dipoles for simulating many-body
phases, with a particular focus on fractional quantum Hall
states in C = 2 bands. Because of the small energy scales that
our dysprosium proposal relies on, the constraints required
by our approach are challenging for current-generation ex-
periments. Therefore, our approach should be viewed as a
general framework rather than an experimental blueprint. In
the case of bilayer fractional quantum Hall states, this general
framework consists of dressing dipoles to construct effective
spin-1 particles, which can be mapped to two-component
hard-core bosons; dipole-dipole interactions then give rise to
boson hopping, C = 2 flat bands, and the bilayer Halperin
(2,2,1) state. Optimization of our dysprosium proposal may
bring it closer to experimental reality. Furthermore, the control
techniques that we demonstrate for dysprosium should be
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readily applicable to other magnetic atoms, such as erbium
[32,33] and chromium [34], and to magnetic molecules, such
as Dy2 and Er2 [35]. The latter, in particular, have larger
dipole moments than the individual atoms and will give rise to
stronger interactions, partially alleviating the problem of small
energy scales. As we discuss in detail in the paper, our control
techniques and the approach to dipolar fractional quantum Hall
states can also be naturally generalized to solid-state magnetic
dipoles, such as nitrogen-vacancy defects in diamond [36].
While solid-state defects have smaller magnetic dipoles than
dysprosium, one may be able to bring such defects much closer
to each other. Finally, we expect our approach to engineering
fractional quantum Hall states in C = 2 bands to be also
straightforwardly extendable to electric dipoles, such as polar
molecules [37] and Rydberg atoms [38], which offer much
larger energy scales and may, thus, provide an easier path
towards an experimental realization.

The remainder of the article is organized as follows. In
Sec. II, we describe the effective Hamiltonian associated with
a two-dimensional lattice of ultracold dysprosium atoms. We
demonstrate that magnetic dipolar interactions mediate both
long-range dynamics (hopping) and interactions. Microwave
and optical radiation is used to break time-reversal symmetry
and to control the specific nature of the atomic degrees of
freedom. By tuning these dressing parameters, we realize the
ν = 1

2 fractional Chern insulator and clarify its characteristics
with a variety of numerical diagnostics. In Sec. III, we general-
ize our approach to solid-state magnetic dipoles. Specifically,
we consider the example of nitrogen-vacancy defects in
diamond and offer a route to suboptical-wavelength resolution
dressing via patterned dielectrics. In Sec. IV, we discuss how
to realize a C = 2 topological flat band with dysprosium, by
considering an effective spin-1 atomic degree of freedom.
Upon populating this band structure with a finite density of
interacting particles, we find a ground state that exhibits a Hall
conductivity σxy = 2

3 consistent with the (2,2,1) Halperin state.
In Sec. V, we elaborate on the experimental considerations and
discuss the challenges using current technologies. Finally, in
Sec. VI, we present a brief outlook.

II. C = 1 FLAT BAND AND THE ν = 1
2 LAUGHLIN STATE

To introduce the main features of dysprosium, as well as
dipolar-mediated topological flat bands and fractional Chern
insulators, we will first show how to obtain a flat band with
Chern number C = 1 and use it to realize a ν = 1

2 Laughlin
state with dysprosium. As shown in Fig. 1(a), we consider
loading 161Dy one atom per site in a square lattice in the
X-Y plane with nearest-neighbor spacing of λlat/2 = 266 nm
created with off-resonant light of λlat = 532 nm wavelength.
We further assume that the lattice is so deep that tunneling
is negligible, which allows us to avoid dipolar relaxation [39]
and light-assisted collisions [40]. No static magnetic fields
are applied. Instead, the quantization axis [ẑ in Fig. 1(b)] is
determined by an off-resonant linearly polarized optical field
(not shown), which provides a shift ∝M2 shown in Fig. 1(c)
and discussed in detail in Sec. V. To avoid overcrowding
Fig. 1(c), most unused Zeeman states are not shown. As shown
in Fig. 1(b), the quantization axis ẑ is pointing in a tunable
direction different from Ẑ.
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FIG. 1. (Color online) (a) Dysprosium atoms are loaded one
atom per site into a square lattice in the X-Y plane. (b) The
quantization axis of the atoms ẑ (red) is determined by the polarization
of an applied optical field discussed below (no static magnetic or
electric fields are applied). To obtain the x-y-z coordinate system,
one rotates the X-Y -Z coordinate system by �0 around the Ẑ axis
and then by �0 around the ŷ axis. (c) The relevant 161Dy level structure
(the vertical axis shows the energy) used for obtaining the flat band
with Chern number C = 1 and the corresponding ν = 1

2 Laughlin
state. The lower hyperfine levels labeled by F are in the J = 8 ground
electronic state. Since the nuclear spin is I = 5

2 , F runs from 11
2 to 21

2 .
To avoid overcrowding the figure with unused energy levels, we do not
show F = 11

2 , as well as most of the Zeeman levels associated with
other F levels. Far-detuned light (not shown) defines the quantization
axis by providing an ac Stark shift ∝M2 with an F -dependent
coefficient. The 421-nm light (magenta), which drives a transition
to the F ′ = 17

2 hyperfine level of the 4f 10(5I8)6s6p(1P o
1 )(8,1)o9 state

(only 2 out of 18 Zeeman states are used and hence shown), and the
microwaves (black) define the dark dressed states |↓〉 and |↑〉. The
dressing optical field is different on the two sublattices [green and
yellow in (a)] making the state |↑〉 sublattice dependent. Levels |1〉
and |2〉 comprising state |↓〉 are color coded red, while levels |3〉, |4〉,
|5〉, and |6〉 comprising state |↑〉 are color coded blue.

