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Spectral response of magnetically trapped Bose gases to weak microwave fields
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Microwave fields can be used to drive local spin transitions in quantum gases and for outcoupling of cold
atomic beams from magnetic traps. In this paper, we derive an analytic theory for the outcoupling rate as a
response to weak microwave fields of varying frequency and power. The theory holds for thermal clouds and
Bose-Einstein condensates. It allows for calculating transition rates in arbitrary magnetic trap geometries and
includes the effect of gravity. We verify our theory by measuring the flux of outcoupled atoms at the single-particle
level. The derived spectral response is important for magnetic noise spectroscopy with quantum gases, and for
probing quantum gas dynamics with single atom detectors in real time.
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I. INTRODUCTION

Radio-frequency and microwave fields driving atomic spin
and hyperfine transitions are commonly used for extracting
ultracold atoms from magnetic traps. Coherent atom laser
beams are obtained from Bose-Einstein condensates (BECs)
by applying weak radio-frequency and microwave radia-
tion [1–6], magnetic field noise is measured through atom loss
from magnetic traps [7–10], and the dynamics of magnetized
cantilevers [11] or current driven beams [12] may be measured
through the detection of spin flipped atoms. For the modeling
and analysis of such systems, the knowledge of the spectral
response of the magnetically trapped gas is necessary, which
has been calculated so far only for Bose-Einstein condensates
in harmonic trap geometries [13–18]. Here we elaborate the
model of the spectral response of thermal and condensed Bose
gases trapped in arbitrary magnetic potentials in the presence
of gravity.

In particular, we investigate the response of magnetically
trapped Bose gases to microwave radiation resonant with
atomic spin or hyperfine transitions. Our study focuses on
the weak-coupling regime, where the number of outcoupled
atoms is small and typically not detectable by standard
imaging methods but by single atom counting [19–22]. Using
a quasiclassical approach, we derive an analytic expression
for the outcoupling rate and its frequency dependence and
find that outcoupling from thermal clouds and Bose-Einstein
condensates follows the same integral equation. We validate
our model by measuring the spectral response of thermal
atomic clouds and Bose-Einstein condensates.

II. QUASICLASSICAL THEORY OF THE
SPECTRAL RESPONSE

The interaction of a magnetically trapped gas of atoms
with a microwave field is illustrated in Fig. 1(a). We take the
example of thermal and Bose-condensed clouds of 87Rb atoms
corresponding to our experiments described in this paper.
Initially the atoms are magnetically trapped in a low-field
seeking spin state. The microwave radiation drives a transition
to a nontrapped spin state. Spin-flipped atoms leave the
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trap. We calculate the outcoupling rate as a function of the
microwave frequency, i.e., the spectral response of the atomic
cloud.

A. Resonance condition and resonance surface

In general, the microwave field couples two hyperfine states
|F,mF 〉 ↔ |F ′,mF ′ 〉 with energies directly connected to the
magnetic trapping potential,

UF,mF
= gF μBmF | �B| =: Umag, (1)

UF ′,mF ′ = gF ′μBmF ′ | �B| = gF ′mF ′

gF mF

Umag. (2)

Here we assume the atoms to be initially prepared in the
trapped |F,mF 〉 state. The resonance condition then requires

�ωres
!= �U = Umag

(
1 − gF ′mF ′

gF mF

)
(3)

with ωres = ωmw − ω0 being the magnetic-field oscillation
frequency with respect to the zero-field transition frequency
ω0 [see Fig. 1(a)]. Defining the dimensionless parameter λ,

λ =
(

1 − gF ′mF ′

gF mF

)−1

, (4)

which amounts to λ = 2/3 in the case of Fig. 1, the resonance
condition reads

Umag(�rres) = λ�ωres. (5)

The manifold of points {�rres} for which Eq. (5) is fulfilled
defines the resonance surface, which for a given microwave
frequency is given by the equipotential surface of the magnetic
potential. Outside this surface atoms are detuned from the
resonance by

δ(�r) = ω(�r) − ωres = Umag(�r)

λ�
− ωres (6)

with ω(�r) = Umag(�r)/λ� being the position dependent fre-
quency at which �r is coupled resonantly [cf. Fig. 1(b)].

