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Steering random walks with kicked ultracold atoms
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The kicking sequence of the atom-optics kicked rotor at quantum resonance can be interpreted as a quantum
random walk in momentum space. We show how such a walk can become the basis for nontrivial classical walks
by applying a random sequence of intensities and phases of the kicking lattice chosen according to a probability
distribution. This distribution converts on average into the final momentum distribution of the kicked atoms. In
particular, it is shown that a power-law distribution for the kicking strengths results in a Lévy walk in momentum
space and in a power law with the same exponent in the averaged momentum distribution. Furthermore, we
investigate the stability of our predictions in the context of a realistic experiment with Bose-Einstein condensates.
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I. INTRODUCTION

In many contexts of statistical descriptions in physics
and mathematics, random walk models are very useful for
qualitative and quantitative analysis [1]. Random walks are
one of the simplest stochastic processes and they represent
the basic model of diffusion phenomena and nondeterministic
motion. When the steps for the diffusing particle have finite
variance and are uncorrelated, the evolutions obey Gaussian
statistics and standard diffusion is observed.

In transport and diffusion in complex systems, the basic
hypotheses underlying the laws of ordinary Brownian motion
can often be violated. In particular, the lengths of the steps
taken by the diffusing particles can have large fluctuations, and
they can follow a probability distribution with heavy power-
law tails, obeying a generalized central limit theorem [2,3].
Examples of so-called Lévy [4] random walk processes are
observed in classic transport in complex materials [5–9] and
in many interdisciplinary contexts in biology, ecology, and
economics [2,4,10], making these processes a paradigm of
transport and nondeterministic evolution in the presence of
large deviations.

The concept of a classical random walk can be translated
into quantum random walks [11] using the entanglement
between different degrees of freedom, e.g., between the spatial
walk variable and a system intrinsic quantity such as spin [12].
In such quantum walks one degree of freedom typically acts
as the “coin” which decides on the direction of the walk.
In contrast to a classical walk, such a quantum coin can
be in a superposition of two (or more states), and therefore
the walk is heavily guided by the entanglement between
the coin and the walk degree of freedom. An interesting
question is How can a quantum walk turn into a classical
one, and vice versa? We address this question for a random
walk in the momentum space of kicked cold atoms. We
show how momentum distributions may be steered almost at
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will, realizing Gaussian diffusion and more complex α-stable
distributions [3]. The idea of implementing random processes
with scale-free behavior with cold atoms in optical lattices
goes back to pioneering works from the quantum optics
community; see, e.g., [13], which showed that, interestingly,
classical random processes with power-law correlations can
be mapped, in certain circumstances, onto a deterministic
quantum problem (see also [14] for a more recent proposal
in this context).

In particular, it was proposed to exploit the quantum
kicked rotor dynamics to realize directed quantum walks [15]
and classical Lévy walks by timing noise implying strong
decoherence of the quantum motion [16]. As in the latter
study, our proposal for a kicked atom realization of random
walks misses the second degree of freedom, which would
be entangled with the momenta of the atoms. Yet, we use
the choice of a discrete phase of the kick potential to steer
the walks, in close analogy to the coin degree of freedom
in quantum walk theory [12], which decides on the random
direction of single steps of the walk. This is reminiscent of
first implementations of quantum walks with classical optics,
where the coin was also no second degree of freedom but a
random selection by optical elements such as beam splitters
[17,18].

In contrast to other studies mentioned above, our quantum
motion is, in principle, fully reversible for a single realization
of the walk, and classicality only results from the classical
average over many realizations. Averaging over realizations of
random choices of parameters finally implies a classical walk
since it may be interpreted as a decohering quantum evolution,
which is continuously perturbed by the parameter change [19].
While our study includes just one degree of freedom, the center
of mass of the atoms, at the moment, our results open the route
to future investigations of our system, which fully include the
second degree of freedom. This could be done for cold atoms
and Bose-Einstein condensates using either internal states of
the atoms (an effective spin [15,20,21]) or more than one kick
potential with different phases and wavelengths to address
different momentum classes independently [22].
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Our paper is organized as follows: Sec. II reviews how
quantum resonant motion of the kicked rotor can be used
to realize fast ballistic motion, either symmetric or directed
in momentum space. Section III presents our central results
showing how the input distributions of phases and, more
importantly, of kick strengths convert into the experimentally
easily accessible averaged momentum distributions at quan-
tum resonance. Two specific cases are discussed in detail: a
Gaussian diffusive walk (III A), which can be steered from
the quantum to the classical regime, and heavy-tailed Lévy
walks (III B). Sections IV and V underpin that the results of
the previous section are indeed robust with respect to typical
experimental limitations in atom optics. We show this by
checking the stability with respect to small detunings from
resonance in Sec. IV and by taking into account additional
complications such as a finite window of feasible kick
strengths and a finite width of a Bose-Einstein condensate
in the Brillouin zone of the periodic kick potential (i.e., in
quasimomentum) in Sec. V. Section VI concludes the paper.

II. QUANTUM WALKS AT QUANTUM RESONANCE

Experiments on the quantum kicked rotor based on cold
or ultracold atoms work with particles moving along a line
periodically kicked in time by an optical lattice. Neglecting
atom-atom interactions, the quantum dynamics are described
by the following Hamiltonian in dimensionless variables (such
that � = 1) [23,24]:

Ĥ (x̂,p̂x,t) = p̂2
x

2
+ k cos(x̂)

∑
T ∈Z

δ(t − T τ ). (1)

The kick period is τ , the kick strength is k, and T is a
discrete time variable that counts the number of kicks. The
periodic potential implies conservation of quasimomentum β

with px = n + β, where n is an integer in our units and β takes
on values between 0 and 1. For an atom-optics realization,
1 momentum unit corresponds to the physical unit of two
photon recoils of the laser creating the standing wave. Using
Bloch theory, the atom dynamics from immediately before the
(T − 1)th kick till immediately before the next T th kick is
then described by the one-cycle Floquet operator [24],

