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Effective microscopic models for sympathetic cooling of atomic gases
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Thermalization of a system in the presence of a heat bath has been the subject of many theoretical investigations
especially in the framework of solid-state physics. In this setting, the presence of a large bandwidth for the
frequency distribution of the harmonic oscillators schematizing the heat bath is crucial, as emphasized in the
Caldeira-Leggett model. By contrast, ultracold gases in atomic traps oscillate at well-defined frequencies and
therefore seem to lie outside the Caldeira-Leggett paradigm. We introduce interaction Hamiltonians which allow
us to adapt the model to an atomic physics framework. The intrinsic nonlinearity of these models differentiates
them from the original Caldeira-Leggett model and calls for a nontrivial stability analysis to determine effective
ranges for the model parameters. These models allow for molecular-dynamics simulations of mixtures of ultracold
gases, which is of current relevance for optimizing sympathetic cooling in degenerate Bose-Fermi mixtures.
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I. INTRODUCTION

The study of dynamical systems interacting with an external
environment plays an essential role in classical and quantum
physics, since long-term properties of any system are going to
be affected by the outside world unless complete adiabaticity
can be assumed at all times. In particular, the presence of
environments having the energy of their constituent particles
shared according to the Boltzmann distribution, also named
“baths,” is at the basis of the canonical ensemble approach
in equilibrium statistical mechanics, with its large variety
of physical implications. A microscopic analysis of the
system-bath interplay is possible by writing explicitly the
bath degrees of freedom and integrating out their effect on
the target particle. Along these lines, various authors have
determined sufficient conditions under which a Langevin
dynamics, and the consequent thermalization, holds. This has
been achieved by considering a bath made of noninteracting
harmonic oscillators, which interact linearly with the target
particle, the so-called Caldeira-Leggett model [1–4].

More recently, studies have focused attention on baths
endowed with finite resources, such as a finite number of
harmonic oscillators distributed in a finite bandwidth, i.e.,
allowing for a nonzero infrared cutoff and a finite ultraviolet
cutoff [5–10]. In particular, the dynamics of a target harmonic
oscillator interacting via a linear and translationally invariant
term with a bath, composed of a finite number of harmonic
oscillators whose frequencies are all in a limited range, was
studied in detail. The principal outcome of this analysis,
presented in [5], can be summarized as follows. To ensure
thermalization, the frequency of the test particle must lie
within the band of bath frequencies, which in turn must also
have a large enough bandwidth. In the absence of any one
of these conditions the test particle does not thermalize to
the temperature of the bath. The implication of this is either
that the energy distribution is not amenable to a Boltzmann
distribution or that the resulting effective temperature of the
test particle is significantly different from that of the bath.

Thermalization plays a crucial role in sympathetic cooling
of atomic species trapped in magnetic or optical potentials.

This was first demonstrated experimentally when 85Rb, a
bosonic rubidium isotope which is hard to cool using evapo-
rating techniques, was successfully cooled via thermal contact
with 87Rb [11]. The technique is even more crucial in the case
of fermionic atomic species where direct evaporative cooling
loses its efficiency in the degenerate regime due to fundamental
limitations arising from the Pauli principle [12–14]. A number
of studies have led to predictions for new phase transitions
occurring for ultracold fermions in single traps or optical
lattices, and the current experimental focus is on achieving
temperatures low enough to observe these effects [15].

The Caldeira-Leggett model, in its original form, cannot be
used to describe thermalization in the atomic physics frame-
work. In its applications to solid-state systems, this model is
meaningful due to the multiplicity of normal modes associated
with lattice vibrations and the need for a continuous density of
states, as in the Debye model [16]. In contrast, in atom traps no
phonon-mediated interactions exist in principle either in single
traps or in optical lattices. Thus coolant and target species both
have single values for the trapping frequencies which means
that, based on the Caldeira-Leggett model, no thermalization is
expected. This is further heightened in those proposals where
the two species are deliberately required to have significantly
different trapping frequencies in order to optimize sympathetic
cooling [17–23]. Of course, this inference is in stark contrast
to the experimentally observed success of sympathetic cooling
in a range of atomic mixtures.

In this paper, we demonstrate that it is possible to choose
bath-test particle interactions which reconcile the Caldeira-
Leggett model with the experimentally manifest effectiveness
of sympathetic cooling. The details of the dynamics of
thermalization is studied as well in terms of the stability
with respect to different choices of the model parameters.
The model we discuss is purely classical, both in regard to the
dynamical evolution and to the choice of Boltzmann heat baths.
While classical dynamics is generally considered sufficient
to describe the motion of ultracold atoms under current
experimental conditions, in the quantum degenerate regime
the Boltzmann energy distribution should be superseded by
Bose or Fermi distributions. This work should be therefore

1050-2947/2015/92(3)/033422(12) 033422-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.92.033422


ROBERTO ONOFRIO AND BALA SUNDARAM PHYSICAL REVIEW A 92, 033422 (2015)

considered as a prelude, in the Dulong-Petit classical limit,
to the analysis of fully degenerate ultracold quantum gases,
setting the stage and the language for future work aimed at a
more comprehensive analysis of dynamical situations such as
the sympathetic cooling of Bose-Fermi mixtures.

The paper is organized as follows. In Sec. II we introduce
two interaction Hamiltonians differing in their selectivity with
respect to the relative velocity of the interacting particles,
and we make explicit the Hamilton’s equations and asso-
ciated considerations. In Sec. III we discuss an interesting
phenomenon which occurs in the strong-coupling limit of
repulsive interaction, i.e., the fact that the test particle
experiences an effective double-well potential which influ-
ences the dynamics of cooling. This is demonstrated both
through numerical and approximate fixed-point analyses,
which then results in a phase diagram delineating various
regimes in the parameter space. Section IV presents the
results of numerical simulations showing the approach to
thermal equilibrium and the relaxation dynamics in terms
of the interaction energy. In the process, we revisit some
assumptions implicit in discussions of thermalization, which
are not necessarily satisfied in models like ours. In the
conclusions, we discuss the relevance of this model to actual
simulations of ultracold atomic mixtures, as well as several
directions for expanding the applicability of our models. A
particular point of interest is the possible application of recent
results on shortcuts to adiabaticity for hastening the rate of
thermalization in our dynamical models.

II. INTERACTION HAMILTONIANS

The classical Hamiltonian for a 1D harmonic oscillator of
mass M and angular frequency �, which we will refer to as a
“test particle,” in the presence of a bath made of Nb harmonic
oscillators of mass m and generic frequency ωn ∈ [ωIR,ωUV ]
linearly coupled to it, is written as

Htot = P 2

2M
+ 1

2
M�2Q2 +

Nb∑
n=1

[
p2

n

2m
+ 1

2
mω2

n(qn − Q)2

]
.

(1)
The associated Hamilton equations are

Q̇ = P

M
,

Ṗ = −M�2Q +
Nb∑
n=1

mω2
n(qn − Q),

(2)
q̇n = pn

m
,

ṗn = −mω2
n(qn − Q).