B. Outcoupling from thermal clouds

We calculate the outcoupling rate of thermal atoms, which
are steadily moving in the trap, using a Landau-Zener model
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FIG. 1. (Color online) Microwave outcoupling of 87Rb atoms.
(a) Outcoupling scheme: Atoms are initially prepared in the 5S1/2,
|F = 2,mF = 2〉 state (gF = 1/2), where they are trapped in a
magnetic potential Umag(�r). Energy selective outcoupling is achieved
by microwave (mw) coupling to the nontrapped |F = 1,mF = 1〉
state (gF = −1/2). The coupling rate depends strongly on the
intensity and frequency of the applied microwave and allows for
tomographic investigation of quantum gases. (b) Dressed state picture
for mw coupling of the initial and final bare states, |i〉 and |f 〉. The
microwave coupling causes degeneracy at the resonance positions
and a spatial dependent detuning (black dashed line). Due to the
coupling strength the dressed state energies change slightly (red
line), resulting in avoided crossings at the resonance positions. (c),(d)
Microwave resonance surfaces and density distributions for a thermal
cloud of 190 nK (c) and a BEC of 8000 atoms (d) in a harmonic trap
with ωx/y/z = 2π × 85, 70, 16 Hz. Resonance surfaces are shown for
microwave frequency spacings of 2π × 20 kHz. They are elliptically
shaped and centered around the magnetic field minimum. Both
density distributions are displaced by the gravitational sag, amounting
to y0 ≈ 50 μm. For small cloud extensions (BEC), the resonance
surfaces can be approximated as flat.

for the spin transitions. For particles crossing the resonance
surface the probability of a state transfer is given by [23]

P0 = 1 − exp

(
− π�2

2|α|
)

≈ π�2

2|α| (7)

with α being the change of detuning over time,

α = dδ(�r)

dt
= dω(�r)

dt
=

�∇Umag · �v
∂Umag/∂ω

=
�∇Umag · �v

λ�
, (8)

and � being the resonant Rabi frequency, which we assume
to be constant across the cloud. This assumption holds for
typical experimental conditions [24]. The local crossing rate of
particles with velocity �v through a resonance surface element
dA amounts to

γv = n(�r) �v · d �A (9)

with d �A ‖ �∇Umag oriented normal to the resonance surface.
The local outcoupling rate d�v = P0 × γv is thus velocity
independent and the total rate becomes

� =
∫

d�v = π�2λ�

2

∮
n(�r) dA

| �∇Umag | , (10)

where the integral has to be evaluated on the resonance surface.

C. Outcoupling from Bose-Einstein condensates

For condensates we use a different approach, where the
microwave coupling induces local Rabi oscillations, resulting
in an outcoupled atomic density [14]

nout(�r,t) = �2 sin2
(

1
2

√
δ(�r)2 + �2t

)
δ(�r)2 + �2

n(�r). (11)

The outcoupling rate then amounts to

�(t) = d

dt

∫
nout(�r,t)dV (12)

= �2

2

∫
sin

(√
δ2 + �2t

)
√

δ2 + �2
n(�r)dV. (13)

Changing the base to curvilinear coordinates, with one base
vector given by d�r/dω and the others spanning the resonance
surface element dA, results in a transformation

dV = dUmag/dω

| �∇Umag | dωdA = λ�

| �∇Umag |dωdA. (14)

After substituting ω̃ = ω − ωres, the outcoupling rate becomes

�(t)= �2λ�

2

∫ ∞

−∞
dω

sin
(√

ω̃2 + �2t
)

√
ω̃2 + �2︸ ︷︷ ︸

πJ0(�t)

∮
dA

n(�r)

| �∇Umag | . (15)