Ûβ,k(T ) = e−iτ (N̂+β)2/2 e−ik cos(θ̂), (2)

where N̂ = −i d
dθ

is the (angular) momentum operator with
periodic boundary conditions and θ = xmod(2π ). In the fol-
lowing, we exclusively use the angle and angular momentum
representation for the description of the quantum problem,
which makes direct contact with the standard kicked rotor
model [25]. In its usual realization with a fixed kick strength,
the full evolution over T kicks is thus described by

ÛT
β ≡ Ûβ,k(T ) Ûβ,k(T − 1) . . . Ûβ,k(2) Ûβ,k(1). (3)

A series of experimental investigations has looked at the
so-called quantum resonant motion of the quantum kicked
rotor [25,26] over the last decade (see, e.g., [24] and references
therein). The interest in the resonant dynamics is mainly moti-
vated by the type of ballistic motion with fast acceleration that
can be obtained in this particular parameter regime. We restrict
our discussion here to the main quantum resonances occurring

FIG. 1. (Color online) (a) Ballistic motion at quantum resonance
for a zero-momentum plane-wave initial state and k = 3, either
symmetric around n = 0 [T = 30, thin solid black line; T = 50,
thick solid gray (red) line] or directed at T = 70 for a superposition
initial state [dashed (blue) line; see text]. (b) Momentum distribution
for a symmetric walk as shown in (a) but at k = 0.8π , after T =
1000 kicks averaged over 104 uniformly distributed quasimomenta
β ∈ [0,2π ). The dashed (red) line shows the fit according to the
asymptotic formula 4k/(π 3n2) derived in Ref. [27]. Averaging over
quasimomenta converts the resonant quantum motion in (a) into a
power-law distribution in momentum space.

whenever the kick period τ is not only commensurate with
2π but an integer multiple of it, i.e., τ = 2π�, � integer.
Then, for specially chosen values of the quasimomentum, e.g.,
for β = 1/2 at � = 1 and β = 0,1/2 at � = 2, the energy
of the β rotor asymptotically increases quadratically with
the kick counter T [25,27]. From the theoretical point of
view, in contrast to general values of the period, the main
quantum resonances are accessible to analytical investigation
[25,27,28]. Using the pseudoclassical approximation theory
developed in Refs. [27–29] and reviewed in Ref. [24], this
remains true also for small detunings from resonant kick
periods.

Since the first factor standing for the free momentum
evolution in Eq. (2) is identical to one for the main quan-
tum resonances at resonant quasimomentum, we can easily
compute the momentum distribution obtained by applying the
second factor alone. The distribution after T kicks of strength
k is therefore the same as the distribution after a single kick
with strength kT . This gives a momentum distribution after T

kicks for an initial state which is an eigenstate of momentum
n0 [27],

P (n,T |n0,k) = J 2
n−n0

(kT ). (4)

Here Jm are ordinary Bessel functions with integer index m.
The momentum distribution in the case of k = 3 and n0 = 0
is plotted in Fig. 1(a). We observe two dominant peaks, which
move away from n = 0 at constant acceleration (i.e., we see
ballistic motion). This linear increase in peak momentum is in
accordance with the quadratic increase in energy occurring at
quantum resonance [25,27,28]. Breaking the spatial-temporal
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symmetries of the kicked rotor, the quantum resonances permit
the realization of directed transport as well [24,30–34]. One
example is shown by the thin dashed line in Fig. 1(a), where
the symmetry is broken by the initial state chosen to be
a superposition of two momentum eigenstates, |ψ(n,0)〉 =
(|n = 0〉 + eiμ |n = 1〉)/√2 with relative phase μ = π/2 (see
[24,32] for details).

We already see that the quantum resonances of the kicked
rotor can be used to steer the evolution of the wave packet in
momentum space. The symmetric ballistic peaks in Fig. 1(a)
are identical to the wave packets obtained from symmetric
quantum random walks, as realized with optical pulses [17,18].
Also, directed walks are possible when breaking the spatial-
temporal symmetry by a correct choice of the initial state,
just as in random quantum walks [12]. The random walk
picture best applies in momentum space for our kicked system
since each kick couples one specific momentum state to
its neighbors, while during free evolution the momenta are
unchanged (“free flight”). The number of effectively coupled
neighbors depends on the kick strength k. Practically, we
have just nearest-neighbor coupling for k ∼ 1 (see Eq. (4)
and Ref. [27]). In the following, we ask whether we can
steer such a walk in momentum space by other means, e.g.,
by a random choice of kick strength and/or phases in the
sinusoidal kicking potential. For this, we rederive Eq. (4)
for these generalized cases in the next section. Introducing
random couplings (whose strength changes with time) makes
quantum evolutions classical due to decoherence (see, e.g.,
Refs. [16,23,27,35–37] in the context of the quantum kicked
rotor). Hence, we can also control the “quantumness” of
the random walks in momentum space, not by changing
our effective Planck constant, but by carrying out classical
averaging over different realizations of the random walk. The
effective Planck constants used here throughout are close to
heff = τ ≈ 2π� [25,27,28], � integer, and hence we are always
in the deep quantum regime in this respect.

III. LÉVY WALKS IN MOMENTUM SPACE

Wrong choices of quasimomentum destroy the ballistic
motion at quantum resonance. Typically, the larger the quasi-
momentum detuning from its resonant values the more rapidly
this will occur [27]. Hence, averaging quantum resonant
motion over a distribution of quasimomentum, e.g., taken
uniformly in the unit interval for simplicity, turns the averaged
momentum distribution into an average over peaks which stop
at different stages in momentum. The asymptotic result for
T → ∞ is then a (coarse-grained) momentum distribution in
the integers n which decays like a power law, ∼n−2. This result
was derived in Ref. [27] and rediscovered in Ref. [38] with
some generalizations. Figure 1(b) shows realistic numerical
simulations at k = 0.8π and T = 1000 which confirm the
prediction. Therefore, averaging over various realizations of
our random walk naturally leads to a momentum distribution
with tails behaving like a Cauchy or Lorentzian distribution.
This motivates the present study of the realization of classical
random walks with ultracold atoms.