These show that the effect of the bath on the test particle
leads to a modified “spring constant” (which can also be
viewed as a combined change in mass and frequency) such
that M�2 �→ M�2 + m

∑Nb

n=1 ω2
n, and in an effective force

equal to −m
∑Nb

n=1 ω2
nqn, where the latter depends on the

bath dynamics. If the bath oscillators all have the same
frequency then the driving force is simply proportional to∑

n qn, which averages to zero for a large number of bath

oscillators with uniform distribution of initial conditions in
phase space. This precludes any exchange of net energy
between the bath and the test particle. This implies that
thermalization relies on and requires the existence of a large
number of distinct frequencies for the bath oscillators. As
such, atoms oscillating in a harmonic trap with a common
angular frequency, ω, do not fall within the Caldeira-Leggett
framework. To address thermalization in this specific situation,
the interaction between the test particle and the bath particles
needs to be modified, and we will consider a Hamiltonian of
the generic form

Htot = P 2

2M
+ 1

2
M�2Q2 +

Nb∑
n=1

(
p2

n

2m
+ 1

2
mω2q2

n

)

+Hint(Q,P,qn,pn). (3)

Given our motivation, the first distinctive requirement in
Hint is that interactions between atoms be highly localized in
configuration space, being described either by pseudopoten-
tials with zero range or by finite range (dipolar) interactions.
Locality of the bath-test particle interaction, first introduced to
our knowledge in the context of a microscopic description of a
measurement apparatus [24], is easily achieved by introducing
a spatial “filter,” for instance of a Gaussian nature. This implies
an interaction Hamiltonian of the generic form

Hint(Q,qn,P,pn) = γ

Nb∑
n=1

f (qn − Q,vn − V )

× exp

[
− (qn − Q)2

λ2

]
. (4)

Thus the test particle-bath interaction Hamiltonian is depen-
dent on two parameters, the coupling strength γ and the
range λ. The interaction Hamiltonian is basically negligible
if |qn − Q| >> λ. The generic function f is chosen to fulfill
Galilean invariance, as reflected in the explicit dependence
on the differences between the coordinates and velocities of
the involved particles, with V = P/M and vn = pn/m. For
the remainder of our analysis, we will contrast two forms
of the function f . The first is where f is constant, which
is a velocity-independent situation, while the second choice
takes f to be a quadratic function of the relative velocity.
Having in mind applications in the atomic physics arena,
the coupling strength γ should eventually be related to the
scattering length in the case of pseudopotentials. Examples of
these are the zero-range approximation usually adopted in the
Gross-Pitaevskii equation for Bose gases (in which case λ is
chosen to be zero), or to the van der Waals potential in the case
of finite-range interactions as in dipolar gases.

A. Velocity-independent interaction Hamiltonian

Of the various possibilities available for the function f , the
simplest is a constant value, that is

Hint(Q,qn) = γE

Nb∑
n=1

exp

[
− (qn − Q)2

λ2

]
. (5)

Here a significant impulsive force occurs at each interaction
between the test particle and a particle of the bath if they are
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within a distance of order of λ of each other. The strength
of the interaction is controlled by the parameter γE which
has the dimensions of energy and sets the maximal possible
energy exchange during the interaction, which is achieved in
the limit λ → 0, a sort of force “kick” of constant amplitude.
The sign of γE determines the attractive (γE < 0) or repulsive
(γE > 0) character of the interaction, as in the former case the
interaction energy is minimized at the smallest distances, and
this trend is reversed in the latter situation.

The corresponding Hamilton equations of motion are

Q̇ = P

M
, (6)

Ṗ =−M�2Q−2
γE

λ2

Nb∑
n=1

exp

[
− (qn − Q)2

λ2

]
(qn−Q), (7)

q̇n = pn

m
, (8)

ṗn = −mω2qn + 2
γE

λ2
exp

[
− (qn − Q)2

λ2

]
(qn − Q). (9)

In the limit of large λ the total Hamiltonian resembles Eq. (1)
with the uniform bath frequency Caldeira-Leggett interaction,
but with important differences at large γ since, by expanding
the exponential function to second order in qn − Q,

exp [−(qn − Q)2/λ2] ≈ 1 − (qn − Q)2/λ2, (10)

we get, aside from an irrelevant constant γENb, the following
Hamiltonian:

Htot � P 2

2M
+ 1

2
M�2

(
1 − 2γENb

M�2λ2

)
Q2

+
Nb∑
n=1

[
p2

n

2m
+ 1

2
mω2

(
1− 2γE

mω2λ2

)
q2

n

]
+ 2γ

λ2
Q

Nb∑
n=1

qn.

(11)

This shows that both test- and bath-particle frequencies are
renormalized as � → �[1 − 2γENb/(M�2λ2)]1/2 and ω →
ω[1 − 2γE/(mω2λ2)]1/2. Additionally, there is the appearance
of an external driving force, proportional to the sum of all
coordinates of the proximal bath particles, which vanishes
in the large, uniformly distributed, Nb limit. Notice that,
even if the bath particles and the test particle are initially
chosen with degenerate frequencies and same masses, their
interaction produces a relative frequency shift. Also, for
comparable parameters M � m,� � ω, the harmonic trap
becomes unstable when γE > γ̄E = M�2λ2/(2Nb), beyond
which the local effective potential seen by the test particle
near the origin is that of an inverted harmonic oscillator. The
overall effective potential then morphs into an (attractive)
quartic potential at larger values of Q, as shown by further
expanding the right-hand side of Eq. (10) to fourth order in
qn − Q. Therefore, the effective dynamics for the repulsive
γE > 0 case is one of a double-well for 0 < γ̄E < γE . No
such instability occurs around the origin for negative values of
γE , corresponding to attractive interactions.

In the opposite limit of small λ, at any given time the bath
decouples into a subsystem of Nλ < Nb interacting oscillators,

which are within range λ of the test particle, while the remain-
ing (Nb − Nλ) bath particles are irrelevant to the dynamics.
The average number of oscillators Nλ of the heat bath interact-
ing at any given time with the test particle may be estimated in a
stationary regime once we evaluate the oscillation amplitude of
the generic oscillator 〈q2

n〉1/2 = (2〈En〉/mω2)1/2 where 〈En〉 is
the total energy of the nth particle. The equipartition theorem
provides the estimate En = KBTb, so that average oscillation
amplitude of a generic particle of the heat bath is 〈q2

n〉1/2 =
(2KBTb/(mω2))1/2, and its motion will span an interval of
coordinate values [−〈q2

n〉1/2,〈q2
n〉1/2], while the test particle has

a interaction range of 2λ. Considering uniform distributions
over the ranges, this suggests that the number of oscillators
Nλ � 2λNb/〈q2

n〉1/2, meaning an inverse dependence on the
temperature of the heat bath.

B. Velocity-dependent interaction Hamiltonian

The form assumed above for the Hamiltonian is the simplest
one possible and we can, as more appropriate for collisional
interactions, incorporate a dependence on the velocities of the
test particle and each particle in the heat bath. We continue to
assume, as in the previous case, a local spatial interaction and
the interaction Hamiltonian is now given by

Hint(Q,P,qn,pn)=γM

Nb∑
n=1

(
pn

m
− P

M

)2

exp

[
− (qn − Q)2

λ2

]
.

