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Inelastic scattering of electrons by metastable hydrogen atoms in a laser field
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The inelastic scattering of fast electrons by metastable hydrogen atoms in the presence of a linearly polarized
laser field is theoretically studied in the domain of field intensities below 1010 W/cm2. The interaction of the
hydrogen atom with the laser field is described by first-order time-dependent perturbation theory, while the
projectile electrons interacting with the laser field are described by the Gordon-Volkov wave functions. An
analytic expression is obtained for the differential scattering cross section in the first-order Born approximation
for laser-assisted inelastic e−-H(2s) scattering for the 2s → nl excitation. Detailed analytical and numerical
results are presented for inelastic scattering accompanied by one-photon absorption, and the angular dependence
and resonance structure of the differential cross sections are discussed for the 2s → 4l excitation of metastable
hydrogen.
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I. INTRODUCTION

The scattering of electrons by atoms has been studied from
the beginning of the last century, starting with the Franck
and Hertz experiments and the early theoretical works by
Massey and Mohr [1]. During the last few decades the study
of electron-atom collisions in the presence of a laser field
has been the subject of intense research activity, because of
its importance in applied domains such as astrophysics [2],
laser and plasma physics [3], and fundamental atomic collision
theory. The essence of laser-assisted scattering is that the
projectile electron is now allowed to absorb or emit photons
during the scattering processes by atoms. In contrast, a
free electron alone cannot exchange photons with a laser
field unless an atom (third body) is present. Obviously, the
laser-assisted scattering processes can provide new aspects
regarding the scattering dynamics, the net effect of the laser
field being the suppression of the scattering cross section
and redistribution of the scattering signal to the N -photon
scattering channels. Detailed reports on laser-assisted electron-
atom collisions processes can be find in the review papers [4–6]
and books [7,8].

Lately, due to the advances in new experimental techniques
there is a renewed interest in studying electron-atom scattering
in the presence of a laser field for both elastic and inelastic
processes. We stress that for elastic scattering the initial and
final atomic states are the same, while for inelastic scattering
the final atomic state differs from the initial one. For the
inelastic process we should point out two types of collisions,
when the kinetic energy of the incident electron is above
versus below the first ionization threshold. For the latter case
both collisional and radiative interactions can be comparable
in strength, and simultaneously electron-photon excitation of
atoms might occur [4,9]. For weak laser fields, as long as
the photon energy is low, the laser-atom interaction might
be neglected and the atom can be modeled by a center of
force described through a static potential [10,11]. Obviously,
this approximation can be suitable for laser-assisted elastic
scattering, where most studies are done, in which the atom
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does not change its state after collision, but for laser-assisted
inelastic scattering the whole atomic structure must be taken
into consideration. It is important to evaluate the contribution
of laser-assisted inelastic electron-atom scattering because
in experimental studies [12–15] it might be quite difficult
to separate the signal of elastic and inelastic scattering
channels since we have to simultaneous observe the final
state of the target, the projectile electron, and the photon.
Theoretical works on the laser-assisted inelastic scattering of
electrons by the hydrogen atom in its ground state taking into
account the atomic “dressing” (i.e., the dipole distortion of
the atom by the laser field) in first-order perturbation theory
were performed by Jetzke and coworkers [16], Francken and
coworkers [17], Bhattacharya and coworkers [18], and Cionga
and Florescu [19]. Recently, Voitkiv and coworkers [20] have
considered laser-assisted inelastic collisions of relativistic
electrons with atomic targets in their ground states. An
analytical formula was derived for the scattering cross section
using an approach which takes into account the internal
degrees of freedom of the target for laser parameters that
do not directly influence the atomic target. Very recently,
there is increased interest in the simultaneous electron-photon
excitation of helium, in its 1S ground state, in the presence of
a laser field [21,22] using a nonperturbative R-matrix Floquet
theory or a semiperturbative method in the second-order Born
approximation [23].