Here, we are interested in how to steer a random walk
in momentum space by choosing the phases of the kick
potential and/or the kick strength randomly from kick to

kick. While for a fixed realization, i.e., fixing the series
{kt ,φt }t=...,T , the evolution is fully coherent and quantum
mechanical, averaging over many realizations, as above for
various quasimomenta, makes the result incoherent since the
statistical average is a classical one. While this may seem
to be a disadvantage, we shall see that this allows us to
realize and implement in a realistic experiment with ultracold
atoms, essentially any type of random walk we want. Our
major prediction, in the following, is that modern experiments
with Bose-Einstein condensates can implement interesting
classical random walks with nontrivial distributions. All that
is required is to choose the appropriate distributions for our
input parameters {kt ,φt }t=1,...,T .

At quantum resonance with τ = 2π�, � integer, and
ignoring an n-independent phase, the Floquet operator
simplifies to [27]

Ûβ,kt
(T ) = e−iξN̂ e−ikt cos(θ̂+φt ), (5)

with ξ = π�(2β ± 1) mod(2π ) and β the quasimomentum.
The state after T kicks is given by applying consecutively
the operator, (5), to the initial state as shown in Eq. (3). Each
of these applications is reversible. For example, a kick with
kj and φj can be exactly reversed by a subsequent kick with
kj+1 = kj and φj+1 = φj + π . Hence, coherence is preserved
during one complete kicking sequence. Such a time evolution
leads to the following time-dependent wave function in angle
representation,

ψβ(θ,T ) = e−iξN̂ e−ikT cos(θ̂−φT ) e−iξN̂ e−ikT −1 cos(θ̂−φT −1)

. . . e−iξN̂ e−ik1 cos(θ̂−φ1)ψβ(θ,j = 0)

= e−i G(θ,ξ,{kj },{φj },T ) ψβ(θ − T ξ,0), (6)

with

G(θ,ξ,{kj },{φj },T ) =
T∑

j=1

kj cos(θ − φj − (j − 1)ξ )

= Re

⎛
⎝eiθ

T∑
j=1

kj e
−i(φj +(j−1)ξ )

⎞
⎠

≡ Re(eiθ |RT |ei arg(RT ))

= |RT | cos(θ + arg(RT )) (7)

and

RT = RT (ξ,{kj },{φj }) ≡
T∑

j=1

kj e−i(φj +(j−1)ξ ). (8)

Fourier transforming (6) into the momentum (n) representation
gives

〈n|ψβ,T 〉 = 1√
2π

∫ 2π

0
e−inθ 〈θ | ψβ,T 〉 dθ

= 1√
2π

∫ 2π

0
e−inθ e−i|RT | cos(θ+arg(RT ))ψβ(θ−T ξ,0) dθ

= ein arg(RT )

√
2π

∫ 2π

0
e−i(nθ ′+|RT | cos(θ ′))

×ψβ(θ ′ − arg(RT ) − T ξ,0) dθ ′, (9)
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where the substitution θ ′ = θ + arg(RT ) is used. If the
initial state of the atom is a plane wave with fixed
momentum p0 = n0 + β0, then ξ takes the constant value
ξ0 = πl(2β0 ± 1) mod(2π ). For the plane-wave initial state

ψβ0 (θ,j =0) = 1√
2π

ein0θ (10)

and neglecting all global phase factors that will cancel, the
following probability distribution is obtained:

P (n,T |n0,β0,{kj },{φj })
= |〈n | ψβ,T 〉|2

=
∣∣∣∣ 1

2π

∫ 2π

0
e−i(n−n0)θ e−i|RT | cos(θ) dθ

∣∣∣∣
2

= ∣∣in−n0Jn−n0 (−|RT |)∣∣2 = J 2
n−n0

(|RT |). (11)

In the second step, the definition of the Bessel function of the
first kind is used [39],

Jn(z) = 1

2π

∫ α+2π

α

e−inθ eiz cos(θ) dθ, (12)

together with the parity relation for Bessel functions [39].
For simplicity, we first focus on the case of resonant

quasimomenta, i.e., where ξ = 0, and refer to Sec. V B for the
case of different quasimomenta. Then the argument function
is

RT = RT ({kj },{φj }) =
T∑

j=1

kj e−iφj , (13)

which corresponds to a random walk in the complex Argand
plane for each realization of the parameters {kj }j=1,...,T and
{φj }j=1,...,T . The length of each step is given by kj , and the
direction by the angles φj ; |RT | is the displacement from the
origin after T steps. Hence, ρ(|RT |) is the distribution of
end displacements for the underlying walk. It is now easy
to see that the momentum distribution after a kick sequence
with parameters {kj }j=1,...,T and {φj }j=1,...,T is equivalent to
a distribution that would be obtained by a single kick with
effective strength keff = |RT | (and φj = 0 for all j ) or by a
sequence of Teff = |RT | effective kicks with strength k = 1
(φj = 0 for all j ). This generalizes the discussion around
Eq. (4), which is regained for RT = kT at k = const. and
φ = 0.

In shorthand notation we may now write

P (n,T |n0) =
∫ ∞

0
d|RT | ρ(|RT |) J 2

n−n0
(|RT |), (14)

where the distribution ρ(|RT |) represents the individual aver-
ages over the distributions ρk(kj ) and ρφ(φj ) assumed to be
independent and identically distributed with given probability
distributions for the kick strength and phase parts, respectively.
It is exactly the average from Eq. (14) in which we are mainly
interested since it allows us to steer the random walk in
momentum space by appropriate manipulation of ρ(|RT |).