Here we have used that the main contribution to the transition
rate comes from the resonance shell of width δω ≈ � � ωres,
corresponding to a spatial width δy much smaller than the BEC
extension, such that the ω integral can be extended to −∞ and
n(�r)/ | �∇Umag | approximated by its resonance value. The ω

integral can then be solved by means of Bessel functions [14].
The remaining time dependence in the outcoupling rate of

Eq. (15) is due to resonant backcoupling of outcoupled atoms,
which, at least for low Rabi frequencies, is strongly suppressed
by the outcoupled atoms falling out of the resonance shell.
The dynamics of Eq. (15) is thus only valid at t = 0, where all
atoms remain trapped. The total loss rate then becomes

� = π�2λ�

2

∮
n(�r)dA

| �∇Umag | , (16)

which is identical to the expression found for thermal clouds.

D. Numeric and analytic solutions

Evaluating the resonance surface integral in Eq. (16)
is typically nontrivial, especially if a proper surface
parametrization is missing. However, using the vector identity
dA = (d �A · �∇Umag)/ | �∇Umag | and the divergence theorem,
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the surface integral can be rewritten as a volume integral∮
n(�r)

| �∇Umag |dA =
∫

div

(
n(�r)

| �∇Umag |2
�∇Umag

)
dV, (17)

which is easily solved numerically. Here, the integral has to be
evaluated in the volume enclosed by the resonance surface.

Nevertheless, certain trap geometries allow for a proper
parametrization of the resonance surface. This especially holds
for harmonic potentials with trap frequencies ωx , ωy , ωz, as
found in almost all Ioffe-type field configurations close to
the trap center. Figures 1(c) and 1(d) show the ellipsoidal
resonance surfaces in such a situation, alongside density
distributions for a typical thermal cloud and a BEC. Using
scaled spherical coordinates (a � 0, θ ∈ [0,π ], ϕ ∈ [0,2π ]),
with transformation rules

x = a/ωx sin θ cos ϕ,

y = a/ωy sin θ sin ϕ, (18)

z = a/ωz cos θ,

the magnetic potential reads

Umag =
3∑

i=1

1

2
mω2

i x
2
i = 1

2
ma2 ≡ λ�ω (19)

and solely depends on the coordinate a. The resonance
surfaces, given by the equipotential surface of Umag, are thus
well parametrized by ϕ and θ and Eq. (16) transforms to

� = π�2λ�

2

a

mωxωyωz

∫∫
n(�r) sin θdθdϕ. (20)

Taking gravity into account, the density distribution of thermal
clouds and BECs both depend on the total atomic potential
U = Umag − mgy. While still being harmonic, the total poten-
tial minimum is shifted to y0 = g/ω2

y , known as gravitational
sag, and energetically lowered by U0 = mg2/(2ω2

y) [see
Figs. 1(c) and 1(d)]. Following Boltzmann distribution, the
density of a thermal cloud reads

nth(�r) = n0 exp

(
− λ�ω

kBT

)
exp

(
mga sin θ sin ϕ

ωykBT

)
(21)

with n0 given by normalization to the total atom number
N . Using this density distribution Eq. (20) can be solved
analytically yielding

�th(ω) = π�2λ�

2

N√
πU0kBT

exp

(
− U0 + λ�ω

kBT

)

× sinh

(
2

√
U0

kBT

λ�ω

kBT

)
. (22)

For sufficient small cloud extensions as in the case of BECs,
the outcoupling surface can be approximated by a plane surface
[see Fig. 1(d)], yielding the resonance condition

1

2
mω2

yy
2 = λ�ω → y(ω) =

√
2λ�ω

mω2
y

. (23)

FIG. 2. (Color online) Spectral response of thermal clouds and a
BEC with 10 000 atoms in a harmonic trap with trapping frequencies
ωx/y/z = 2π × 85, 70, 16 Hz, as calculated from Eqs. (22) and (24).
For T > 1 μK the spectral shape is dominated by the cloud
temperature, giving access to the particles’ energy distribution. For
T < 1 μK the spectral response depends directly on the cloud’s
density profile and the gravitational acceleration, allowing for spatial
tomography of quantum gases.