(12)
This velocity-selective Hamiltonian now corresponds to a
force which depends on the velocity mismatch. Our choice is
reminiscent of the fact that the elastic scattering rate between
atoms is proportional to the relative velocity between the
colliding particles, provided they are in close proximity to
feel deviations from the original trajectory through van der
Waals–like forces. In this case the interaction strength is
dependent upon a parameter γM which has dimensions of mass.

The corresponding Hamilton equations are somewhat more
complex than earlier due to the velocity-dependent term:

Q̇ = P

M
− 2

γM

M

Nb∑
n=1

(
pn

m
− P

M

)
exp

[
− (qn − Q)2

λ2

]
, (13)

Ṗ = −M�2Q − 2
γM

λ2

Nb∑
n=1

(
pn

m
− P

M

)2

× exp

[
− (qn − Q)2

λ2

]
(qn − Q), (14)

q̇n = pn

m
+ 2

γM

M

(
pn

m
− P

M

)

× exp

[
− (qn − Q)2

λ2

]
, (15)

ṗn = −mω2qn + 2
γM

λ2

(
pn

m
− P

M

)2

× exp

[
− (qn − Q)2

λ2

]
(qn − Q). (16)

The main distinctive feature of this set of equations is the
presence of time-dependent masses for both the target particle
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and the bath particles, which in a coarse graining of the
dynamics correspond to time-averaged, effective renormalized
masses. This feature makes a stability analysis of the solutions
more delicate, requiring a fixed-point analysis as detailed in
the next section. In terms of the sign of the interaction, γM > 0
corresponds to repulsive interactions in which minimization of
the interaction energy occurs, as in the former case, at large
particle separation and minimum relative velocity between
the two particles. Here, instabilities occur in the attractive
case of γM < 0, as the interaction energy is minimized
for small distances between the particles and large velocity
separation.

Although the total energy of the overall system is conserved,
the presence, on the right-hand side of Eqs. (13) and (14),
of forces proportional to the square of the velocity difference
resembles dissipationlike behavior. This should be expected to
make the energy exchange between the test particles and the
bath particles occur on shorter time scales when contrasted
with the velocity-independent case where the dissipative
feature is lacking. We note here that a more generic interaction
Hamiltonian of the form

Hint(Q,P,qn,pn)

= γ

Nb∑
n=1

exp

[
(pn/m − P/M)2

ν2
− (qn − Q)2

λ2

]
(17)

can be written where ν is a parameter related to the velocity
spread in the particle ensembles. A Taylor expansion of the
velocity-dependent exponential term generates the velocity-
independent and velocity-dependent interactions, respectively,
at the zeroth and second order in the parameter (pn/m −
P/M)/ν, with the identifications of γE = γ and γM = γ /ν2.

In discussing both types of interactions, what is shown
is for a single target particle interacting with a set of bath
oscillators. These relations can be readily extended to the
more general situation of Np test particle oscillators interacting
with Nb oscillators of the heat bath, as in the subsequent
simulations described in Sec. IV. The advantage of this more
general situation is that the effective temperature of the test
particles can be obtained at any time by looking at the energy
distribution of the test particle ensemble, rather than taking a
finite sequence of energies in a given time interval, a procedure
followed in [5]. This allows for a more accurate tracking of
the time evolution of the temperature, and therefore of the
expected thermalization dynamics. Besides, the interaction of
two clouds of particles is more appropriate to sympathetic
cooling, which is an important motivation for this work.

III. LIMITS IN THE PARAMETER SPACE AND
FIXED-POINT ANALYSIS

The analysis thus far, for both forms of the interaction, indi-
cates that there are parameter regimes where the thermalization
we are interested in may in fact not occur. This would limit the
range of allowed values of γ and λ. More specifically, there
is a transition in the test particle motion from the expected
one of a weakly perturbed harmonic oscillator to an effective
double well dynamics as the parameters are varied, as shown
in Fig. 1 for the case of the velocity-independent interaction
model. The figures show both the initial and final cloud of bath

oscillator locations in phase space, which take on the form of
Gaussian clouds, and the trajectory of the single target particle
over a short (≈20 cycles) time interval. Panel (a) shows the
target particle trajectory clearly circulating around the origin,
whereas in case (b) the dynamics is clearly off center. Changing
the initial conditions leads to the center of motion switching
to a second location symmetrically located with respect to the
origin of the configurational space. To fully understand this
phenomenon whose description has been already sketched in
the former section, we start from the equations of motion for
the test particle and look at the conditions for the equilibria
in the two extreme cases of λ → 0 and of λ much larger than
the confinement size in the trap.

A. Velocity-independent interaction

We look for fixed points of the Hamilton’s equations of
motion, by setting Q̇ = 0,Ṗ = 0. The equilibrium location
(Q∗,P ∗) satisfies the conditions

P ∗ = 0, (18)

M�2Q∗ = −2γE

λ2

Nb∑
n=1

exp [−(qn − Q∗)2/λ2](qn − Q∗).

(19)

We first deal with the case of small λ, which mimics
pointlike interactions such as those associated with the pseu-
dopotential used in the Gross-Pitaevskii equation, effective
mean-field, description of a Bose condensate. In this case,
exp [−(qn − Q∗)2/λ2] ≈ δ(qn − Q∗) which, combined with
the qn − Q∗ factor in the right-hand side of Eq. (17), implies
Q∗ = 0. Thus in this limit there is only one fixed point at the
origin, (Q∗,P ∗) = (0,0).

The opposite limit of large λ can be treated by replacing
the exponential term with the leading terms of its expansion,
which leads to

M�2Q∗ = −2γE

λ2

∑
n

[
1 − (qn − Q∗)2

λ2

]
(qn − Q∗)

= 2γE

λ2
(Nb − 3Nq)Q∗ − 2γENb

λ4
Q∗3

, (20)

where we have used the fact that
∑

n qα
n is assumed to

be nonzero only when α is even, i.e., a symmetric prob-
ability density function qn, and we have introduced the
pure number Nq = ∑Nb

n=1(qn/λ)2 << Nb in the large λ limit
we are considering. The functional form of this relation is
A(Q∗)3 = BQ∗ which means that the possible solutions are
Q∗ = 0 and Q∗ = ±√

B/A with A = 2γENb/λ
4 and B =

−M�2 + 2γE(Nb − 3Nq)/λ2. The threshold for the onset
of the Q∗ �= 0 fixed points is consistent with the analysis
following Eq. (10) in the limit of Nb >> Nq , as they both
yield a threshold value of γ̄E = M�2λ2/(2Nb).