In order to be able to arrive at a final analytical estimate, we
now use a rough approximation. Focusing on an initial state
of the atom with momentum n0 = 0, the square of the Bessel

function J 2
n (x) in Eq. (14) can be approximated for positive x

and not too small |n| as a Dirac delta function,

J 2
n (x) ≈ C δ(x − |n|), (15)

where C is an appropriate proportionality constant. The reason
for the validity of this approximation is simply that the Bessel
functions show a dominant first maximum and the function
values are nearly 0 until this maximum occurs as a function
of n. Our approximation takes into account the contribution
of the maxima, which remain rather localized for not too
large kick numbers T . These maxima are also responsible
for the ballistic “horns” shown in Fig. 1(a). The other factor
in the integrand is the smooth and slowly varying distribution
ρ(|RT |), which also decays as a function of n monotonously
in the tails. A numerical test and further justification for the
approximation Eq. (15) can be found in Ref. [40]. Within
this rough approximation, the expression for the averaged
momentum distribution in Eq. (14) simplifies for large |n|
to

P (n,T |n0 = 0) ≈
∫ ∞

0
d|RT | ρ(|RT |) C δ(|RT | − |n|)

= C ρ(|RT | = |n|). (16)

Hence, the large-scale behavior of the mean momentum is
equivalent to that of the distribution ρ(|RT |). Consequently, by
choosing appropriate distributions ρk(kj ) and ρφ(φj ), ρ(|RT |)
and hence the large-scale behavior of P (n,T |n0 =0) can be
steered in the desired way.

A. Gaussian random walk

The simplest case of a random walk is obtained when only
the phase of the kicking potential φ is taken from a random
distribution at fixed k. Since the phase is defined between
0 and 2π there is not much choice for nonstandard, e.g.,
heavy-tailed distributions. We choose a Gaussian distribution,
whose two limits are a delta function centered at some fixed
value of the phase and a uniform distribution for a standard
deviation much larger than 2π . The former case obviously
reduces to the deterministic walk reviewed in Fig. 1(a).
This limit is highlighted in Fig. 2(d). The latter case was
analyzed in great detail in Ref. [27], for random jumps in
the quasimomentum. In a changed frame of reference this is
identical to jumps of the phase, the only difference lying in
the fact that commutative shifts of the quasimomentum induce
additional shifts of momentum itself (an additional heating
effect not present here). We therefore can be brief in translating
the phase walk in the complex plane into the language of a
momentum walk.

We may interpret the end position of the complex-valued
function RT = (X,Y ) as a vector in an Argand diagram. The
evolution of RT corresponds to a diffusion in the complex
plane, whose details are determined by the phase distribution.
In all nonpathological cases, according to the central limit
theorem, the distribution of (X,Y ) for large T is hence given
approximately by a two-dimensional normal distribution,

f (RT = (X,Y )) = 1

2πσXσY

e
− 1

2 [ (X−μX )2

σ2
X

+ (Y−μY )2

σ2
Y

]
, (17)
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FIG. 2. (Color online) Classical (a)–to–quantum (d) transition
for a random walk in the complex plane (for T = 50 and k = 1).
(a) φj values are distributed according to a uniform distribution in;
(b)–(d) φj values are distributed according to a normal distribution
with mean 0 and standard deviation σ = 1.5, 1, and 0.1, respectively.
In (d) we superimpose the deterministic result for a fixed phase
(φ = 0), which is identical to the random-phase result for small σ ,
apart from deviations in the very center at small |n| < 5.

where μi and σi (i = X,Y ) are the mean and standard deviation
of X and Y , respectively. We obtain for the distribution of the
random variable RT that the mean E(RT ) = μX + i μY and the
variance Var(RT ) = σ 2

X + σ 2
Y . By considering the φj values as

taken from a symmetric distribution centered around 0, E(RT )
will be real, and consequently μY = 0. The smaller the width
of such a distribution for the φj ’s, the more the random walk
will be directed and E(RT ) = μX shifted along the positive
real axis away from the origin.

For a uniform distribution in [0,2π ) for the φj ’s, it is
E(RT ) = μX = 0 and σ 2

X = σ 2
Y = T k2/2, and we obtain

f (RT ) = 1

πT k2
e

(− X2+Y2

T k2 ) = 1

πT k2
e

(− |RT |2
T k2 )

. (18)

Multiplying by 2π times the radius |RT | leads to the following
distribution for the end displacement |RT |:

ρ(|RT |) = 2

T k2
exp

(
−|RT |2

T k2

)
|RT | . (19)

This distribution has a peak close to 0 and shows a normal
behavior. For nonuniform distributions of φj values, σX �= σY .
Hence, Eq. (17) cannot be rewritten in a closed analytical
form for the distribution ρ(|RT |). The precise form of the
phase distribution, ρφ(φj ), can be used to steer the final
distribution, ρ(|RT |), e.g., away from 0 with μX �= 0. Because
of Eq. (16), the averaged momentum distribution for large |n|
obeys P (n,T |n0 =0) ∝ ρ(|RT |), so that the final momentum
distribution follows the distribution of ρ(|RT |). As shown in
Fig. 2, we may steer the random walk from quantum [Fig. 2(d)]
to classical [Fig. 2(a)] by controlling the widths σX = σY of
the phase distribution.

B. Power-law walks in momentum space

We have seen above that random phase shifts alone
cannot lead to more interesting non-Gaussian distributions. In
consequence, we must include the possibility of randomizing
the kicking strength k in Eq. (13) as well. Obviously, a
Gaussian distribution with fixed mean and standard deviation
would have the same consequences as the case just discussed
in the previous subsection (with the only difference being a
change in the final Gaussian momentum distribution).

However, more interesting choices are possible since k

is not bounded from above, just from below at k = 0. For
simplicity, we can interchange a distribution of just positive
values of k with symmetric distributions around 0. This is
possible since the phase φj may be chosen from a discrete
uniform distribution, which only takes two values with equal
probability, p = 1/2:

ρφ(φj ) =
{

0, p = 1
2 ;

π, p = 1
2 .

(20)

From the form of the kick evolution operator, Eq. (2), it can be
seen that a π phase shift is equivalent to a sign change in front
of k. Such a phase shift is experimentally feasible by varying
the relative position between the atoms and the kicking
standing wave [33,41–43]. Furthermore, asking which of the
two phases should be chosen before each kick is analogous
to the coin toss in standard quantum random walk algorithms
(see, e.g., [12]).