With |�∇Umag| ≈ mω2
yy the integral in Eq. (16) can be solved

in Cartesian coordinates yielding

�(ω) = π�2

2

√
λ�

2mω2
y

n[y(ω)]√
ω

(24)

with n(y) = ∫∫
ndxdz being the integrated line density. For a

BEC in the Thomas-Fermi limit, this line density is given by

nbec(y) = μπRxRz

2g
max

[
0,1 − (y − y0)2

R2
y

]2

(25)

with the coupling strength g = 4π�
2a/m, the scattering length

a, the Thomas Fermi radii Ri =
√

2μ/(mω2
i ) and the chemical

potential μ given via normalization.

E. Discussion

Following Eq. (16), the total outcoupling rate scales
quadratically with the Rabi frequency and thus linearly with
the microwave power density. This is expected in the weak-
coupling regime, where saturation effects and Rabi oscillations
are negligible. Figure 2 shows the spectral response, as
calculated from Eqs. (22) and (24), for thermal clouds of
different temperatures and Bose-Einstein condensates. For
the calculations we used a harmonic trap geometry with
trapping frequencies ωx/y/z = 2π × 85, 70, 16 Hz, as in the
experimental section of this paper.

For large cloud extensions, �y � y0, the gravitational sag
is negligible and the outcoupling rate from Eq. (22) becomes

� ∼ √
ω exp

(
− λ�ω

kBT

)
. (26)

The maximum ω0 and width �ω (full width at half maximum)
of the spectral response are then given by the cloud temperature
only:

ω0 ≈ kBT /2λ�, �ω ≈ 1.8kBT /λ�, (27)
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as illustrated by the T > 1 μK curves in Fig. 2. In this regime,
the spectral response yields mainly information about the
particles’ energy distribution.

For small cloud extensions, �y � y0, the gravitational
sag becomes dominant and the outcoupling rate can be
approximated by Eq. (24), yielding

� ∼ n[y(ω)]√
ω

. (28)

In this regime, the maximum of the spectral response is
shifted with respect to the magnetic-field minimum, to a value
independent from the cloud temperature,

λ�ω0 ≈ 1

2
mω2

yy
2
0 → ω0 ≈ mg2

2λ�ω2
y

, (29)

amounting ω0 = 2π × 81.6 kHz in Fig. 2. With the gradient of
the magnetic potential being compensated by the gravitational
force at the trap center, the spectral width of the response
function is now directly connected to the spatial width �y and
the gravitational acceleration g,

dUmag

dy
= λ�

dω

dy
≈ mg → �ω = mg

λ�
�y. (30)

We note that only in this regime does the spectral response fol-
low directly from the spatial distribution of the atomic cloud.
According to Eq. (28), the frequency-dependent outcoupling
rate is then a direct measure for the cloud’s spatial density
profile. This gives an interesting opportunity of tomographic
measurements on the quantum gas, e.g., the measurement of
density variations of a spin component between resonance
shells or collective oscillations of the quantum gas.

The frequency resolution δω of such a mw tomography
will be typically given by the width of the resonance shell,
δω ≈ �, which might be additionally broadened due to the
atoms’ dwell time in the resonance region. This translates
according to Eq. (30) to a spatial resolution δy = λ�δω/mg,
given by the thickness of the resonance sheet, which is typically
in the submicrometer regime and thus much smaller than the
spatial extension of the quantum gas. The ultimate resolution
limit is given by the sensitivity of the detection process, which
sets a lower limit to the detectable Rabi frequency. Using a
sensitive single atom detection scheme, as presented in the
following section, high spatial resolutions may be feasible.

We note that for small cloud extensions the spectral width
of the response function is largely increased due to gravity,
as the cloud is shifted from the center of the magnetic trap
to stronger magnetic-field gradients (cf. Fig. 2). Especially
for Bose-Einstein condensates, this results in spectral widths
much larger than the chemical potential, which is the main
reason for the high resolution in microwave tomography.