Moreover, a stability analysis shows that above the thresh-
old γ̄E the fixed point Q∗ = 0 becomes unstable. Given that the
fixed point at (0,0) is present both in the small as well as large λ

limits, a fixed-point stability analysis around this phase-space
location should be sufficient to gauge the transition from
effective single- to double-well behavior in the test particle
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FIG. 1. (Color online) Demonstration of the transition in the dynamics from (a) a single fixed point at (0,0) to (b) ones off center on
changing the parameters of the velocity-independent interaction. In each of the graphs, the initial (black points) and final (red) phase-space
locations of the Nb bath oscillators are shown as well as the blue trajectory of a single test particle. Note that the initial condition, chosen here
at random, determines the shape of the trajectory in the more complicated case (b). Both cases are evaluated for λ = 0.25, one test particle,
Nb = 103, Tb = 0.5, Tp = 0.1, M = m = 1, ωn = 1, and � = 144/89. (a) γE = 2 × 10−3; (b) γE = 0.1, with temperatures, masses, angular
frequencies, parameters γE , λ expressed in arbitrary units.

dynamics. This requires the introduction of

Q = Q∗ + η = η,
(21)

P = P ∗ + ε = ε,

leading to the following equations for the small perturbation
from the fixed point:

η̇ = ε

M
,

(22)

ε̇ =
(

−M�2 + 2γENb

λ2
− 4γENq

λ2

)
η.

The corresponding eigenvalues become imaginary under the
following inequality:

2γE

λ2
(Nb − 2Nq) < M�2, (23)

which leads to stable, oscillatory dynamics around the ori-
gin. In other words, satisfying the inequality specifies the
parameters for a single-well potential. Note that Nq has an
inverse square dependence on λ so the boundary equality
involves a quadratic in λ2. Alternatively, one can numerically
find the fixed-point value for Q∗ by turning Eq. (19) into an
iterative map. We will discuss this later after first completing
the analysis for the velocity-dependent form of the interaction.

B. Velocity-dependent interaction

By repeating analogous considerations for the velocity-
dependent case, the equilibrium location (Q∗,P ∗) can be
shown to satisfy the conditions

P ∗

M
= 2γM

M

Nb∑
n=1

(
pn

m
− P ∗

M

)
exp [−(qn − Q∗)2/λ2], (24)

M�2Q∗ = −2γM

λ2

Nb∑
n=1

(
pn

m
− P ∗

M

)2

(qn − Q∗)

× exp [−(qn − Q∗)2/λ2]. (25)

In the case of small λ, Q∗ = 0 and Eq. (22) reduces to

P ∗

M
= −2γM

M2
P ∗, (26)

modulo a multiplicative constant on the right-hand side, which
also means P ∗ = 0. Thus here again the origin in phase space,
(0,0), is the only equilibrium point in the case of small λ.

The opposite limit of large λ can be treated again with the
expansion of the exponential which leads to

P ∗

M
= 2γM

M

∑
n

(
pn

m
− P ∗

M

)[
1 − (qn − Q∗)2

λ2

]

= −2γMNb

M2
P ∗ − 2γM

M

∑
n

(
pn

m
− P ∗

M

)

× q2
n − 2qnQ

∗ + (Q∗)2

λ2

= −2γMNb

M2
P ∗ + 2γMC2

M2
P ∗ + 2γMC3

M2λ2
P ∗(Q∗)2,

where we have used the fact that
∑

n pα
nq

β
n is assumed to be

nonzero only when α and β are both even, i.e., a symmetric
probability density function in both pn and qn, and the
constants ci implicitly defined above are largely unimportant
for our qualitative considerations. What is clear from the last
step is that P ∗ = 0 is still the equilibrium momentum value,
and this implies conditions on Q∗

M�2Q∗ = −2γM

λ2

∑
n

p2
n

m2

[
1 − (qn − Q∗)2

λ2

]
(qn − Q∗)

= −2γM

λ2

∑
n

p2
n

m2
(qn − Q∗)
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FIG. 2. (Color online) Stability diagrams in parameter space for the dynamical fixed point at (P ∗,Q∗) = (0,0) for the two forms of the
interaction Hamiltonians, velocity independent (a) (γE,λ parameter space) and velocity dependent (b) (γM,λ parameter space). The white
background denotes values where the origin is stable (effective single-well potential). The blue region corresponds to fixed points off the
origin (due to the effective double-well dynamics), while the red (chessboard-shaded) region is a boundary where our iterative scheme does
not converge to within ε = 10−10, which may be viewed as a critical boundary. Other relevant parameters in both cases shown are Nb = 103,
m = M = 1, ωn = 1, � = 144/89, and Tb = 0.5. The convergence condition is set by ε and the maximum number of iterations is 104. Masses,
angular frequencies, temperatures, and parameters γE , γM , and λ are expressed in arbitrary units.

+ 2γM

λ4

∑
n

p2
n

m2
(qn − Q∗)3

= +2γMd1

λ2m2
Q∗ − 6γMd2

λ4m2
Q∗ − 2γMd1

λ4m2
(Q∗)3,

where d1 = ∑
n p2

n and d2 = ∑
n p2

nq
2
n . The functional form of

this relation is A(Q∗)3 = BQ∗, which means that the possible
solutions are Q∗ = 0 and Q∗ = ±√

B/A.
Since even in this case (0,0) is always a fixed point, a sta-

bility analysis around this phase-space location analogous to
the previous case should be sufficient to identify the threshold
for bistable behavior, obtaining the linearized relations

η̇ =
(

1

M
+ 2γMc0

M2

)
ε ≡ bε,

(27)

ε̇ =
(

− M�2 + 2γMcp

m2λ2
− 4γMcqp

m2λ2

)
η ≡ aη,

where

c0 =
Nb∑
n=1

exp
(−q2

n/λ
2), cp =

Nb∑
n=1

p2
n exp

( − q2
n/λ

2),
(28)

cqp =
Nb∑
n=1

p2
n(qn/λ)2 exp

( − q2
n/λ

2
)
.

The eigenvalues � of the Jacobian matrix satisfy the condition
�2 = ab which given that b > 0 (for γM > 0) results in a < 0
in order for the eigenvalues to be imaginary indicating stability.
This leads to

2γM

m2λ2
(cp − 2cqp) < M�2. (29)

The other case, for fixed γM , is more involved. Note that both
terms on the left of the inequality vary with time, with the

evolution of the bath variables, though each can be replaced
by the averages over the bath multiplied by Nb.

As indicated earlier, away from these limiting cases, we
can use an iterative scheme to numerically determine the
location of the fixed point. This is made easier by the fact
that P ∗ = 0 for both forms of the interaction and only Q∗
has to be determined. A wide range of parameter values can
be considered and for each pair of (λ,γE) or (λ,γM ) values,
the location of the fixed point numerically computed. As
depicted in Fig. 2(a) and Fig. 2(b), for velocity-independent
and velocity-dependent cases, respectively, the parameter
values where the origin is a globally stable fixed point can be
distinguished from those where the fixed point moves away.
These phase diagrams can prove useful in determining regimes
where the relaxation between the test particles and bath occurs
more readily. It is worth noting the existence of a critical
boundary layer where convergence slows down considerably,
denoted by the red points in both panels in Fig. 2. The precise
implications of this region are still to be determined though we
suspect that this may simply be the consequence of the merger
of the two wells (of the double-well potential) in becoming a
single well.