In the following, we focus on the so-called α-stable distri-
butions S(α,γ,μ) for the probability distribution of the kick
strength. These have several advantages; the most important
one is that they are closed under convolution for a fixed value
of the parameter α, in the sense that the sum of N independent
and identically distributed random variables Xj ∼ S(α,γ,μ)
is again distributed with

∑N
j=1 Xj ∼ S(α,N1/αγ,Nμ) [3].

Here the first parameter α ∈ (0,2] is called the characteristic
exponent; it describes the tail of the distribution. γ > 0 is a
scale parameter characterizing the width of the central part
of the distribution and μ ∈ R determines the position of its
center [3]. For α < 2, the stable distributions have an infinite
variance and asymptotically decrease as |x|−(1+α) [3]. Hence,
by choosing μ=0, the resulting distribution S(α,γ,0) is a
distribution symmetric around 0 with power-law tails.

Most of our data are produced now when the kj values
obey a Cauchy distribution, as a special case with α = 1.
We formally assume that k can be negative to simplify the
argument. Here an explicit form of S(α,γ,μ = 0) can be given:

ρk(kj ) = 1

π

γ

γ 2 + k2
j

. (21)

Let us also assume for a moment that φ = const. (including
the case of jumping between 0 and π for the realization of an
effectively negative k). From the fact that the kick strengths
kj are Cauchy distributed with S(1,γ,0), it follows that
the sum RT = exp(−iφ)

∑T
j=1 kj is also Cauchy distributed

with RT ∼ S(1,T γ,0). |RT | is then the “length” of the end
positions of a one-dimensional Lévy walk on the real axis.
The distribution of end displacements is therefore given by

ρ(|RT |) = 2

π

T γ

(T γ )2 + |RT |2 . (22)
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FIG. 3. (Color online) Numerically obtained averaged momen-
tum distributions with 50 000 realizations for the φj and kj values at
T = 50, n0 = 0, and ξ = 0. For the kj ’s a Cauchy distribution with
scale parameter γ = 0.5 is used, taking into account only positive
values of k [see also Eq. (30)]; for the φj ’s the discrete distribution
from Eq. (20) [solid (blue) line with circles] and a uniform distribution
[dotted (red) line with asterisks] are considered. The thick black line
represents a power law with exponent 2 (or the parameter α = 1)
fitted to the data.

For the long-time asymptotics, it does not matter whether φ =
const. as just assumed (corresponding to an effectively one-
dimensional walk), or is drawn from a uniform distribution in
[0,2π ) (fully two-dimensional walk in the complex plane), or
takes any intermediate value. For large |RT |, the distribution
will always be similar to S(1,γ̃ ,0), with a scale factor γ̃ <

T γ , since the optimal spread is achieved exactly for the one-
dimensional walk. Thus the tails are power law distributed in
all cases, with the same power law (i.e., the same α) as the
kick-strength distribution.

Figure 3 shows in a log-log plot the results of numerical
simulations carried out at quantum resonance for 50 000
realizations of the walk for with different series {φj } and
{kj } values at T = 50, n0 = 0, and ξ = 0 (resonant quasi-
momentum). The plot shows a comparison of the averaged
momentum distribution obtained by considering, for the kj ’s,
a Cauchy distribution with only positive values and scale
parameter γ = 0.5 and, for the φj ’s, either 0 or π [solid (blue)
line with circles] or a uniform distribution in [0,2π ) [dotted
(red) line with asterisks]. Recall that the possibility of φj > π

effectively corresponds to a negative kicking strength. Both
results are identical in the tails, showing a power law with
exponent α = 1 at high momenta, |n| > 30.

To summarize, by choosing the kicking strengths from an
appropriate power-law distribution ρk(kj ), a Lévy walk can be
realized in the momentum space of the atoms with the same
asymptotic power law as that of the input distribution ρk(kj ).
The momentum distribution is the quantity typically measured
in an atom-optics experiment [23,24].

IV. STABILITY WITH RESPECT TO DETUNINGS:
ε-CLASSICAL ANALYSIS

Quantum mechanically, there is no general analytic solution
outside the quantum resonance condition for the quantum
kicked rotor dynamics, and we may refer only to numerical
simulations, as we do below. However, if we detune the kick
period τ just slightly from the resonance conditions, we may
still be able to estimate the true quantum motion using the

pseudoclassical model introduced in Refs. [27,28]. In this
model, the absolute value of the detuning |ε| plays the role
of Planck’s constant, and hence the theory has a semiclassical
limit at exact quantum resonance. The ε-classical dynamics
are described by the following discrete map, which relates the
variables I and θ from the j th kick to the next one:

Ij+1 = Ij + k̃j+1 sin(θj + φj+1),
(23)

θj+1 = θj + sgn(ε)Ij+1 mod 2π.

Here, I = J + sgn(ε)[π� + τβ] and J = |ε|px is the rescaled
momentum. In the classical problem, θ can be trivially
identified with θ = x mod(2π ) because of the sinusoidal
periodicity in the momentum change. A new effective kick
strength is defined by k̃j = |ε|kj , which is multiplied by the
small detuning in this model, making the classical phase space
nearly integrable. Provided that the effective kick strength k̃

remains low, the map, (23), yields a good approximation of
the true quantum motion [27,28]. The momentum distribution
studied in the previous sections corresponds to a distribution
of p(T ,θ0) = J (IT ,θ0)/|ε| for the initial ensemble of θ0

(uniformly distributed in [0,2π ) for modeling a plane-wave
initial condition with a fixed momentum) and the realizations
of the random variables {φj } and {kj }. The momenta IT after
T kicks are given by

IT = I0 +
T −1∑
j=0

k̃j+1 sin(θj + φj+1). (24)

To begin with, we look at the case of a fixed k and broadly
distributed phases, just as in Sec. III A. Then the single
momentum changes are uncorrelated and the motion will be
diffusive just as assumed for the deterministic standard map in
the chaotic regime [44,45]. Formally, the momentum increase
�IT ≡ IT − I0 is related to our distribution function RT from
Eq. (13), by using φ̃j+1 ≡ −(θj + φj+1) and rewriting

�IT = −Im

⎛
⎝ T∑

j=1

k̃j e
−iφ̃j

⎞
⎠ = −

T∑
j=1

k̃j Im(e−iφ̃j ). (25)

The random walk obtained in the variable I is then just a
projection of the walk in the complex plane onto the imaginary
axis. Retranslating into the original momentum variable p

gives a result very similar to the case studied in Secs. III A and
III B, when the phases φi strongly vary in the interval [0,2π ).