To our knowledge, the inelastic electron-atom scattering
process in the presence of a laser field has been theoretically
studied in less detail for atoms in excited states. It is well known
that the atomic dressing effects for elastic scattering processes
are proportional to the static dipole polarizability [24–26]
and from Radzig and Smirnov’s tables [27] the static dipole
polarizability of the nl subshell of hydrogen is written αnl =
n4(n2 + 7l2 + 7l + 14)/4, where n and l are the principal and
orbital quantum numbers. Since the static dipole polarizability
scales as n6, similar physical effects tend to occur for atoms
initially in excited states compared to their ground state, but
at much lower field intensities [28]. Therefore by increasing
the atomic excitation the laser-dressing effects induced by the
dipole polarizability should increase in importance, with a
higher probability of experimental verification. Theoretical
calculations on laser-assisted inelastic scattering of electrons
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by excited hydrogen were performed by Vučić [29], for the
2s → nl and 2p → nl excitations of the n = 2 and 3 levels
at resonant photon energies, using a Born-Floquet theory.
Numerical results on electron-impact 2s → nl (n = 3 and 4)
excitation of hydrogen in the presence of a circularly polarized
laser field were published by Purohit and Mathur [30], using
the approach of a two-level model atom and rotating-wave
approximation, for the particular case of a resonant photon
energy that matches the 2s-3p optical transition in hydrogen.

The purpose of this paper is to study the 2s → nl inelastic
scattering of fast electrons by hydrogen in the metastable 2s

state in the presence of a linearly polarized laser field. In Sec. II
the physical framework used to derive an analytic formula
for the differential cross section (DCS) for excitation of an
arbitrary state is presented. Since the scattering process under
investigation is a three-body problem, i.e., projectile electron,
atomic target, and photon, naturally the theoretical treatment
presents considerable difficulties and several assumptions are
made. (i) Moderate field intensities, below 1010W/cm2 and fast
projectile electrons are considered in order to safely neglect the
second-order Born approximation in the scattering potential
and exchange scattering [17]. The interaction between the
fast projectile electron and the hydrogen atom is treated in
the first-order Born approximation [31]. (ii) The interaction
between the projectile electrons and the laser field is described
by a Gordon-Volkov wave function [32]. (iii) The dressing of
the hydrogen atom by the laser field, i.e., the modification
of the target atom in the laser field, is described within
the first-order time-dependent perturbation theory (TDPT)
in the field [33]. Working in the approximation approach
described in [19] and [31] we derive an analytic formula
for the DCS in the laser-assisted inelastic scattering of fast
electrons by H(2s) accompanied by one-photon exchange.
Section III is devoted to discussion of the numerical results,
where the angular distributions and the resonance structure of
the DCSs are analyzed for the excitation of n = 4 subshells. In
comparison to the earlier theoretical works [29,30], the present
approach provides a compact analytical formula for the DCS
that includes the atomic dressing effects beyond the two-level
model and does not require the use of the rotating-wave
approximation, being applicable for any polarization of the
laser field. Atomic units are used throughout this paper unless
otherwise specified.

II. BASIC THEORY AT MODERATE LASER INTENSITIES

The laser-assisted inelastic scattering of electrons by
metastable hydrogen atoms can be formally represented as

e−(Eki
,ki) + H(2s) + Ni γ (ω,ε)

→ e−(Ekf
,kf ) + H(nlm) + Nf γ (ω,ε), (1)

where Eki
(Ekf

) and ki (kf ) represent the kinetic energy and
the momentum vector of the projectile electron in its initial
(final) state. H(2s) and H(nlm) denote the hydrogen atom,
which is initially in its metastable 2s state and, finally, after
collision, is excited to a state defined by the quantum numbers
n, l, and m, where m is the magnetic quantum number.
Here γ represents a photon with an energy ω and a unit
polarization vector ε, and N = Ni − Nf is the net number

of exchanged photons between the projectile electron-atom
system and the laser field. The laser field is treated classically
and is considered to be a monochromatic electric field,

E(t) = i

2
E0ε exp(−iωt) + c.c., (2)

where E0 represents the peak amplitude of the electric field. In
the literature, this scattering process, (1), is called free-free
transition since the projectile electron is free both before
and after the scattering process. In addition, the process is
considered inelastic since the initial and final states of the target
are not identical and the projectile electron energies satisfy the
conservation relation Ekf

= Eki
+ E2s − Enlm + Nω, where

E2s and Enlm represent the energy of the 2s and nlm excited
states. Obviously the number of exchanged photons cannot
be smaller than a minimal value that is the integer of
Nmin = (Enlm − E2s − Eki

)/ω. The kinetic energy spectrum
of the scattered electrons consists of a central line that
corresponds to N = 0 (i.e., the total number of absorbed and
emitted photons is 0) and a number of sidebands with N =
±1, ± 2, ± 3, . . . , where each pair of sidebands corresponds
to the scattered electrons with |N | photons absorbed if N > 0
(inverse bremsstrahlung) or with |N | photons emitted if N < 0
(stimulated bremsstrahlung) [4].