Optical and microwave dressing fields are then used to
construct dressed dark states |↓〉 = (|1〉 + |2〉)/√2 and |↑〉 =
−s|3〉 + v|4〉 + w(|5〉 + |6〉)/√2, where the site-dependent
coefficients s, v, and w in the definition of |↑〉 are controlled
by the amplitudes of the applied fields. For example, the
Rabi frequencies �1 and �2 of the two optical Raman fields
coupling states |4〉 and |6〉 to an optically excited state |e〉
give rise to the following term in the Hamiltonian: |e〉(〈4|�1 +
〈6|�2). Thanks to the destructive interference of two excitation
pathways, the state |↑〉 = −s|3〉 + v|4〉 + w(|5〉 + |6〉)/√2
is a zero-energy dark eigenstate of this Hamiltonian term
provided �2/�1 = −√

2v/w. Therefore, the ratio of the Rabi
frequencies �2 and �1 can be used to set the ratio of the
amplitudes of states |4〉 and |6〉 in the dark state |↑〉. Similarly,
the Rabi frequencies of the two microwaves coupling state |6〉
to state |F = 19

2 ,M = − 1
2 〉 can be chosen in such a way that

the amplitude of state |F = 19
2 ,M = − 1

2 〉 in the dark state is
negligible compared to the amplitude of state |6〉. Continuing
in this way, the Rabi frequencies of the four optical and four
microwave fields coupling states |3〉, |5〉, |F = 19

2 ,M = − 1
2 〉,
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|6〉, and |4〉 can be chosen to make |↑〉 the unique dark state
for any desired values of s, v, and w. As we will discuss in
the following, the site-to-site variation of the Rabi frequencies
of the optical fields can be used to achieve the desired site
dependence of coefficients s, v, and w needed to make a flat
band. A similar procedure applies to state |↓〉, except there only
microwave fields are used, so that the composition of state |↓〉
is site independent. Assuming that the optical fields have Rabi
frequencies with typical amplitudes ∼�dr 
 �, where � is
the detuning from the optically excited state, and assuming
that the microwave fields have Rabi frequencies with typical
amplitudes ∼�2

dr/�, the dark states |↑〉 and |↓〉 are separated
from the bright states by an energy ∼�2

dr/�.
We choose to build our dark states |↑〉 and |↓〉 out of Zeeman

levels with small values of |M|, specifically |M| = 3
2 and 5

2 ,
as opposed to stretched or near-stretched states with |M| ≈ F .
This allows us to maximize the transition dipole moments
between the states involved and to simultaneously minimize
the sensitivity of the energy levels to stray magnetic fields.
We do not use states with |M| = 1

2 in |↑〉 and |↓〉 since such
states would complicate our analysis, as we will point out in
the following.

Interactions between the effective spin- 1
2 particles are

mediated by magnetic dipole-dipole interactions. Ignoring
the small nuclear dipole moment, the interaction between
two dysprosium atoms i and j separated by (R,θ,φ) in the
spherical coordinates associated with the x-y-z coordinate
system [whose orientation relative to the X-Y -Z coordinate
system is determined by (�0,�0), as shown in Fig. 1(b)], in
the units of μ0(gJ μB)2/(4πR3) (where the Landé g factor is
gJ = 1.24 [41]), is given by

Ĥij = (1 − 3 cos2 θ )
[
Ĵ z

i Ĵ z
j − 1

4 (Ĵ+
i Ĵ−

j + Ĵ−
i Ĵ+

j )
]

− 3
4 sin2 θ [e−2iφ Ĵ+

i Ĵ+
j + H.c.]. (1)

Here, J = 8 is the total electronic angular momentum associ-
ated with the electronic ground state. We set � = 1 throughout
the paper. Since |↑〉 and |↓〉 do not contain states with |M| = 1

2 ,
Eq. (1) does not include terms of the form Ĵ+

i Ĵ z
j and Ĵ−

i Ĵ z
j ,

which are off resonant for states with |M| > 1
2 . The presence

of these terms would have complicated our analysis.
Assuming that the energy separation ∼�2

dr/� of the dark
states |↑〉 and |↓〉 from the bright states is larger than the
dipole-dipole interaction strength, we project the Hamiltonian
in Eq. (1) onto the four-dimensional Hilbert space, where each
of the two atoms is in state |↓〉 = |0〉 or |↑〉 = â†|0〉. We have
introduced the creation operator â

†
j for a hard-core boson on

site j . As shown in Appendix A, Eq. (1) then reduces to

Ĥij = (1 − 3 cos2 θ )
[
n̂i n̂j

{
μ2

4(|vi |2 − |si |2)(|vj |2 − |sj |2)

− 1
8μ2

53(w∗
i wj (sis

∗
j + viv

∗
j ) + H.c.)

}
+ {

â
†
i âj

(
μ2

26w
∗
i wj − 1

8μ2
13(s∗

i sj + v∗
i vj )

) + H.c.
}]

− 3
4 sin2 θ

[
e−2iφ

{
1
2μ2

53n̂i n̂j (s∗
i w

∗
j vjwi + s∗

j w
∗
i viwj )

− 1
2μ2

13(â†
i âj vj s

∗
i + âi â

†
j vis

∗
j )

} + H.c.
]
, (2)

where n̂i = â
†
i âi and μαβ = 〈α|Ĵ z,±|β〉, where the difference

between the M quantum numbers of |α〉 and |β〉 determines
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FIG. 2. (Color online) (a) Flat topological band with Chern
number C = 1. The flatness of the band (band gap divided by
bandwidth) is ≈8. (b) The momentum-resolved eigenvalues for
the ν = 1

2 fractional Chern insulator with six hard-core bosons
on a 6 × 4 torus. The momentum sector n2 + 4n1 corresponds to
(kx,ky) = (n1/3,n2/2 − n1/3)π , n1 = 0,1,2, and n2 = 0,1,2,3. The
spectrum features a gap separating two degenerate ground states at
(kx,ky) = (0,0) and (0,π ) (blue) from the other states by a gap.

the choice of z or ±. Notice that, in contrast to electric-dipole
implementations, the bare |F,M〉 states in Fig. 1(c) have sub-
stantial dipole moments even in the absence of applied fields.

The dipole-dipole interaction Hamiltonian describing all
the atoms can then be written as

Ĥdd =
∑
i 
=j

[tij â
†
i âj + Vij n̂i n̂j ], (3)

where the hopping amplitudes tij and the density-density
interactions Vij can be read out from Eq. (2).