For a fixed phase φ, the momentum increase will predomi-
nantly grow by the sum of kick strengths, since we may assume
a random reshuffling of the angles due to the random change
in k. This is similar to the argument used to derive momentum
diffusion in the deterministic standard map [44,45], with the
chaos there substituted by true randomness here. In other
words, we may approximate

T∑
j=1

k̃j sin(θj + φ) ∼ √
var(sin(θj + φ))

T∑
j=1

k̃j ∼ 1√
2

T∑
j=1

k̃j ,

(26)

with var(sin(θj + φ)) ≈ 1/2 from the approximations

〈sin(θj+1) sin(θj )〉 ≈ 0 and 〈sin(θj ) sin(θj )〉≈∫ 2π

o
dx sin2 x =

1/2. Hence, we expect that the walk in momentum space
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FIG. 4. (Color online) Averaged momentum distributions com-
puted by evolving the quantum map generalizing Eq. (3) with
randomly distributed kj values from a Cauchy distribution (no phase
changes). Parameters are τ = 4π + ε, γ = 0.5 after T = 50 kicks,
and 20 000 realizations are taken into account. Data are shown for
three detunings, ε = 0.001 (dotted black line with circles), ε = 0.01
[thick solid gray (red) line], and ε = 0.1 [dashed (blue) line]. The
different curves differ only in the center close to zero momentum;
the tails are identical. The case ε = 0.001 is not distinguishable from
the result at exact quantum resonance; see the solid (blue) line with
circles in Fig. 3. The solid black line shows a power-law fit with
exponent 2 as expected for the Cauchy case.

can be steered by the distribution of kick strengths close
to quantum resonance, making it robust with respect to
experimental imperfections. Our expectation, based on the
crude approximation from Eq. (26), is confirmed by full
quantum simulations at finite detunings, which are shown in
Fig. 4, as well as by pseudoclassical simulations based on the
above reasoning (not shown here).

V. EXPERIMENTAL IMPLEMENTATION

We now investigate how the predictions in the previous
section could be applied in a state-of-the-art experiment
with Bose-Einstein condensates, such as the one successfully
running at Oklahoma State University [34,41,42,46–48]. We
focus, in particular, on possible problems in the implementa-
tion of random walks with heavy-tail statistics. It is clear that
the experimental challenge is twofold: first, relatively high
momenta should be observed, at least over one or two orders
of magnitude. Second, the signal in the wings should be large
enough to give an experimental signal above the noise level
(see, e.g., [49,50]). Next, practical problems in the realization
of the ideal walk must be considered, e.g., the challenge of
rapidly changing the kick strength from kick to kick over an
appreciable range of values or the finite width of a Bose-
Einstein condensate in quasimomentum. In the subsequent
subsections we address these and other possible effects.

A. Fixing the kicking strength for a sequence

The first issue to address is that it may be easier not to
change the kick strength for every kick during a measurement
sequence. Therefore, our proposed idea is to fix the kick

strength kj = k for j = 1, . . . ,T during a sequence and, for
every repetition of the experiment, to choose a different k,
drawn, for example, from a heavy-tailed power-law distribu-
tion. Finally, an average over all results can be performed
to obtain the walk momentum distribution. In this case, the
individual experimental run is no longer a random walk in
momentum space since k is fixed. However, if the potential
shifts φj can be adjusted precisely during a sequence, a
Gaussian walk trajectory, as studied in Sec. III A, can be
realized for each run. We show now that, in this case, the
final averaging over many realizations eventually leads to a
heavy-tailed momentum distribution as well even if k is fixed
for each repetition but chosen randomly from an α-stable
distribution.

Following Eq. (14), at quantum resonance, the mean
momentum distribution after T kicks is now explicitly given
by

P (n,T |n0) =
∫

dk ρk(k)

[∫
dφ1 ρφ(φ1)

. . .

∫
dφT ρφ(φT ) J 2

n−n0
(|RT |)

]
, (27)

where only one integral over k needs to be considered. We
must now derive an expression for the distribution ρ(|RT |),
with RT = ∑T

j=1 ke−iφj , a random walk in the complex plane
with fixed jump length k for each individual repetition of
the experiment. We focus on the simplest case, in which the
φj values are chosen from a uniform distribution in [0,2π ).
From Sec. III A, it is known that for fixed k and uniformly
distributed φj ’s, the distribution of end displacements is given
by Eq. (19), which leads to the following mean displacement:

|RT (k)| =
∫ ∞

0
|RT (k)| ρ(|RT (k)|) d|RT (k)| =

√
T π

2
|k|.