A. Projectile electron and atomic wave functions

As already mentioned, we consider moderate field inten-
sities and fast projectiles, which imply that the strength of
the laser field is lower than the Coulomb field experienced
by the electron in the second Bohr orbit and the velocity of
the projectile electron is much higher than the velocity of the
bound electron in its second Bohr orbit [5], respectively. The
interaction between the laser field and the projectile electron
is treated by the Gordon-Volkov wave function [32], and the
initial and final states of the scattered electron are described
by

χk(R,t) = (2π )−3/2 exp[−iEkt + ik · R − ik · α(t)], (3)

where R denotes the position vector of the projectile electron
and α(t) describes the classical oscillation motion of the
projectile electron in the electric field given by Eq. (2),

α(t) = α0 sin(ωt), (4)

with the peak amplitude α0 = ε
√

I ω−2, where I = E2
0

denotes the laser intensity. In Eq. (3) the terms which are
proportional to the ponderomotive energy Up = I/4ω2 are not
included since all calculations presented in the paper are made
for moderate intensities, below 1010 W/cm2. For example, at a
laser intensity of 1010 W/cm2 and a photon energy of 1.17 eV
the ponderomotive energy is about 0.001 eV and therefore can
be safely neglected compared to the projectile energy Ek and
photon energy ω.

As long as the field intensity remains moderate the inter-
action of the laser field with the hydrogen atom is considered
within the first-order TDPT. The approximate solution in the
first-order TDPT for an electron bound to a Coulomb potential
in the presence of a weak external electric field reads

�nlm(r,t) = exp (−iEnt)
[
ψnlm(r,t) + ψ

(1)
nlm(r,t)

]
, (5)
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where r represents the position vector of the bound electron,
En are the Bohr energies, ψnlm is an unperturbed excited-state
wave function of the hydrogen, and ψ

(1)
nlm represents the first-

order radiative correction to the atomic wave function. We
use the following expression of the first-order correction, as
described in [33],

ψ
(1)
nlm(r,t) = −ω

2
[α0 · wnlm(	+

n ; r) exp (−iωt)

+α0 · wnlm(	−
n ; r) exp (iωt)], (6)

with the linear-response vectors wnlm defined by

wnlm(	±
n ; r) = −GC(	±

n ) p ψnlm(r), (7)

where p denotes the momentum operator of the bound electron,
GC is the Coulomb Green’s function, and the energies 	±

n have
the values

	±
n = En ± ω. (8)

For the hydrogen atom the linear-response vectors wnlm are
expressed as

wnlm(	±
n ; r) = i

[
−

√
l + 1

2l + 1
Bnll+1(	±

n ; r)Vl+1lm(r̂)

+
√

l

2l + 1
Bnll−1(	±

n ; r)Vl−1lm(r̂)

]
, (9)

where the radial functions Bnll′ , with l′ = l ± 1, are evaluated
in Ref. [33] using the Coulomb Green’s function including
both bound and continuum eigenstates. Vl′lm represent the
vector spherical harmonics, which are defined in Ref. [34] and
are equivalent to the Yll′m vectors as defined by Edmonds [35],
and r̂ = r/|r|.

B. Scattering matrix

To proceed, once we have obtained the atomic and projectile
electron wave function in the laser field we are able to derive
the scattering matrix for the electron-atom scattering in the
static potential:

V (r,R) = − 1

R
+ 1

|r − R| . (10)

We assume fast projectile electrons such that the scattering
process can be well treated within the first-order Born
approximation in the scattering potential V (r,R) and we use
a semiperturbative treatment for the scattering process similar
to the one developed by Byron and Joachain [31]. Restricting
our calculation to the domain of high scattering energies the
scattering matrix [17] reads