In Fig. 2, we show the C = 1 topological flat band and
the resulting ν = 1

2 Laughlin state on a torus, exhibiting
the expected gapped twofold-degenerate ground state. Each
ground state was verified to have the many-body Chern number
of 1

2 and the correct quasihole statistics obeying the generalized
Pauli principle [42]. The specific values, used in Fig. 2, of site-
dependent coefficients s, v, w and of the direction of (�0,�0)
of the quantization axis relative to the X-Y -Z plane are given
in Appendix A. In particular, we would like to set arbitrary s, v,
and w on one sublattice [yellow in Fig. 1(a)] and arbitrary s, v,
and w on the other sublattice [green in Fig. 1(a)]. On top of that,
we would like the value of w to alternate every other row. The
421-nm optical fields shown in Fig. 1(c) are key to generating
this site dependence of s, v, and w, while the microwave fields
provide spatially uniform couplings. Specifically, first, we
apply an optical field with a nonzero π -polarized component
(with respect to the quantization axis ẑ) that is uniform across
the square lattice by having the light’s k vector perpendicular to
the plane of the atoms. This beam will realize the π -polarized
optical fields shown in Fig. 1(c). The beam’s polarization can
always be chosen such that its σ+ and σ− components (with
respect to the quantization axis ẑ) have equal intensity. These
σ± components will thus only result in ac Stark shifts that
keep the energies of |F,M〉 and |F,−M〉 equal and that can
therefore be simply absorbed into the ac Stark shifts ∝M2 that
define the quantization axis. Second, we need to realize the
σ+ and σ−-polarized optical fields shown in Fig. 1(c). Since
421 nm is less than the wavelength of light λlat = 532 nm used
to create the optical lattice, we can take a beam propagating
along X̂ and rotate its k vector slightly around Ŷ , such that,
within the XY plane of the atoms, it acquires periodicity of
twice the lattice spacing along X̂. We will have two such beams
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corresponding to clockwise and counterclockwise rotations
around Ŷ . We then similarly take a beam propagating along
Ŷ and rotate its k vector slightly around X̂, such that, within
the XY plane of the atoms, it acquires periodicity of twice the
lattice spacing along Ŷ . Again, we will have two such beams
corresponding to clockwise and counterclockwise rotations
around X̂. The electric field of each of the resulting four
beams is described by two complex numbers corresponding to
the amplitudes of the two transverse polarization components.
The resulting eight complex numbers can be generically tuned
to get no π -polarization amplitude on any of the atoms
and simultaneously arbitrary σ+ and σ− amplitudes on the
two sublattices subject to the desired sign alternation every
other row.

III. IMPLEMENTATION IN NV CENTERS

To depict the generality of our construction, we now
consider magnetic dipoles associated with nitrogen-vacancy
(NV) color centers in diamond. The NV center has received
a tremendous amount of interest in recent years owing to the
fact that its electronic spin can be polarized, manipulated, and
optically detected under ambient conditions [43–49]. Each NV
center also harbors a localized nuclear spin, which exhibits
extremely long coherence times [50]. Using a combination
of these electronic and nuclear degrees of freedom, we will
demonstrate the ability to realize topological flat bands. Our
approach will be analogous to the previous section: namely,
the use of microwave and optical fields to break time-reversal
symmetry and to realize appropriately dressed eigenstates.

The electronic ground state of each NV center is a spin-1
triplet described by the Hamiltonian,

ĤNV = D0(Ŝz)2−μeBŜz, (4)

where D0/2π = 2.87 GHz is the zero-field splitting, μe =
−(2π )2.8 MHz/G is the electron spin gyromagnetic ratio, and
B is a magnetic field applied parallel to the NV axis. Electronic
spins of two NV centers interact via the magnetic dipole-dipole
interaction Hamiltonian in Eq. (1) with the substitutions
Ĵ±,z → Ŝ±,z and gJ μB → μe. The NV electronic spin is
coupled via hyperfine interactions to the I = 1

2 nuclear spin of
the 15N impurity via

ĤHF = A‖ŜzÎ z + A⊥(Ŝx Î x + Ŝy Î y), (5)

where A‖/2π ≈ 3.0 MHz and A⊥/2π ≈ 3.7 MHz [51–53].
We assume that a dc magnetic field tunes the energies of
states |0,− 1

2 〉 and |1, 1
2 〉 to be nearly equal and simultaneously

far detunes the energies of states |−1,± 1
2 〉, where states

are labeled by |Sz,I z〉. The A⊥ term in Eq. (5) mixes the
|0, 1

2 〉 and |1,− 1
2 〉 states, yielding the energy levels shown

versus magnetic field in Fig. 3(a), where we have defined the
eigenstates |A〉 = β|1,− 1

2 〉 − α|0, 1
2 〉, |B〉 = |0,− 1

2 〉, |C〉 =
|1, 1

2 〉, and |D〉 = α|1,− 1
2 〉 + β|0, 1

2 〉. To allow for resonant
hops of spin excitations, we work at B ≈ −1028 G where
states |B〉 and |C〉 are nearly degenerate. This near degeneracy
is needed to keep the crucial Ĵ+

i Ĵ+
j (i.e., Ŝ+

i Ŝ+
j ) transitions

of Eq. (1) resonant. In the dysprosium implementation, the
corresponding degeneracy of the Zeeman levels M and −M

was achieved by working at zero magnetic field.
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FIG. 3. (Color online) (a) Magnetic field required to tune the
hyperfine coupled NV states to their desired resonances. (b) Optical
dressing M scheme which enables sufficient control to realize
topological flat bands.

The effective states we use on each NV center are |0〉 = |A〉
and |1〉 = s|B〉 + v|C〉 + w|D〉. Analogous to the case of
dysprosium, the coefficients s,v,w are determined via an
optical “M” dressing scheme [Fig. 3(b)] where the two
excited states are |±〉 ∝ |Ex〉 ± |A2〉, with |Ex〉,|A2〉 being
two specific electronic excited states of the NV [54,55]. The
state |1〉 is the so-called dark state of the M scheme with
s = �2�4/�̃, v = �1�3/�̃, and w = −�1�4/�̃, where �̃

is a normalization. Note that lasers 1 and 3 must be linearly
polarized, while lasers 2 and 4 are circularly polarized. This
elliptical polarization of light explicitly breaks time-reversal
symmetry.