(28)

The influence of the φj values, which determine the displace-
ment of a single sequence with fixed k, is now neglected since
it is small compared to the possibly large jumps in k. Then we
can assume that the displacement of a single sequence is given
approximately by the mean

|RT (k)| ≈ |RT (k)| =
√

T π

2
|k|. (29)

Since this mean displacement is linearly dependent on |k|, the
resulting distribution ρ(|RT |) is again completely dominated
by the chosen distribution for |k|. To be specific we now
consider a “positive” Cauchy distribution with k � 0,

ρ(k) = 2γ

π (γ 2 + k2)
, (30)

where the factor 2 corrects the normalization due to taking
into account only positive values. By substitution, ρ(k) dk ≈
ρ(|RT |) d|RT |, we arrive at

ρ(|RT |) ≈ 2
(√

T π
2 γ

)
π

((√
T π
2 γ

)2 + |RT |2) . (31)

As in Sec. III B, the distribution of k’s from Eq. (30) carries
over to a Cauchy distribution for the end displacement |RT |,
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FIG. 5. (Color online) Log-log plots of the numerically obtained
averaged momentum distributions [(blue) symbols] via simulations
with 50 000 realizations for the φj ’s and k, T = 50, n0 = 0, and
ξ = 0. For the φj ’s a uniform distribution is considered; for k,
the Cauchy distribution, Eq. (30), with scale parameter γ = 0.5 (a)
and γ = 0.1 (b). Additionally, we show the averaged momentum
distribution obtained by computing Eq. (14) with the derived
analytical expressions for ρ(|RT |) (solid black line) from Eq. (31).

although with a smaller width,
√

T πγ/2, compared to T γ .
Figure 5 confirms the validity of this approximate result (c.f.
Fig. 6 as well). The plots also show that, at smaller γ , the
power law starts at lower values of momentum, while at larger
γ the power law starts at higher momenta.

B. Taking into account the quasimomenta

Up to now, always resonant quasimomenta have been
considered, corresponding to ξ = 0 in Eq. (8). Modern Bose-
Einstein condensate experiments allow one a relatively precise
adjustment of the β distribution which is approximated to
be Gaussian [42,47]. Sticking to the quantum resonance at
τ = 2π (i.e., � = 1), we consider the distribution centered
around the resonance value β = 0.5:

ρβ(β) = 1

σ
√

2π
e
− (β−0.5)2

2σ2 , (32)

with σ = ν/2/
√

ln(2) 2, where ν ≈ 0.05 is the full width at
half-maximum (FWHM) measured in Ref. [42]. An adequate
value for the number of considered β values is B = 10 000,
corresponding to the typical atom number in the experiment
[34,41–43,46–48]. This implies the assumption that each
atom has its own quasimomentum, neglecting interactions,
and hence we assume that the initial atomic ensemble is an
incoherent mixture of plane waves with different but fixed
quasimomenta.

Hence, given the probability distribution after a
kicking sequence for an atom with fixed β = β0,
P (n,T |n0,β0,{kj },{φj }), the “real” momentum distribution,
under the incoherent approximation, is given by the following
classical average:

P (n,T |n0,{kj },{φj }) =
∫ 1

0
dβ ρβ(β) P (n,T |n0,β,{kj },{φj }).

(33)

At quantum resonance and for a fixed β, P (n,T |n0,

β,{kj },{φj }) = J 2
n−n0

(|RT |) [see Eq. (11)], where RT now

FIG. 6. (Color online) Log-log plots of numerically obtained
averaged momentum distributions via simulations which take into
account the quasimomenta. We consider the φj values to be uniformly
distributed; k is fixed for each run (see Sec. V A) and chosen from
the Cauchy distribution, (30), for each repetition; the parameters are
T = 50, n0 = 0, and τ = 2π . (a) Results are plotted by considering
R = 50 000 realizations for the φj ’s and k and the different single
values for β given in the legend. (b) Results are plotted by
considering R = 25 000 and B = 200 values for β chosen from a
normal distribution centered around the resonance value β = 0.5
with different values for the FWHM ν; see the legend.

takes the extended form

RT = RT ({kj },{φj },ξ (β)) =
T∑

j=1

kj e−i(φj +(j−1)ξ ). (34)

This formula underlines the similarity between ξ (and hence
β) and φj , both acting as effective potential displacements.
Both have an influence on the direction of the single steps
performed in the underlying walk in the complex plane. If we
consider a case in which the φj ’s are uniformly distributed
in [0,2π ), the potential is completely randomly shifted in θ

space for every kick. Further shifts arising from the different β

are therefore averaged out and negligible. Thus, in this special
case, the effect of the β’s can be absorbed in the phase average.

Figure 6 shows the results of numerical simulations for
which the additional averaging over the β’s is done. We
consider the case in which the φj ’s are uniformly distributed
and k is fixed and chosen from the Cauchy distribution, (30),
for each repetition. First, for the simulation in Fig. 6(a),
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50 000 realizations for the φj values (j = 1, . . . ,T ) and k are
considered at only one nonresonant value for β, i.e., at τ = 2π ,
with β �= 0.5. In all cases, one obtains a similar result, and even
for β = 0, which is the value the farthest from resonance,
no significant difference is observed. In Fig. 6(b), several
normal distributions for β are considered, with a smaller
number of realizations. Again, for all considered values of
ν, no significant difference is seen. The differences for higher
|n| result from the fact that even R = 25 000 realizations is
not sufficient to always obtain a power law up to the tails
at |n| > 103 with significant statistics. In the next sections,
simulations with smaller values for R are done, thus providing
the opportunity for additional checks with a more realistic
number of quasimomenta.

C. Limits for the kicking strength and the number of repetitions

Another experimental problem is that no infinite range for
the kicking strength can be realized, which would be necessary
to cover the entire tail of a power-law input distribution. Given
the typical laser intensities in the laboratory, one may realize
without problems a range of k between about 0.1 and 5. The
lower limit is set by experimental uncertainties, which make it
hard to distinguish between k = 0 and k = 0.1 kicking signals.
Hence, only a small part of the Cauchy distribution for k � 0
can be considered:

ρk(k) =
{

const. 2
π

γ

k2+γ 2 for kmin � k � kmax,

0 otherwise ,
(35)

where const. is an appropriate normalization constant. It is
suitable to use γ = 0.1 since for such a small-scale parameter,
the power law sets in early and covers the accessible interval
for k. Furthermore, since one measurement takes about 30 s,
1000 repetitions is reasonable. Because of the expected cutoff
at high momenta, it is also sufficient to consider only 1000
realizations from a statistical perspective.