IV. THERMALIZATION DYNAMICS:
NUMERICAL RESULTS

Having gained some insight into the behavior of a single
target particle interacting with the oscillators in the bath, we
now move to the issue of thermalization. In our numerical
exploration, we considered the distinct thermal relaxation
scenarios of a single target oscillator interacting with the Nb

bath oscillators as well as the more realistic situation where Np

target oscillators interact with the bath but the results presented
here focus on the latter case. The equations of motion were
integrated using a variable step algorithm which preserved
the Hamiltonian to machine precision. When multiple target
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FIG. 3. (Color online) Energy spectrum of initial target system (red, diamond), bath (blue, circle) and final target (black, triangle),
bath (green, square) for (a),(b) velocity-independent and (c) velocity-dependent interactions. In each instance, Nb = Np = 103 and initial
temperatures set in the numerical code equal to Tb = 0.5 for the bath, and Tp = 5 for the target system (corresponding to inverse temperatures
βb = T −1

b = 2 and βp = T −1
p = 0.2, respectively), ω = 1.0,� = 144/89. The parameters of the interacting Hamiltonian and the running time

of the simulations are (a) γE = 0.1,λ = 0.01, trun = 5 × 104, (b) γE = 0.1,λ = 0.1, trun = 2 × 104, and (c) γM = 0.1,λ = 0.1, trun = 104. The
unweighted best fit to the Boltzmann distributions, shown as continuous lines around the points of each curve, provides β

(i)
b = 1.71 ± 0.06

and β
(i)
t = 0.171 ± 0.009 for the actual initial bath and target system inverse temperatures, respectively, and (a) β

(f )
b = 0.41 ± 0.03, β (f )

p =
0.16 ± 0.01, (b) β

(f )
b = 0.48 ± 0.03, β (f )

p = 0.165 ± 0.007, and (c) β
(f )
b = 0.049 ± 0.009, β (f )

p = 0.045 ± 0.003 for the final temperatures.
Masses, angular frequencies, temperatures, parameters γE , γM , λ, energies and inverse temperatures are expressed in arbitrary units.

oscillators were considered, the initial conditions were drawn
from a thermal distribution with temperature Tp. Again, with
an eye on the sympathetic cooling application, the temperature
of the target particles was chosen to be higher than that
of the bath, that is Tp > Tb. In other words, the species to
be cooled are the target particles with the coolant species
making up the bath. All the oscillators in each category were
assigned the same angular frequency, ω for bath oscillators
and � for the target ones. In light of earlier analysis within
the Caldeira-Leggett framework [5] and the conditions for
sympathetic cooling of mixtures, we consider ω �= �. Our
choice of � = 144/89 is intended to preclude any low-order
resonances between bath and target particles though; as
discussed a little later, this should not be a problem. The two
other parameters of relevance are the range of the interaction λ

and their interaction strengths γE (velocity independent) and
γM (velocity dependent). Although we numerically explored
a range of model parameters, we have decided to limit the
results shown to some illustrative cases which highlight new
phenomena as well as being pertinent to application to atomic
mixtures. One point to note is that we sample the dynamics
every t = 0.01 and our units of time are simply the number
of time steps. This also means that a single period of a bath
oscillator is about 628 time steps, which should be treated
simply as a reference rather than a relevant time scale. We will
return to this issue later when discussing our results.

Since we are primarily interested in the thermalization
effect, all the cases discussed from now on involve multiple,
Np, target particles interacting with Nb bath oscillators. Here
again, we considered both velocity-independent and velocity-
dependent forms of the interaction though there were very
few qualitative differences between the behavior seen in the
two instances. The initial conditions for both subsystems are

drawn from thermal distributions and we considered a range of
interaction times. The interaction parameters λ,γE and λ,γM

have been chosen to correspond to situations where the fixed
point at the origin in phase space is stable. The nonlinear
regime discussed in Secs. II and III would suggest a more
favorable thermalization dynamics in the nonlinear regime
when the fixed points are away from the origin in phase space.
However, the lack of overlap in the configuration space and the
local form of the interaction makes this regime uninteresting
for the task of a fast thermalization. The energy or spectral
distribution of each subsystem was then considered to extract
the final temperature (actually inverse temperature) of both
target particles and bath oscillators. It should be noted here that
our use of the term “temperature” is, in general, inexact given
the dynamical and, hence, inherently nonequilibrium nature
of the problem. Nevertheless, the slope obtained from fitting
the logarithm of the energy distribution can be thought of as
the effective temperature at a given time, with the error in its
determination assessing also the effectiveness of the descrip-
tion in terms of this parameter alone. At any given time, we
consider the total energy of the test particles, the total energy
of the bath particles, and their interaction energy, defined as

Ep(t) =
Np∑

m=1

Em,p(t) =
Np∑

m=1

(
P 2

m(t)

2M
+ 1

2
M�2Q2

m(t)

)
, (30)

Eb(t) =
Nb∑
n=1

En,b(t) =
Nb∑
n=1

(
p2

n(t)

2m
+ 1

2
mω2q2

n(t)

)
, (31)

Eint(t) =
Np∑

m=1

Nb∑
n=1

Hint(Qm(t),Pm(t),qn(t),pn(t)) . (32)
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FIG. 4. (Color online) Interaction energy as a function of time for velocity-independent (a) and velocity-dependent (b) interactions. The
plots are for two choices of λ = 0.01 (black, bottom curve) and λ = 0.1 (red, top curve), with γE = 0.1 (a) and γM = 0.02 (b), where the latter
parameter was intentionally chosen to have comparable final interaction energy in the two situations. Oscillations which appear on short time
scales are shown in the insets. All other parameters are chosen as in Fig. 3, and both time (in steps) and energies are expressed in arbitrary units.

The distribution of energies for test and bath particles after a
fixed interaction time trun, that is the histograms of Em,p(trun)
and En,b(trun), respectively, can then be used to extract the
effective inverse temperatures for the two subsystems. As we
will discuss later, the energy content in the interaction also
appears to play an important role in determining the final
temperatures in both our models.

Figure 3 shows the results of this construction for some
illustrative cases where the lines drawn are least-squares fits
to the points which display the energy distributions at the
times specified in the captions. In each case, both initial and
final distributions of the two subsystems, particle and bath,
are shown. The slope of the fit provides the corresponding
β = 1/(kBT ) at time trun. Given the poor statistics at the
higher ends of the energy spectra, we have also implemented
weighted least-squares fits which appear to be more accurate
for any quantitative analysis though the qualitative inferences
are rather robust with respect to the data fitting. The results
in Fig. 3 readily suggest the role the effective number of bath
oscillators interacting with each target particle, Nλ, plays in
promoting thermalization. Contrasting panels (a) and (b) of
Fig. 3, the interaction range λ has been increased but the
time can then be decreased to get the effective temperatures
to be the same. Plot (c) in Fig. 3 shows the effect of the
velocity-dependent interaction at shorter times, and implies
temperature oscillations in the early stage of thermalization.
The oscillatory phenomenon is more clearly seen by consid-
ering the time dependence of the interaction energy, defined
as Eint = γE

∑Nb

n=1

∑Np

m=1 exp [−(qn − Qm)2/λ2] in the case
of velocity-independent interactions. As shown in the panels
of Fig. 4, for both interaction types, there is a sharp decrease
in this measure to essentially a quasistationary value, with the
inset emphasizing the energy oscillations at early times. The
velocity-dependent case shows more quasiperiodicity than in
the velocity-independent situation.