The mixing angle tan(θi) = |si/vi | characterizes the
strength of the effective dipole moment of |1〉, thereby deter-
mining the magnitude of the interactions. In the limit θi → 0,
we have s → 0; since the state |B〉 carries no electronic spin
dipole moment, the dipolar interaction strength increases as
θi → 0. Topological flat bands are found for a variety of
parameter regimes, and fractional Chern insulating ground
states are typically obtained for θi > 0.5, where long-range
interactions are relatively weak.

Optical dressing and strain

One challenge that arises in the context of implementing
topological phases with solid-state magnetic dipoles is the
ability to vary dressed states on length scales smaller than
an optical wavelength. Indeed, to obtain flat topological
band structures, we require spatially inhomogeneous optical
dressing varying from site to site, a nontrivial task for lattice
spacings a ∼ 20 nm (required to achieve sufficiently strong
magnetic dipole-dipole interactions) well below optical reso-
lution. In the case of NVs, one can, in principle, accomplish
this task by modulating an applied dc electric field from site to
site, using a patterned conducting nanostructure on the surface
of the diamond as shown in Fig. 4(a). A dc electric field applied
parallel to the NV axis shifts the electronic excited state with
respect to the ground-state triplet due to its strong electric
dipole moment, dES

‖ ∼ (2π )1 MHz cm/V. The ground-state
dipole moment is significantly weaker, dGS

‖ ∼ (2π )0.35 Hz
cm/V, and can be safely neglected [55]. Thanks to the
application of a dc voltage between the patterned surface
conductor and a back gate, the electric field on red and blue
sites tunes the optical transitions of the NV centers in and out
of resonance with red and blue optical driving lasers, which
are applied globally [Fig. 4(b)]. For a diamond sample of
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FIG. 4. (Color online) Control of solid-state spins. (a) Two-
dimensional array of implanted NV centers near diamond 110 surface,
with NV lattice spacing a = 20 nm. A uniform applied electric field
and a dielectric nanostructure patterned on the surface modulate the
displacement field at each NV center. (b) Schematic optical dressing
scheme. The left panel corresponds to the bare level structure and the
right panel corresponds to the shifted level structure in the presence
of gating. Spin states |∓1〉 in the electronic ground state are coupled
to the |A2〉 excited state with σ± polarized light. We have left out
the hyperfine structure for simplicity. Modulated displacement field
brings the two frequencies (red and blue) of optical dressing in and
out of resonance. (c) Patterned dielectric on the surface of diamond
(with an indium tin oxide (ITO) back gate) which can yield a local
dc field on the order of 103 V/cm as shown in (d).

thickness 10 μm, an applied voltage of V ∼ 1 V generates
a dc field of E ∼ 103 V/cm [Fig. 4(d), field difference
between two x’s], resulting in excited-state shifts of order
∼GHz, which is significantly larger than the intrinsic linewidth
γe/2π ∼ 10 MHz.

While this approach, in principle, allows for a site-
dependent optical dressing, one needs to carefully consider
the effects of local strain fields. These strain fields couple to
NVs in a similar fashion as electric fields do. In diamond
grown by chemical vapor deposition (CVD) and implanted
with NV centers, unwanted defects unavoidably lead to local
variations in strain. The two predominant sources of strain in
CVD diamond are point defects, such as vacancy clusters and
interstitials, and line defects, such as stacking faults which
align along the growth direction.

To estimate the strain from point defects, we take a
defect concentration of 0.0001% [56–58], corresponding to
an average point defect separation of r̄pt ∼ 20 nm. For a defect
strength of A ∼ 10−4 nm3, the resulting strain variations are
of order ε ∼ A/r̄3

pt ∼ 10−8, inducing shifts of the NV excited
state of ∼10 MHz [59–61].

Next, we turn to the expected dominant source of local
strain variation, arising from stacking faults aligned along
the diamond growth direction. We model the strain from
stacking faults using elasticity theory and assuming straight
line defects. For a typical Burgers vector of magnitude b ∼
2 Å, the strain at distance r̄lin from the line defect is given
by ε ∼ bμ/[2π (1 − ν)r̄lin], where μ is the shear modulus in
diamond and ν is Poisson’s ratio [62]. For an areal density
of 104/cm2 [63], we have an average distance of ∼100 μm
between line defects. We estimate typical strain variations of
1 to 10 GHz on length scales of 100 μm, in agreement with

recent experiments [64]. However, we expect much smaller
strain variations on length scales smaller than r̄lin. In particular,
in a 250 nm × 250 nm region between line defects, numerical
simulations give average strain variations of ∼10 MHz.

These estimates suggest that local strain variations in a
small NV lattice might not destroy the spatially inhomoge-
neous optical dressing obtained via patterned electric fields;
however, such an implementation is extremely challenging
and our discussion of NV centers is meant mainly as a
proof-of-principle analysis.

IV. C = 2 FLAT BAND AND THE HALPERIN (2,2,1) STATE

Having demonstrated the generality of our approach by
extending it to NV centers in diamond, we now switch back to
the dysprosium implementation. Having introduced in Sec. II
the potential of dysprosium for creating fractional quantum
Hall states on the example of the ν = 1

2 Laughlin state and
the underlying C = 1 flat band, we now move on to the
construction of the topological flat band with Chern number
C = 2. At ν = 1

3 filling fraction, this band will give rise to the
Halperin (2,2,1) bilayer fractional quantum Hall state.