III. EXPERIMENT

For the experimental verification of the spectral response
we prepare clouds of 87Rb atoms in the 5S1/2, |F = 2,mF = 2〉
state in a magnetic trap [cf. Fig. 1(a) and Ref. [25]]. The con-
finement at the trap center is nearly harmonic with oscillation
frequencies ωx/y/z = 2π × 85, 70, 16 Hz. Gravity is acting
along the y direction. A microwave field of ∼6.8 GHz fre-
quency, driving transitions from the trapped |F = 2,mF = 2〉

to the nontrapped |F = 1,mF = 1〉 state, is irradiated with
a helix antenna. Atoms undergoing the spin-flip transition
are no longer trapped and fall under gravity. We detect these
outcoupled atoms with a single atom counting scheme.

The detection process is based on state selective photoion-
ization and subsequent ion counting [26,27]. Atoms falling out
of the trap enter the photoionization volume, defined by a pair
of laser beams, ∼300 μm below the atomic cloud. Starting
from 5S1/2, F = 1 the atoms are first excited to the 5D5/2,
F = 3 state via a resonant two-photon transition at 778 nm.
The transition is resonantly enhanced via the 5P3/2 state,
allowing saturation at few 10-mW laser power. A fiber laser at
1064 nm is then used to ionize the atoms. To compete against
the natural decay of the 5D5/2 state, we use about 4-W fiber
laser power, which is not yet sufficient to saturate the transition,
thus limiting the ionization efficiency [20,28]. Both lasers
are positioned about 300 μm below the atomic cloud with
beam waists of about 50 μm. Besides driving the ionization
process, the high power fiber laser creates a strong attractive
dipole potential, which focuses the falling atoms to regions
of high intensity. The repulsive dipole potential of the 778-nm
laser is negligible. Following the photoionization, the rubidium
ions are collected with an ion optics and guided to a channel
electron multiplier [27]. Ions are counted with 8-ns temporal
resolution. The detection efficiency, 24%, has been calibrated
by comparing the number of ions counted with the loss of
atoms from the trap observed through absorption imaging. The
detector’s background count rate, measured without atoms but
all ionization lasers and readout electronics turned on, amounts
to about 1 Hz.

To verify the theoretical results found in Sec. II, we
experimentally measure the response of ultracold atoms to mi-
crowave fields of varying power and frequency. After preparing
a thermal cloud or Bose-Einstein condensate, we irradiate the
microwave at constant or time-varying frequency for about 1 s,
while monitoring the outcoupled atoms with the state selective
single atom detector. Counting the atoms in 1-ms bins allows
for extracting time resolved outcoupling rates, which we then
compare to our theory. Trap frequencies, temperatures, and
atom numbers of the atomic clouds have been derived from
standard absorption imaging. The Rabi frequency has been
calibrated by sweeping the microwave at a constant rate of
1.6 MHz/s through the cloud and monitoring the remaining
atom fraction via absorption imaging. Comparing the result to
the Landau-Zener theory from Eq. (7) allows for extracting the
Rabi frequency.

A. Spectral response

In a first experiment we measure the shape of the spectral
response function. We sweep the mw frequency at a constant
rate of 1.3 kHz/ms, starting with a positive detuning of
∼500 kHz with respect to the magnetic-field minimum. The
mw power is tuned to � = 2π × 84 Hz, such that the total
outcoupling losses stay below 10%. Due to the single atom
sensitivity of the detector, this is sufficient to measure the full
spectral response function within a single sweep. Figure 3
shows the measured response for a thermal cloud of 160 nK
and a BEC at 30 nK with 8200 atoms.
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FIG. 3. (Color online) Spectral response of a thermal cloud (red
points) and a BEC (blue points), measured by sweeping the mw
frequency through the cloud, while detecting the ion count rate.
For a single sweep through the thermal cloud (N = 730 × 103,
T = 160 nK) and the BEC (N = 8200, T ≈ 30 nK), the total number
of detected ion amounts are 4000 and 50, respectively. To reduce
noise, the BEC measurement is shown as average of four sweeps.
Microwave frequencies are shown relative to the magnetic trap center
(black dashed line), located at 876 and 873 mG for the thermal cloud
and BEC. From the measurements we deduce the FWHM (full width
half maximum) of the spectral response to be 69 kHz for the thermal
cloud and 18 kHz for the BEC. The results from the theoretical
ab initio calculations following Eqs. (22) and (24) are shown as solid
lines.