The observant reader will also notice that in Fig. 3(c) the
final inverse temperatures of both bath and target subsystems
are lower than the initial values, implying heating of both

species. To explore the dynamics of thermalization more
clearly, and in particular this double heating effect, we consider
the time dependence of the effective temperatures of bath
and target subsystems. Based on what we deduced earlier,
thermalization should occur faster in the case with larger λ,
irrespective of the nature of the interaction, and relatively
quicker for the velocity-dependent interaction. The latter
expectation is trickier to show numerically as equivalent
parameter regimes for the two cases are hard to determine.
This is readily seen from the parameter phase diagrams shown
earlier. However, as seen from contrasting Figs. 5 and 6, where
three cases for each interaction type are shown, the qualititative
features are very similar. In each figure, what is shown is (a)
where thermalization does not occur even at the longest time
considered, (b) where there are clear signs that thermalization
is occurring, and (c) an anomalous situation where the final
temperatures for both bath and target are higher than their
initial values. Figures 5(a) and 5(b) (and their equivalents in
Fig. 6) clearly show that the temporal scale for relaxation
decreases on increasing the spatial region of interaction
(increasing λ). This in turn implies faster equilibration due
to the increase in the average number of interacting particles
at any given time.

We now turn to the anomalous situation seen in both
Figs. 5(c) and 6(c). This occurs, for certain initial configu-
rations, when a large amount of interaction energy is initially
present in the system, typically in the large γE or γM limit
where we will have Eint >> Eb,Ep. This is a distinctive
feature of our approach, as usually any initial interaction
energy or initial correlation between two subsystems is
assumed to be nearly negligible with respect to the internal
energy of the subsystems. This last situation is however
characteristic of solid-state systems, in which the contact
between two bodies is limited to their surfaces, and it is
therefore marginal with respect to the internal energy of the
bodies. Here instead the two “bodies” are penetrating, as
atoms of the two different species see each other in the whole
available trapping volume. Clearly this is outside the usual
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FIG. 5. (Color online) Relaxation dynamics for target and bath subsystems for velocity-independent interactions. The effective inverse
temperature is shown vs time for the test particles with unweighted (red dashed line) and weighted (red continuous line) fitting to a Boltzmann
distribution, bottom curves on the left side of each plot, and for the bath particles with unweighted (black dashed line) and weighted (back
continuous line) fitting, top curves on the left side of each plot. In each instance, Nb = Np = 103, Tb = 0.5, Tp = 5.0, ω = 1.0, � = 144/89,
with interaction parameters (a) γE = 0.1,λ = 0.01, (b) γE = 0.1,λ = 0.1, and (c) γE = 0.5,λ = 0.1. While the weighted fits are expected
to be more accurate, significant deviations from the results of unweighted fits can be used to infer the presence of strong deviations from a
Boltzmann distribution. The spread in the leftmost data points is a consequence of small statistics associated with the sampling of the thermal
initial conditions through different seeds for the random number generator. The typical relative errors associated with the inverse temperature
determination through the fits are about 10%, and masses, angular frequencies, parameters γE , λ, energies, and inverse temperatures are
expressed in arbitrary units.

view of systems in thermal contact where the interface plays
no role in the thermalization process. Here it does and, given
the excess energy content, can heat both the systems as if there
is a fictitious third, hotter subsystem in the problem, or if the
interaction energy acts as a sort of “latent heat” released during
the time evolution. Of course this initial interaction energy can
also be minimized, even at a relatively large value of γE or
γM , by tactically choosing the initial conditions in such a way

that the oscillators of the two systems are very close to each
other (in the case of attractive interactions) or very far apart
(in the case of repulsive interactions). Likewise, the sudden
change in the interaction between the two subsystems, for
instance, by exploiting Feshbach resonances of the interspecies
scattering length, allows for implosions or explosions of the
atomic clouds, as in the “Bosenova” effect [25–27]. All these
situations are in principle covered by our simulation technique

10-2 100 102 104
0.01

0.1

1

 β
p, 

β b

10-2 100 102 104

Time
10-2 100 102 104

(a) (b) (c)

FIG. 6. (Color online) Relaxation dynamics for target and bath subsystems for velocity-dependent interactions. The effective inverse
temperature is shown vs time for the test particles with unweighted (red dashed line) and weighted (red continuous line) fitting to a Boltzmann
distribution, bottom curves on the left side of each plot, and for the bath particles with unweighted (black dashed line) and weighted (black
continuous line) fitting, top curves on the left side of each plot. Like in Fig. 5, we have Nb = Np = 103, Tb = 0.5, Tp = 5.0, ω = 1.0,
� = 144/89, while the interaction parameters are (a) γM = 0.02,λ = 0.01, (b) γM = 0.02,λ = 0.1, and (c) γM = 0.1,λ = 0.1. The spread in
the leftmost data points is a consequence of small statistics associated with the sampling of the thermal initial conditions through different
seeds for the random number generator. The typical relative errors associated with the inverse temperature determination through the fits are
about 10%, and masses, angular frequencies, parameters γM , λ, energies, and inverse temperatures are expressed in arbitrary units.
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FIG. 7. (Color online) Long-time simulation for the velocity-independent case. On the left plot (a) the effective inverse temperature is
shown vs time for the test particles with unweighted (red dashed line) and weighted (red continuous line) fitting to a Boltzmann distribution, as
in the two top curves on the right side of the plot, and for the bath particles with unweighted (black dashed line) and weighted (black continuous
line) fitting, as in the two bottom curves on the right side of the plot. On the right plot (b) the corresponding interaction energy as a function of
time is depicted. The parameters are chosen as in the case (c) of Fig. 5, and all quantities are expressed in arbitrary units.

by properly choosing initial conditions for the bath particles
and/or time-dependent interactions couplings.

Regarding the thermalization time scale and its dependence
upon the parameters γE , γM , and λ, the plots in Figs. 5 and 6
show that the thermalization time is inversely proportional
to the interaction strength as intuitively expected. This can
be confirmed by a semiquantitative analysis at least in the
simpler case of velocity-independent interactions. By visual
inspection of the right-hand side of Eq. (7), the two relevant
time scales for the test particle are the intrinsic one of its
free oscillation (the period of oscillation T = 2π/�) and a
response time to the force due to any single oscillator of the
bath, τr � 2π [Mλ2/(2γE)]1/2. Thus the thermalization time
scale, proportional to τr , varies with the coupling strength
as ∝1/

√
γE . Indeed, in Figs. 5(b) and 5(c), corresponding

to the same λ with coupling strengths γE differing by a
factor 5, the crossing between the two curves corresponding
to the weighted fits for the inverse temperature occurs at
times in the approximate ratio of 2 [�104 time steps for
the case in (b); �5 × 103 times steps in (c)]. A similar
analysis is unfortunately not possible for the dependence of
the thermalization time upon the interaction range λ. A naive
extension of the argument above indicates a response time
increasing linearly with λ, which defies physical intuition as
in this case more and more oscillators interact with the test
particle. This, in fact, is precisely the issue as τr introduced
above does not take into account the number of interacting
oscillators from the bath, i.e., the sum term in Eq. (7) which
also grows with λ. Numerically, Figs. 5(a) and 5(b) show that
increasing λ speeds up thermalization. Due to the complicated
structure of the Hamilton equations for the velocity-dependent
case, the above analysis cannot be repeated; however, the
results shown in Fig. 6 confirm the same trends in this case.
Also, notice that the onset of a quasistationary regime for
the interaction energy in Fig. 4 appears to coincide with the
thermalization time scales in Figs. 5 and 6, suggesting that the
former may act as a shortcut to study the relaxation to thermal
equilibrium or at least to steady states. Finally, we show in

Fig. 7 the long-time behavior in the velocity-independent case,
both for the evolution of the inverse temperatures (left panel)
as well as the interaction energy (right panel). We note that
not only do the time scales for thermalization at very short
times coincide for these two observables, corroborating the
remark made in the previous sentence, but also that their
long-time behavior seems to exhibit fluctuations of similar
relative amplitude. Further, Fig. 7(a) confirms that the crossing
of the inverse temperatures clearly visible at shorter times [in
both Figs. 5(b) and 5(c)] is a temporary feature, leading to a
stabilization of the temperatures for later times.