We will follow the idea of Ref. [26] for generating the
C = 2 flat topological band. Suppose one has created a C =
1 flat topological band on a square lattice with a two-site
unit cell for a boson â, as we did above for the hard-core
bosons arising from the spin- 1

2 model in dysprosium. Now let
us introduce another species b̂ of bosons that obeys exactly
the same hopping Hamiltonian, except it is shifted relative
to the hopping Hamiltonian for â by one lattice site in the
X direction. Diagonalizing the resulting Hamiltonian clearly
gives four bands: two C = 1 bands and two C = −1 bands.
The idea is then to merge the two flat C = 1 bands into a single
flat C = 2 band. To do this, on one sublattice, one defines the
hard-core boson Â = â and the hard-core boson B̂ = b̂, while
on the other sublattice one does the opposite and defines Â = b̂

and B̂ = â. The resulting model recovers the full translational
symmetry of the lattice and has therefore only two bands with
C = ±2. We will realize the vacuum state and the two species
of bosons on each site using a spin-1 particle. Therefore, our
bosons will be hard core both to themselves and to each other,
interactions that will be sufficient for realizing the Halperin
(2,2,1) bilayer state.

We start with the same Eq. (1) as in the C = 1 discussion,
but now project onto dressed states |↓〉, |↑〉, and |⇑〉, whose
precise construction in terms of the ground hyperfine states of
161Dy is relegated to Appendix B. We then define |0〉 = |↓〉,
â†|0〉 = |↑〉, and b̂†|0〉 = |⇑〉. Choosing the dressed states in
such a way that long-range density-density interactions vanish
and such that â† and b̂† have the same hopping matrix elements
t ′ij (corresponding to a C = 1 flat band) but shifted relative to
each other by one unit in the X direction, we obtain

Ĥdd =
∑
i 
=j

(t ′ij â
†
i âj + t ′

i−X̂,j−X̂
b̂
†
i b̂j ). (6)

Following the above-described redefinition from (â,b̂) to
(Â,B̂), we arrive at a Hamiltonian describing a C = 2 flat band.
In Fig. 5(a), we show the resulting C = 2 flat topological band.
At ν = 1

3 filling fraction, we will show that this topological flat
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FIG. 5. (Color online) (a) Flat topological band with Chern num-

ber C = 2. The flatness of the band (band gap divided by bandwidth)
is ≈11. (b) The momentum-resolved eigenvalues for the ν = 1

3
fractional Chern insulator with four two-component hard-core bosons
on a 3 × 4 torus. The momentum sector corresponds to (kx,ky) =
(2n1/3,n2/2)π , n1 = 0,1,2, and n2 = 0,1,2,3. The spectrum features
a gap separating the three degenerate ground states at (kx,ky) = (0,0),
(2π/3,0), and (4π/3,0) (blue) from the other states by a gap.

band gives rise to the bilayer Halperin (2,2,1) state [21] shown
in Fig. 5(b). To understand the nature of this state, it is helpful
to turn to the usual K-matrix description of bilayer quantum
Hall systems, with wave function

∏
i<j (z1i − z1j )l

∏
i<j (z2i −

z2j )m
∏

i,j (z1i − z2j )ne− 1
4 (

∑
i |z1i |2+

∑
j |z2j |2), where zpi is the

complex lattice coordinate of the ith hard-core boson in the
pth layer. Here, l and m are even integers so that the wave
function is consistent with Bose statistics, while n can be any
non-negative integer. The K matrix is then defined as

K =
[
l n

n m

]
.

In our case, from the structure factor, one finds that the state
does not seem to preference a specific orbital type, suggesting
a charge vector �q = (1,1). The transverse Hall conductance
σxy is then given by

σxy = qK−1q. (7)

From the numerics [Fig. 5(b)], we observe a gapped
threefold-degenerate ground state on a torus, each exhibiting
a transverse Hall conductance σxy = 2

3 [26,28]. Combined
with the fact that ground-state degeneracy is given by the
determinant of K , this suggests that we are indeed observing
the (l,m,n) = (2,2,1) state.

In Fig. 6, we show the entire C = 2 phase diagram [as a
function of electric field tilt angle (�0,�0)], where the state
in Fig. 5(b) is a single point (shown as a red circle) at �0 =
0.68 and �0 = 5.83. Similarly to Fig. 5, the phase diagram is
obtained using exact diagonalization on a 3 × 4 torus, with two
orbitals per site, and a total of four particles, corresponding to a
density of ν = 1

3 particles per unit cell. The finite-momentum
superfluid has states which twist into the continuum but the
ground state looks like it is at finite momentum instead of in
the (kx,ky) = (0,0) sector. The phase diagram is (a schematic
smoothed version) based upon a back grid of 100 points. We
sample at 10 equally spaced points along �0 and �0 and at
each, we obtain the spectrum, the structure factor of the lowest-
energy state in all momentum sectors, the superfluid response
from boundary condition twists, and the many-body Chern
number σxy . In the region called (2,2,1), σxy is numerically

Φ0

Θ0

3π/2 2π7π/4

0

π/2

π/4

Superfluid

Finite  
momentum

(kx,ky) = (0,0)

(2,2,1)  
   FQH 

FIG. 6. (Color online) C = 2 phase diagram as a function of
(�0,�0), which specify the direction of the quantization axis. Red
circle indicates the point in the (2,2,1) phase corresponding to the
spectrum in Fig. 5(b).

2
3 within <1% error, which is a strong indicator that this is
indeed the Halperin (2,2,1) state.

V. EXPERIMENTAL CONSIDERATIONS

Our scheme relies on the following ladder of energy
scales: (Vhf/2π = 1 GHz) � (V2/2π � 300 Hz) �
[(�2

dr/�)/2π = 30 Hz] � (Vdd/2π = 3 Hz) � (EFQH/2π =
500 mHz) � (�sc/2π = �′

sc/2π = 100 mHz). The first
inequality Vhf � V2 ensures that the ac Stark shift V2 ∝ M2,
which defines the quantization axis, does not mix different F

levels separated by Vhf , which, in turn, ensures that the dipole
moments of the involved states and transitions are given by
their zero-field values, which simplifies the calculations. The
second inequality V2 � �2

dr/� ensures that the optical fields
(Rabi frequency �dr and effective two-photon Rabi frequency
�2

dr/�) and microwave fields (Rabi frequency �2
dr/�) are

sufficiently weak to spectroscopically resolve the different
transitions split by V2, allowing us to consider only the
desired couplings. The inequality �2

dr/� � Vdd ensures that
dipole-dipole interactions Vdd, whose strength can be read out
from the vertical energy scale in Figs. 2(a) and 5(a), do not
perturb the dark states |↑〉 and |↓〉 (and |⇑〉 for the C = 2
example) defined by the dressing fields and do not cause
transitions from these dark states to the bright states. We
will discuss in the following that the small 3-Hz interaction
energy scale is not fundamental and can likely be significantly
increased. The inequality Vdd � EFQH, where EFQH is the
fractional quantum Hall energy scale, which can be read out
from the gap in Figs. 2(b) and 5(b), is not required but arises
naturally since EFQH is determined by Vdd, so we included
this inequality in the ladder of energy scales. Finally, the
inequality EFQH � �sc,�

′
sc means that the photon scattering

rates �sc and �′
sc due to the optical fields (used for �dr and

for V2, respectively) should be much smaller than the energy
scale EFQH of the Hamiltonian of interest. This condition
ensures that photon scattering does not destroy the desired
many-body state and does not lead to heating during a typical
experiment of duration ∼1/EFQH.

Let us now discuss the scattering rate �′
sc arising due to the

optical fields creating V2 [65]. To be specific, we assume that
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V2 is created with 741-nm π -polarized light. We will use a
detuning �′ much smaller than the hyperfine structure in both
the ground state and the excited state. We will use a typical
Rabi frequency �′ 
 �′. Therefore, we will need to apply a
separate light field for each F to be shifted. Let us therefore
consider a single level F . The 741-nm light will be detuned �′
away from the F → F transition. Since the |F,M〉 → |F,M〉
Clebsch-Gordan coefficient is proportional to M , this will
result in an M-dependent ac Stark shift �′2M2/� and a
scattering rate �′(�′/�′)2M2, where �′ is the spontaneous
emission rate of the 741-nm transition. Since we are working
with small values of |M| ∼ 1 (as opposed to |M| ∼ F ), we
can adopt the estimates V2 = �′2/�′ and �′

sc = �′(�′/�′)2.
Since �′/2π = 1.8 kHz [66], in order to get �′

sc/2π =
100 mHz and V2/2π = 300 Hz, we need �′/2π = 5 MHz
and �′/2π = 40 kHz. For a (100-μm)2 beam cross section,
this Rabi frequency can be obtained with less than a mW of
power, which is easily achievable. It is worth pointing out the
importance of using the F → F transition: for an F → F ± 1
transition and |M| ∼ 1, the ratio of the scattering rate to the
M-dependent part of the ac Stark shift would have been F 2

times larger.
We now turn to the scattering rate �sc associated with the

fact that dipole-dipole interactions make the dark state imper-
fect on the 421-nm transition. This scattering rate is given by
�sc = �(Vdd/�dr)2, where �/2π = 32 MHz is the linewidth
of the 421-nm transition [66]. To get �sc/2π = 100 mHz
and �2

dr/� = (2π )30 Hz, we need �/2π = 100 MHz and
�dr/2π = 50 kHz, which is easily achievable. Assuming we
are tuning to the blue of the F ′ = 17

2 hyperfine level of the
excited state [see Fig. 1(c)], the resulting detuning from both
the F ′ = 15

2 state and the F ′ = 19
2 state is δ ≈ (2π )1 GHz,

resulting in scattering from these levels at rates ∼�(�dr/δ)2 <

(2π )100 mHz.
An important advantage of our proposal is that we are not re-

lying on collisions between the atoms, which allows us to avoid
dipolar relaxation [39] and light-assisted collisions [40]. On
the other hand, the main limitation of our proposal is the small
energy scale EFQH/2π = 100 mHz and the resulting stringent
requirements on the linewidths of the lasers and coherence
times of the atoms. An additional requirement is to make sure
stray magnetic fields are weak enough that the Zeeman shifts
are small on the scale of dipole-dipole interaction strength
Vdd/2π = 5 Hz to ensure that the crucial J+

i J+
j transitions in

Eq. (1) stay resonant. In particular, this requires magnetic fields
smaller than a micro Gauss, which is challenging. At the same
time, our goal in this paper is to demonstrate the controllability
and the potential of magnetic dipoles in general, and magnetic
atoms in particular, for obtaining fractional quantum Hall
states in general and those in C = 2 bands, in particular.
We leave it to future work to optimize and modify the
presented schemes with the goal of increasing the interaction
energies by working at smaller lattice spacing [67–70] and
by choosing more optimal level configurations. Indeed, the
maximum achievable interaction for two dysprosium atoms
λlat/2 apart is ≈μ0(10μB)2/[4π (λlat/2)3] = (2π )70 Hz and
occurs when they are both in a |Jz| = 8 state. While such
a diagonal interaction does not immediately give rise to the
hopping of excitations between sites, its large-energy scale
hints at the possible existence of schemes similar to ours

but with a significantly larger Vdd compared to our value of
(2π )3 Hz.

To prepare the fractional Chern insulator ground state, we
envision first tuning �0 and �0 to the part of the phase
diagram where the ground state is a superfluid. If the superfluid
phase exhibits weak quantum correlations, then it could,
in principle, be approximated by a disentangled state, in
which each atom is in a well-defined spin state. This can be
prepared by adiabatically turning on the fields responsible for
V2 and the dressing on a time scale faster than the inverse
of Vdd. Next, we imagine adiabatically ramping from our
prepared low-energy-density superfluid to the fractional Chern
insulator. This can only be done if the phase transition between
the two states is continuous [71], a question which is unknown
for the (2,2,1) state.

The detection of the fractional Chern insulator can be
carried out by effectively realizing Bragg spectroscopy.
Specifically, the momentum- and energy-resolved spectral
function can be measured by attempting to drive the |↓〉-|↑〉
transition with different spatially dependent Rabi frequencies
and different detunings. One can then use the spectral function
to identify the bulk gap and the gapless chiral edges [72,73].