Sf i = −i

∫ ∞

−∞
dt〈χkf

(R,t)�nf lf mf
(r,t)|

×V (r,R)|χki
(R,t)�nilimi

(r,t)〉, (11)

where χki
(χkf

) represents the Gordon-Volkov wave function
for the initial (final) state of the projectile electron in the laser
field and �nilimi

(�nf lf mf
) is the initial (final) wave function of

the bound electron in the laser field, which are given by Eqs. (3)
and (5), respectively. For fast projectile electrons the exchange
effects are neglected [17] and are not included in Eq. (11). By

developing the exponential term of the Gordon-Volkov wave
functions χki

and χkf
in terms of the Bessel functions JN using

the generating function

exp [i x sin(ωt)] =
+∞∑

N=−∞
JN (x) exp (iNωt), (12)

and substituting Eq. (3) into Eq. (11) we obtain, after
integrating over time and projectile electron coordinate, the
scattering matrix Sf i for the N -photon laser-assisted inelastic
e−-H(2s) scattering,

Sf i(N ) = −2πi

+∞∑
N=−∞

Tnlm(N )

× δ(Ekf
+ En − Eki

− E2s − Nω), (13)

where δ is the Dirac delta function, which assures energy
conservation. Here Tnlm(N ) represents the total transition
amplitude for an N -photon inelastic scattering process, which
can be written as the sum of two terms:

Tnlm(N ) = T
(0)
nlm(N ) + T

(1)
nlm(N ). (14)

In particular, for n = 2, l = 0, and m = 0 the scattering matrix
reduces to the one for the laser-assisted elastic scattering
process [26]. The first term, T

(0)
nlm, on the right-hand side of

Eq. (14) denotes the projectile electron transition amplitude
and is related to the Bunkin-Fedorov formula [10] in which
the atomic dressing is neglected, T

(1)
nlm(N ) � 0,

T
(0)
nlm(N ) = JN (α0 · q)〈ψnlm|F (q)|ψ2s〉, (15)

where F (q) is the generalized form factor

F (q) = 1

2π2q2
[exp (iq · r) − δn2δl0δm0], (16)

and q represents the momentum transfer vector of the projectile
electron, i.e., q = ki − kf . The momentum transfer q = |q|
varies between the boundaries ki − kf � q � ki + kf for
forward and backward scattering. We should note that in
Eqs. (15) the field and the projectile electron contributions
to the transition amplitude T

(0)
nlm are completely decoupled,

since the laser-field dependence of the electronic transition
amplitude is contained in the argument of the Bessel function,
α0 · q, only. T

(0)
nlm describes the direct excitation of H(2s) by

projectile electron interaction. We remind that the Bunkin-
Fedorov formula is calculated within the first-order Born ap-
proximation, while the well-known Kroll-Watson formula [11]
is derived beyond the first-order Born approximation with
the projectile electron momentum and energy shifted. Both
the Bunkin-Fedorov and the Kroll-Watson approximations are
inappropriate for laser-assisted inelastic scattering since they
are derived for laser-assisted scattering of an electron by a
static potential.

The last term, T
(1)
nlm, on the right-hand side of the inelastic

transition amplitude, Eq. (14), denotes the atomic transition
amplitude and occurs due to modification of the atomic state by
the laser field described by the first-order radiative corrections
ψ

(1)
nlm(r,t). One of the N photons is exchanged (it may be

emitted or absorbed) between the laser field and the bound
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electron. The general structure of T
(1)
nlm is written as

T
(1)
nlm(N ) = −α0ω

2

[
JN−1(α0 · q)M(1)

at (	+
2 ,	−

n ,q)

+ JN+1(α0 · q)M(1)
at (	−

2 ,	+
n ,q)

]
, (17)

where M(1)
at (	+

2 ,	−
n ,q) and M(1)

at (	−
2 ,	+

n ,q) denote the
following first-order atomic transition amplitudes involving
initial and final atomic states only:

M(1)
at (	+

2 ,	−
n ,q) = 〈ψnlm|F (q)|ε · w200(	+

2 )〉
+ 〈ε · wnlm(	−

n )|F (q)|ψ200〉 (18)

and

M(1)
at (	−

2 ,	+
n ,q) = 〈ψnlm|F (q)|ε · w200(	−

2 )〉
+ 〈ε · wnlm(	+

n )|F (q)|ψ200〉. (19)

The first term on the right-hand side of Eqs. (18) and (19)
describes first the atom interacting with the laser field and
then the interaction with the projectile electron, while in the
second term the projectile electron-atom interaction precedes
the atom-laser interaction. For notational simplicity the r
dependency is not shown in the above equations. We recall
that the vectors wnlm are given by Eq. (7) and the energies
	+

n (	−
n ), corresponding to one-photon absorption (emission),

are defined in Eq. (8).