V. CONCLUSIONS

In conclusion, we have analyzed the thermalization dy-
namics of atoms trapped in a confining potential under
the action of another gas with a generic temperature and
different trapping frequency. The analysis has been carried
out through molecular-dynamics simulations adapting the
Caldeira-Leggett model to the specific context of atoms
oscillating at well-defined frequencies in a harmonic trap.
The nonlinear form of the interaction between the two atomic
species required an assessment of the dynamical stability
which limits the range of the parameters of the model for
enabling efficient thermalization. Our numerical analysis does
not rely on the weak-coupling assumption typically underlying
the application of the Caldeira-Leggett model to open systems.
A manifest implication of this more generalized framework is
the fact that in the strong-coupling regime the very definition
of Boltzmann equilibrium distribution is at stake, and then
only effective temperatures can be defined. This is in line
with former analyses in the context of chemical physics,
as in [28,29] in which the preservation of the Boltzmann
distribution is ensured only in a weak interaction regime,
and therefore fails for strongly exothermic chemical reactions
(for a discussion of the strong-coupling regime in open
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quantum systems, with similar outcomes in terms of lack of
thermalization, see [30]).

The simulations have been performed for a purely classical
setting which, in terms of atomic clouds, seem justified
whenever the sample temperature T fulfills the condition
T >> �ω/kB , as usual in atomic trapping even at the
lowest explored temperatures. Quantum effects will however
influence the thermalization dynamics at finite temperature
through the deviations from the classical Dulong-Petit specific-
heat law, which could be incorporated in the molecular-
dynamics code [31]. In particular, this affects the dynamics
of thermalization for mixtures of Bose and Fermi gases as
their thermal response is quite different, with the specific
heat scaling differently with temperature as they become
degenerate. Simulations in this setting should be able to
confirm the existence of a heat capacity mismatch that strongly
hinders the capability of a Bose gas to sympathetically cool a
Fermi gas, as discussed in [32–35]. If the interaction strength
between the two species is not large enough, the Fermi gas will
not reach an equilibrium state with the Bose gas undergoing
evaporative cooling, an issue of crucial relevance for precision
thermometry of degenerate Fermi gases as emphasized in [15].
It is also worth remarking that, in the case of harmonic
oscillators, classical dynamics and quantum dynamics of the
centroid coincide, based on the Ehrenfest theorem, so there is
decoupling between average motion and quantum fluctuations.
This allows the analysis, even in a quantum framework,
of the simpler case of a classical harmonic oscillator, with

additional but separate considerations for the fluctuation part
of its dynamics in its quantum counterpart, provided that the
nonlinear interaction term is perturbative with respect to the
uncoupled dynamics.

Various aspects of our model could be expanded in future
work, specifically, the role of the particle masses of the two
systems in determining thermal equilibrium. This could allow
the generalization of the notion of Rayleigh and Lorentz
gases, corresponding to the two extreme limits of m << M

and m >> M , respectively, to arbitrary interaction potentials,
not just restricted to the case of hard-sphere interactions
discussed in Ref. [36]. The two phenomenological parameters
of the interaction need to be mapped to ab initio parameters
of interatomic interactions in order to promote quantitative
analyses for concrete experimental settings. Further, by chang-
ing our choice of initial conditions, situations in which fast
atoms with a narrow Gaussian energy distribution approach an
equilibrium thermal cloud can also be recovered, bridging the
experimental studies performed in [37]. The model could also
be applied to more general dynamical situations, for instance,
time-dependent interactions in an atomic mixture resulting
from a sudden change of the interspecies scattering length
or sympathetic cooling under targeted driving of the trapping
frequencies, as in shortcuts to adiabaticity [38–40]. The latter
situation could make more stringent the practical feasibility of
the proposal introduced in Ref. [41], or, more generally, the
optimization of a targeted quantum state at finite temperature
discussed in Ref. [42].
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[30] Y. Subaşi, C. H. Fleming, J. M. Taylor, and B. L. Hu, Phys. Rev.
E 86, 061132 (2012).

[31] H. Dammak, Y. Chalopin, M. Laroche, M. Hayoun, and J.-J.
Greffet, Phys. Rev. Lett. 103, 190601 (2009).