VI. OUTLOOK

Our proposal generalizes naturally to other magnetic atoms,
such as erbium [32,33] and, to a lesser degree due to a smaller
dipole moment, chromium [34]. It can also be generalized to
magnetic molecules such as Dy2 and Er2 [35], which have
larger dipole moments than their single-atom counterparts.
Finally, our proposal can also be extended to engineer bilayer
fractional Chern insulators in electric dipoles, such as polar
molecules [37,74–76] and Rydberg atoms [38,77], which can
offer much stronger interactions than magnetic dipoles.

This proposal also opens up avenues for engineering other
exotic topological states. In particular, by replacing hopping
terms (of the form â

†
i âj + H.c.) with pairing terms (of the form

â
†
i â

†
j + H.c.) along the rungs of a finite ladder, one expects

to get parafermionic zero modes at the ends of the ladder,
by analogy with proposals in solid-state heterostructures
[22,78–81] and cold atoms [82]. The local replacement of
pairing with hopping can be engineered by dressing the dipoles
along the legs of the finite ladder in a way that is different
from the rest of the system. An introduction of an array of
such ladders into the (2,2,1) state may then lead, by analogy
with Ref. [83], to a gapped ground state supporting Fibonacci
anyons, which are universal for topological quantum comput-
ing via braiding alone [1]. In fact, by extending the conjecture
of Refs. [83,84], partially supported by numerics [85,86]
(although see Refs. [87,88]), one might expect that even the
introduction of uniform pairing on top of the (2,2,1) state
may give rise to the Fibonacci phase. Instead of introducing
pairing, one might also be able to obtain the Fibonacci state by
introducing uniform tunneling between two fractional Chern
insulator layers [84,86], something we can also engineer in the
dipolar approach. The use of uniform pairing or tunneling is
an exciting prospect as the corresponding dressing would be
significantly simpler relative to the approach involving an array
of ladders [83] and would therefore constitute a particularly
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promising approach towards universal topological quantum
computing in ultracold atomic and molecular systems.

ACKNOWLEDGMENTS

We thank M. Lukin, N. Lindner, M. Maghrebi, N. Grabon,
D. Clarke, and J. Alicea for discussions. This work was
supported by the AFOSR, the Miller Institute for Basic
Research in Science, NSF PIF, ARO, ARL, the NSF, the NSF
PFC at the JQI, AFOSR MURI, and the CUA.

APPENDIX A: DETAILS BEHIND THE C = 1
TOPOLOGICAL FLAT BAND AND THE ν = 1

2
LAUGHLIN STATE

In this Appendix, we present the details behind the C = 1
topological flat band and the ν = 1

2 Laughlin state discussed
in Sec. II.

Assuming the M-dependent ac Stark shift V2 is greater
than the typical strength Vdd of dipole-dipole interactions, we
can project the Hamiltonian in Eq. (1) on the 36-dimensional
Hilbert space, where each atom is in one of the states |1〉
through |6〉 defined in Fig. 1(c), to obtain

Ĥij = (1 − 3 cos2 θ )
[
μ2

4(n̂4 − n̂3)(n̂4 − n̂3) + μ2
26(|15〉〈51| + |26〉〈62| + |16〉〈52| + |25〉〈61| + H.c.)

− 1
4μ2

13(|13〉〈31| + |24〉〈42| + H.c.) − 1
4μ2

53(|53〉〈35| + |64〉〈46| + H.c.)
]

− 3
4 sin2 θ

[
e−2iφ

{
μ2

13(|32〉〈14| + |23〉〈41|) − μ2
53(|36〉〈54| + |63〉〈45|)} + H.c.

]
, (A1)

where μ4 = 〈4|Ĵ z|4〉 = 720
323 , μ26 = 〈2|Ĵ z|6〉 = 2

√
154

19 , μ13 = 〈1|Ĵ+|3〉 = 288
√

77
323 , and μ53 = 〈5|Ĵ+|3〉 = − 14

√
2

19 .
Assuming the separation �2

dr/� between the dark states |↑〉, |↓〉 and the bright states is larger than the interaction strength Vdd,
we can further project the resulting Hamiltonian on the four-dimensional Hilbert space spanned by |↓〉 = |0〉 and |↑〉 = â†|0〉 on
each atom, resulting in Eq. (2).

In Fig. 2, we use �0 = 2.35 and �0 = 4.13 as the angles determining the direction of the dc electric field. The remaining pa-
rameters on the two sublattices (which we denote by 1 and 2 in the subscript) are parametrized as s1/2 = sin(α1/2) sin(θ1/2), v1/2 =
sin(α1/2) cos(θ1/2)eiφ1/2 , w1/2 = cos(α1/2)eiγ1/2 with {θ1,θ2,φ1,φ2,α1,α2,γ1,γ2} = {2.28,1.59,−0.05,1.51,0.46,0.11,1.60,1.23}.
As explained in the main text, we make a further modification by changing the sign of w1 and w2 every other row. While this
modification does not increase the size of the unit cell, it is an important ingredient allowing us to obtain a sufficiently flat
topological band.

In passing, we note that we can get the same band structure as for polar molecules [13] in a small electric field by adding two
additional levels to the linear superposition composing |↑〉.

APPENDIX B: DETAILS BEHIND THE C = 2 TOPOLOGICAL FLAT BAND, THE HALPERIN (2,2,1) STATE,
AND THE CORRESPONDING PHASE DIAGRAM

In this Appendix, we present the details behind the C = 2 topological flat band and the Halperin (2,2,1) state discussed in
Sec. IV.

Instead of using the simplest possible level structure for obtaining a flat C = 2 topological band with 161Dy, we instead choose
to demonstrate the full power and the full tunability of dipolar interactions between dressed states by realizing a Hamiltonian
describing two-component hard-core bosons, where each of the two components obeys the same Hamiltonian as hard-core bosons
in C = 1 bands realized with polar molecules [13]. This derivation allows us to establish a certain degree of equivalence between
implementations of topological flat bands and fractional quantum Hall states with different dipoles, both electric and magnetic.
We will therefore consider the level structure and the dressed states shown in Fig. 7, where we assume p and q are real, positive,
and site independent.