The measurements are shown together with the ab initio cal-
culations from Eqs. (22) and (24). Here, the finite temperature
BEC is described by superimposing the response functions
of a pure BEC and the corresponding thermal component.
Both measurements show good agreement with the theory,
with only small deviations in the high-frequency region of the
thermal cloud. These deviations are due to the onset of trap
anharmonicities, which could in principle be extracted from
such measurements.

B. Sensitivity

In a second experiment we keep the mw frequency fixed
at the maximum of the spectral response and measure the ion
signal for different mw amplitudes. We stepwise increase the
mw amplitude (Rabi frequency) in consecutive experimental
runs ranging from � = 2π × 17 mHz up to 2π × 170 Hz.
Within a single run the Rabi frequency is then fixed during
the 800-ms measurement time. As for large mw powers the
ion count rate may change during the measurement time;
we extract the initial ionization rate by fitting an exponential
function to the time resolved ionization rates. Figure 4 shows
the results for a thermal cloud at 240 nK and a BEC with
10 000 atoms alongside the ab initio calculations from Eq. (16).
For large microwave powers, we find perfect agreement and
the outcoupling rate increases quadratically with the Rabi
frequency. In the low power regime, however, the measured
count rate saturates at values larger than the detector’s
background count rate. A detailed analysis shows that this
offset is due to an imperfect separation of the 778-nm laser
mode from the trapped atoms, causing weak optical pumping
to the nontrapped F = 1 state. This is a purely technical effect

Ω / π

FIG. 4. (Color online) Response of a thermal cloud (red points)
and a BEC (blue points) to different mw amplitudes and Rabi
frequencies. At each amplitude the ion count rate is measured for
800 ms on individual clouds. Data points show the initial ionization
rate as extracted from an exponential fit to the measurement time.
The ab initio theory from Eqs. (22) and (24) is shown with zero
(dashed lines) and finite (solid lines) offset count rates. The offset
values for the thermal cloud (N = 5.8 × 105, T = 240 nK) and the
BEC (N = 10 × 103) have been set to 700 and 15 Hz, respectively.
The offset is purely technical and describes atomic spin flips driven
by an off-resonant excitation from the 778-nm laser. In general
(without offset) the sensitivity limit is reached at the dark count level
amounting to 14.7pT/

√
Hz for the thermal cloud.

and shall be overcome in future realizations by using a light
sheet for the ionization lasers.

Using Eq. (16) and accounting for the measured 1-Hz
background ion count rate we can estimate the sensitivity of
magnetically trapped atomic clouds to resonant microwave
radiation to be in the range 15pT/

√
Hz or in terms of the Rabi

frequency 2π × 0.25 Hz/
√

Hz.

IV. OUTLOOK

In this paper we have presented and experimentally verified
a quasiclassical description for microwave outcoupling from
thermal clouds and Bose-Einstein condensates in arbitrary
magnetic-field configurations. Knowing the spectral response
of quantum gases to radio-frequency and microwave fields will
open up new perspectives for spectroscopic measurements.
In future experiments weak microwave outcoupling might
be used to investigate dynamical effects in quantum gases
such as center of mass oscillations, collective excitations,
density waves or even spin-wave dynamics. Using a sensitive
single atom detector such measurements can be done at rather
low Rabi frequencies, maximizing the spatial tomographic
resolution. At the same time, small outcoupling rates will
allow for fast data acquisition and real-time observation.
Vice versa, the quantum gas might be used to characterize
unknown radio-frequency or microwave fields. Besides mea-
suring magnetic-field amplitudes down to the pT regime,
such atomic quantum probes may allow local measurements
of classical and quantum noise spectra close to solid-state
devices.
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