Figure 7 shows the results of numerical simulations for
which all these realistic experimental parameters are taken
into account. For β, B = 10 000 realizations and a normal
distribution with ν = 0.06 is considered. As above, for the φj

values a uniform distribution is assumed and k is chosen from a
Cauchy distribution with the above limits for each repetition.
We consider a small upper limit kmax = 5 with kmin = 0 in
Fig. 7(a). One observes that the limit for the kicking strength
leads to a cutoff in the averaged momentum distribution. This is
easily explained with the delta approximation for the square of
the Bessel function in Eq. (15). Since k is limited, the values for
|RT | are limited and hence the momentum distribution is nearly
0 for all |n| � |RT |max. The cutoff value in the momentum
distribution depends linearly on the maximum limit for k; this
is in accordance with the mean displacement, which is also
linearly dependent on k. We verified numerically that there
is indeed a linear correlation between the cutoff value in the
momentum distribution and the maximum kicking strength
(not shown here; see [40] for details). In Fig. 7(b), the result of
exactly the same simulation as done for Fig. 7(a) is shown, with
the only difference that here also the minimum limit kmin = 0.1
is taken into account. There are small differences between the
resulting distributions. In the second case, the power law sets
in slightly later. Furthermore, in the second case the power-law

FIG. 7. (Color online) Log-log plots of the numerically obtained
averaged momentum distributions [(blue) symbols] via simulations
which are close to a real experiment. For β, 10 000 values taken from
a normal distribution with FWHM ν = 0.06 are considered. For the
φj values a uniform distribution is assumed and k is chosen from a
limited Cauchy distribution for each repetition. The limits used are
kmax = 5 and (a) kmin = 0 and (b) kmin = 0.1. R = 1000 realizations
are considered at T = 50 for n0 = 0. Both (a) and (b) also show a
power law with exponent 2, corresponding to a Cauchy distribution,
fitted to the data (solid black line).

region is slightly shifted upwards in the vertical direction. The
reason for this effect is that, by considering a minimum limit,
an interval of the Cauchy distribution (from 0 up to 0.1) is
cut which has a relatively high probability. Hence, due to the
new normalization, the values for k in the range from 0.1 up
to 5 have a higher probability compared to the first case. In
other words, the constant in front of the distribution in Eq. (35)
depends on the specific limits. Consequently, the momentum
values resulting from these values of k are more likely.

D. Fluctuations in the kicking strength and optimization
of the signal-to-noise ratio

Another experimental problem is that k is not completely
constant during a sequence because of two independent
experimental artifacts. The first one is that not all the atoms
sit at the same spot and hence they may feel a slightly
different intensity of the kick potential. Additionally, there
are time-dependent drifts in the experiment, especially when
data are taken over a relatively long period. Considering that
such fluctuations are of the order �k = ±0.1, consistent with
the lower cutoff chosen in the previous subsection, one does
not observe significant differences in the results (see Ref. [40]
for details).

In previous atom-optics experiments weak spontaneous
emission was changing the quasimomentum of the atoms
and also heating them slightly [27,48–50]. While this is
a nuisance, for instance, for the observation of dynamical
tunneling [48], it should not be a problem in the present
context. Changing the quasimomentum randomly effectively
leads to a broader distribution of quasimomenta, and it is
similar to randomly changing the phase of the kick potential
(see discussion in Sec. III A). Since both of these effects do not
alter our predictions very much, spontaneous emission should
not hinder the observation of power-law-tailed momentum
distributions.
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The final problem we consider here might be noise in the
detection procedure (e.g., due to pixel fluctuation in the CCD
camera at low contrast), which makes it difficult to see small
signals in the momentum distribution for large |n|. Since,
due to all previously considered limitations, the power law
obtained in the momentum distribution only covers a small
momentum range, and for this range the probability ratio of
P (n=0)max to P (n)min is about three orders of magnitude, this
might not be a problem. However, a possible way to avoid
the noise problem is to choose for the k distribution a power
law that decays more slowly than a Cauchy distribution, i.e.,
0 < α < 1. Hence, the ratio of P (n)max to P (n)min will not
grow too rapidly, allowing for a better experimental signal.
Together with an appropriate choice of the width parameter
γ (see discussion at the end of Sec. V A), this should give
the possibility for the experimental implementation of steered
random walks with a Bose-Einstein condensate.

VI. CONCLUSIONS

We have shown how it is possible to steer the average
momentum distribution of kicked ultracold atoms by applying
random sequences of kicks with specific distributions of
phases and kick strengths. Our central result is contained in
formulas (14) and (16), respectively. They show that the chosen
distribution of kick strengths converts into a momentum
distribution with the same asymptotic scaling. This allows for
future experimental investigations of complex random walks,
e.g., power-law-distributed Lévy walks in momentum space.
Random walks are an important part of many biological, social,
and physical systems [1,2,4,5,10]. Having a robust scheme

for the implementation of complex classical walks with great
stability will enable new insights into many nondeterministic
transport processes in nature with large fluctuations. The
robustness of our prediction with respect to experimental
limitations is confirmed by our detailed analysis of the effects
of small detunings from quantum resonance, of limits in the
kick-strength distribution, and of a finite quasimomentum
distribution of the atoms (see Secs. IV and V).

A random choice of the phase of the kicking lattice from
the two values 0 and π mimics the coin toss of a quantum walk
since it effectively changes the sign of the kick potential and,
hence, determines the direction of a single kick or step of the
walk. Substituting the random choice of parameters by random
“coin” tosses of the necessary additional degree of freedom
would give a true quantum random walk as realized in different
setups with single-particle control [51–54]. Extending our
study to include such a second degree of freedom—to control
the single step of the walk simultaneously entangled with the
center-of-mass momentum degree of freedom of the atoms—
may permit the implementation of stable quantum walks
with Bose-Einstein condensates with many more particles.
Moreover, in such improved walks with ultracold atoms, the
quantum-to-classical transition [55,56] in the walk behavior
may be investigated as partly anticipated by our Fig. 2.
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