Transition matrix elements between |⇑〉 and |↑〉 vanish because of the F → F ± 0,1 selection rule ensuring the absence of
terms exchanging the two types of excitations |⇑〉 and |↑〉. Starting with Eq. (1), and keeping only those terms that will contribute
to the interaction involving states |↓〉, |↑〉, and |⇑〉, we obtain

Ĥij = (1 − 3 cos2 θ )
{
[μ6(n̂6 − n̂5) + μ7(n̂7 − n̂8) + μ14(n̂14 − n̂13) + μ16(n̂16 − n̂15)]

× [μ6(n̂6 − n̂5) + μ7(n̂7 − n̂8) + μ14(n̂14 − n̂13) + μ15(n̂15 − n̂16)]

+μ2
19(|19〉〈91| + |2,10〉〈10,2| + |1,10〉〈92| + |29〉〈10,1| + H.c.)

+μ2
1,11(|1,11〉〈11,1| + |2,12〉〈12,2| + |1,12〉〈11,2| + |2,11〉〈12,1| + H.c.)

− 1
4μ2

35(|35〉〈53| + |46〉〈64| + H.c.) − 1
4μ2

83(|38〉〈83| + |47〉〈74| + H.c.)
}

− 3
4 sin2 θ

[
e−2iφ

{
μ2

35(|36〉〈54| + |63〉〈45|) + μ2
83(|84〉〈37| + |48〉〈73|)} + H.c.

]
(B1)
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FIG. 7. (Color online) The level structure of 161Dy relevant for implementing the C = 2 flat band and the resulting Halperin (2,2,1) state.

= (1−3 cos2 θ )
[
(n̂iμn,i + m̂iμm,i)(n̂jμn,j + m̂jμm,j ) + {

â
†
i âj

(
μ2

19w
∗
i wjp

2 − 1
8μ2

35(s∗
i sj + v∗

i vj )q2
) + H.c.

}
+ {

b̂
†
i b̂j

[
μ2

1,11W
∗
i Wjp

2 − 1
8μ2

83(S∗
i Sj + V ∗

i Vj )q2
] + H.c.

}]
− 3

4 sin2 θ
[
e−2iφ

{− 1
2μ2

35(â†
i âj v

∗
i sj + âi â

†
j v

∗
j si)q

2 − 1
2μ2

83(b̂†i b̂jV
∗
i Sj + b̂i b̂

†
jV

∗
j Si)q

2
} + H.c.

]
, (B2)

where the second expression is obtained by making a further projection onto |↓〉 = |0〉, |↑〉 = â†|0〉, and |⇑〉 = b̂†|0〉. Here,
n̂i = â

†
i âi , m̂i = b̂

†
i b̂i , μn,i = μ6(|vi |2 − |si |2) + μ14(|bi |2 − |ai |2), and μm,i = μ7(|Si |2 − |Vi |2) + μ15(|Ai |2 − |Bi |2).

To reduce the Hamiltonian governing â and b̂ to two copies of hard-core bosons obtained from polar molecules in near-zero
electric field [13], we define siq = rs̃i , viq = rṽi , wip = rw̃i |μ35/(2μ19)|, Siq = |μ35/μ83|rS̃i , Viq = |μ35/μ83|rṼi , Wip =
rW̃i |μ35/(2μ1,11)|. We keep |s̃i |2 + |ṽi |2 + |w̃i |2 = 1 and |S̃i |2 + |Ṽi |2 + |W̃i |2 = 1. r is a positive real number. c and C are used
to keep the states normalized. To mimic polar molecules, which are electric dipoles and thus have no induced dipole moments at
small electric fields, we would like to choose ai , bi , Ai , and Bi such that μn,i = μm,i = 0. To do this, we reduce r from 1 and
below until we find p such that there is enough population in ai , bi , Ai , and Bi levels to set to zero dipole moments μn,i and μm,i

for â and b̂, respectively, for both sublattices. For example, for the parameters used to produce Fig. 5, r = 0.265 and p = 0.953.
The resulting Hamiltonian is

4

r2μ2
35

Ĥij = (1−3 cos2 θ )
{
â
†
i âj

[
w̃∗

i w̃j − 1
2 (s̃∗

i s̃j + ṽ∗
i ṽj )

] + b̂
†
i b̂j

[
W̃ ∗

i W̃j − 1
2 (S̃∗

i S̃j + Ṽ ∗
i Ṽj )

]}

+ 3
2 sin2 θ cos(2φ)[â†

i âj (ṽ∗
i s̃j + s̃∗

i ṽj ) + b̂
†
i b̂j (Ṽ ∗

i S̃j + S̃∗
i Ṽj )]

− 3
2 sin2 θ sin(2φ)i[â†

i âj (ṽ∗
i s̃j − s̃∗

i ṽj ) + b̂
†
i b̂j (Ṽ ∗

i S̃j − S̃∗
i Ṽj )] + H.c. (B3)

As desired, it has no density-density interactions, and both â and b̂ obey the hopping Hamiltonian derived from polar
molecules [13].

In Fig. 5, we use �0 = 0.68 and �0 = 5.83 as the angles determining the direction of the dc electric field. The remaining
parameters on the two sublattices (which we denote by 1 and 2 in the subscript) are parametrized as s̃1/2 = S̃1/2 =
sin(α̃1/2) sin(θ̃1/2), ṽ1/2 = Ṽ1/2 = sin(α̃1/2) cos(θ̃1/2)eiφ̃1/2 , w̃1/2 = W̃1/2 = cos(α̃1/2)eiγ̃1/2 with {θ̃1,θ̃2,φ̃1,φ̃2,α̃1,α̃2,γ̃1,γ̃2} =
{0.53,0.97,1.36,3.49,2.84,2.03,4.26,3.84}. As in the C = 1 example, an additional minus sign is imposed on w1/2 and W1/2 on
every other row. It is important to repeat that, while â and b̂ here obey the same Hamiltonian, one should be shifted relative to
the other by one lattice site in the X direction. The parameters used in Fig. 6 are the same as those in Fig. 5, except �0 and �0

are varied.
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Nägerl, Phys. Rev. Lett. 113, 205301 (2014).

[75] P. K. Molony, P. D. Gregory, Z. Ji, B. Lu, M. P. Köppinger,
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