033422-11

http://dx.doi.org/10.1016/0031-8914(66)90102-9
http://dx.doi.org/10.1016/0031-8914(66)90102-9
http://dx.doi.org/10.1016/0031-8914(66)90102-9
http://dx.doi.org/10.1016/0031-8914(66)90102-9
http://dx.doi.org/10.1016/0031-8914(66)90104-2
http://dx.doi.org/10.1016/0031-8914(66)90104-2
http://dx.doi.org/10.1016/0031-8914(66)90104-2
http://dx.doi.org/10.1016/0031-8914(66)90105-4
http://dx.doi.org/10.1016/0031-8914(66)90105-4
http://dx.doi.org/10.1016/0031-8914(66)90105-4
http://dx.doi.org/10.1103/PhysRevLett.46.211
http://dx.doi.org/10.1103/PhysRevLett.46.211
http://dx.doi.org/10.1103/PhysRevLett.46.211
http://dx.doi.org/10.1103/PhysRevLett.46.211
http://dx.doi.org/10.1016/0003-4916(83)90202-6
http://dx.doi.org/10.1016/0003-4916(83)90202-6
http://dx.doi.org/10.1016/0003-4916(83)90202-6
http://dx.doi.org/10.1016/0003-4916(83)90202-6
http://dx.doi.org/10.1140/epjb/e2008-00070-8
http://dx.doi.org/10.1140/epjb/e2008-00070-8
http://dx.doi.org/10.1140/epjb/e2008-00070-8
http://dx.doi.org/10.1140/epjb/e2008-00070-8
http://dx.doi.org/10.1088/1367-2630/10/11/115008
http://dx.doi.org/10.1088/1367-2630/10/11/115008
http://dx.doi.org/10.1088/1367-2630/10/11/115008
http://dx.doi.org/10.1088/1367-2630/10/11/115008
http://dx.doi.org/10.1103/PhysRevE.83.021104
http://dx.doi.org/10.1103/PhysRevE.83.021104
http://dx.doi.org/10.1103/PhysRevE.83.021104
http://dx.doi.org/10.1103/PhysRevE.83.021104
http://dx.doi.org/10.1103/PhysRevE.84.011121
http://dx.doi.org/10.1103/PhysRevE.84.011121
http://dx.doi.org/10.1103/PhysRevE.84.011121
http://dx.doi.org/10.1103/PhysRevE.84.011121
http://dx.doi.org/10.1063/1.3669485
http://dx.doi.org/10.1063/1.3669485
http://dx.doi.org/10.1063/1.3669485
http://dx.doi.org/10.1063/1.3669485
http://dx.doi.org/10.1103/PhysRevE.84.011145
http://dx.doi.org/10.1103/PhysRevE.84.011145
http://dx.doi.org/10.1103/PhysRevE.84.011145
http://dx.doi.org/10.1103/PhysRevE.84.011145
http://dx.doi.org/10.1103/PhysRevLett.77.4984
http://dx.doi.org/10.1103/PhysRevLett.77.4984
http://dx.doi.org/10.1103/PhysRevLett.77.4984
http://dx.doi.org/10.1103/PhysRevLett.77.4984
http://dx.doi.org/10.1126/science.285.5434.1703
http://dx.doi.org/10.1126/science.285.5434.1703
http://dx.doi.org/10.1126/science.285.5434.1703
http://dx.doi.org/10.1126/science.285.5434.1703
http://dx.doi.org/10.1103/PhysRevA.61.053602
http://dx.doi.org/10.1103/PhysRevA.61.053602
http://dx.doi.org/10.1103/PhysRevA.61.053602
http://dx.doi.org/10.1103/PhysRevA.61.053602
http://dx.doi.org/10.1103/PhysRevA.61.053610
http://dx.doi.org/10.1103/PhysRevA.61.053610
http://dx.doi.org/10.1103/PhysRevA.61.053610
http://dx.doi.org/10.1103/PhysRevA.61.053610
http://dx.doi.org/10.1088/0034-4885/74/5/054401
http://dx.doi.org/10.1088/0034-4885/74/5/054401
http://dx.doi.org/10.1088/0034-4885/74/5/054401
http://dx.doi.org/10.1088/0034-4885/74/5/054401
http://dx.doi.org/10.1016/S0370-1573(02)00558-6
http://dx.doi.org/10.1016/S0370-1573(02)00558-6
http://dx.doi.org/10.1016/S0370-1573(02)00558-6
http://dx.doi.org/10.1016/S0370-1573(02)00558-6
http://dx.doi.org/10.1103/PhysRevLett.89.100401
http://dx.doi.org/10.1103/PhysRevLett.89.100401
http://dx.doi.org/10.1103/PhysRevLett.89.100401
http://dx.doi.org/10.1103/PhysRevLett.89.100401
http://dx.doi.org/10.1023/B:JOSS.0000019829.71660.40
http://dx.doi.org/10.1023/B:JOSS.0000019829.71660.40
http://dx.doi.org/10.1023/B:JOSS.0000019829.71660.40
http://dx.doi.org/10.1023/B:JOSS.0000019829.71660.40
http://dx.doi.org/10.1103/PhysRevA.70.063614
http://dx.doi.org/10.1103/PhysRevA.70.063614
http://dx.doi.org/10.1103/PhysRevA.70.063614
http://dx.doi.org/10.1103/PhysRevA.70.063614
http://dx.doi.org/10.1103/PhysRevLett.103.140401
http://dx.doi.org/10.1103/PhysRevLett.103.140401
http://dx.doi.org/10.1103/PhysRevLett.103.140401
http://dx.doi.org/10.1103/PhysRevLett.103.140401
http://dx.doi.org/10.1088/0953-4075/43/20/205309
http://dx.doi.org/10.1088/0953-4075/43/20/205309
http://dx.doi.org/10.1088/0953-4075/43/20/205309
http://dx.doi.org/10.1088/0953-4075/43/20/205309
http://dx.doi.org/10.1103/PhysRevA.83.040702
http://dx.doi.org/10.1103/PhysRevA.83.040702
http://dx.doi.org/10.1103/PhysRevA.83.040702
http://dx.doi.org/10.1103/PhysRevA.83.040702
http://arxiv.org/abs/arXiv:1506.08705v1
http://dx.doi.org/10.1016/0375-9601(93)90001-G
http://dx.doi.org/10.1016/0375-9601(93)90001-G
http://dx.doi.org/10.1016/0375-9601(93)90001-G
http://dx.doi.org/10.1016/0375-9601(93)90001-G
http://dx.doi.org/10.1103/PhysRevLett.86.1406
http://dx.doi.org/10.1103/PhysRevLett.86.1406
http://dx.doi.org/10.1103/PhysRevLett.86.1406
http://dx.doi.org/10.1103/PhysRevLett.86.1406
http://dx.doi.org/10.1038/35085500
http://dx.doi.org/10.1038/35085500
http://dx.doi.org/10.1038/35085500
http://dx.doi.org/10.1038/35085500
http://dx.doi.org/10.1103/PhysRevA.84.033632
http://dx.doi.org/10.1103/PhysRevA.84.033632
http://dx.doi.org/10.1103/PhysRevA.84.033632
http://dx.doi.org/10.1103/PhysRevA.84.033632
http://dx.doi.org/10.1063/1.1743326
http://dx.doi.org/10.1063/1.1743326
http://dx.doi.org/10.1063/1.1743326
http://dx.doi.org/10.1063/1.1743326
http://dx.doi.org/10.1063/1.1704144
http://dx.doi.org/10.1063/1.1704144
http://dx.doi.org/10.1063/1.1704144
http://dx.doi.org/10.1063/1.1704144
http://dx.doi.org/10.1103/PhysRevE.86.061132
http://dx.doi.org/10.1103/PhysRevE.86.061132
http://dx.doi.org/10.1103/PhysRevE.86.061132
http://dx.doi.org/10.1103/PhysRevE.86.061132
http://dx.doi.org/10.1103/PhysRevLett.103.190601
http://dx.doi.org/10.1103/PhysRevLett.103.190601
http://dx.doi.org/10.1103/PhysRevLett.103.190601
http://dx.doi.org/10.1103/PhysRevLett.103.190601


ROBERTO ONOFRIO AND BALA SUNDARAM PHYSICAL REVIEW A 92, 033422 (2015)

[32] A. G. Truscott, K. E. Strecker, W. I. McAlexander, G. B.
Partridge, and R. G. Hulet, Science 291, 2570 (2001).

[33] M. Wouters, J. Tempere, and J. T. Devreese, Phys. Rev. A 66,
043414 (2002).

[34] C. Presilla and R. Onofrio, Phys. Rev. Lett. 90, 030404
(2003).

[35] M. Brown-Hayes, Q. Wei, C. Presilla, and R. Onofrio, Phys.
Rev. A 78, 013617 (2008).

[36] K. Andersen and K. E. Shuler, J. Chem. Phys. 40, 633 (1964).
[37] P. Zhang, V. Kharchenko, A. Dalgarno, Y. Matsumi, T.

Nakayama, and K. Takahashi, Phys. Rev. Lett. 100, 103001
(2008).

[38] X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-
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