C. One-photon scattering process

Now we focus our investigation on the scattering process
described by Eq. (1), in which one photon is exchanged
by the colliding system, and we present specific formulas
for one-photon absorption (N = 1) and emission (N = −1)
processes. Strictly speaking, however, we note that the calcu-
lations of the |N | > 1 processes require that the laser-atom
interaction should be treated at least to second order in the
field [36,37], unless we are interested in DCS’s at large
scattering angles where the atomic dressing is negligible.
Since our formulas are derived up to first order only for the
atomic dressing, we consider one-photon (N = ±1) processes
henceforth. Whenever the argument of the Bessel functions is
small, i.e., α0 · q 	 1, which is satisfied at small scattering
angles with moderate laser intensities or at any scattering
angles with low laser intensities, the approximate relation
for the Bessel functions JN (α0 · q) � (α0 · q/2)NN !−1 may
be used. In addition, we must keep only the leading terms
in the calculation of the electronic and atomic transition
amplitudes, Eqs. (15) and (17). Substituting the partial-wave
expansion of the exponential term, exp (iq · r), in the form
factor, Eq. (15), after performing the angular integration, the
electronic transition amplitude T

(0)
nlm reads

T
(0)
nlm(N = 1) = 1

(2π )2

α0 · q
2

f B1
el (q), (20)

where f B1
el (q) is the first-order Born approximation of the

scattering amplitude for field-free inelastic electron scattering
by hydrogen. Its evaluation for 2s → nlm excitation yields

f B1
el (q) = −4

√
π il

q2
Y ∗

lm(q̂)Inl(q), (21)

where Ylm are the spherical harmonics, q̂ = q/|q|, and Inl

represents an electronic radial integral defined by

Inl(q) =
∫ ∞

0
dr r2Rnl(r)jl(qr)R20(r) − δn2δl0δm0, (22)

where jl(qr) represents the spherical Bessel functions and
Rnl(r) is the hydrogenic radial function. An analytic expression
for the first term on the right-hand side of the electronic radial
integral Inl is given by Eq. (A2) in Appendix A.

Next, by using the partial-wave expansion of the exponen-
tial exp (iq · r) and the vector wnlm definition given by Eq. (9),
after performing the angular integration, we obtain, for the first
term on the right-hand side of the first-order atomic transition
amplitude, Eq. (18),

〈ψnlm|exp (iq · r)

2π2q2
|ε · w200(	+

2 )〉

= il

π3/2q2

[√
l

2l + 1
T l−1,a

nlm (	+
2 ,q)

+
√

l + 1

2l + 1
T l+1,a

nlm (	+
2 ,q)

]
, (23)

where

T l′,a
nlm (	+

2 ,q) = ε · V∗
l′lm(q̂) J a

nll′,20(	+
2 ,q), (24)

and J a
nll′,20 is an atomic radial integral defined as

J a
nll′,20(	,q) =

∫ ∞

0
dr r2Rnl(r)jl′(qr)B201(	; r). (25)

Similarly, for the second term on the right-hand side of
Eq. (18) we obtain

〈ε · wnlm(	−
n )|exp (iq · r)

2π2q2
|ψ200〉

= − il

π3/2q2

[√
l

2l + 1
T l−1,b

nlm (	−
n ,q)

+
√

l + 1

2l + 1
T l+1,b

nlm (	−
n ,q)

]
, (26)

where

T l′,b
nlm (	−

n ,q) = ε · V∗
l′lm(q̂) J b

nll′,20(	−
n ,q), (27)

and J b
nll′,20 is another atomic radial integral, which is defined

as

J b
nll′,20(	,q) =

∫ ∞

0
dr r2R20(r)jl′(qr)Bnll′(	; r). (28)

The analytic expressions of the radial integrals J a
nll′ and

J b
nll′ , with l′ = l ± 1 (if l > 0) and l′ = 1 (if l = 0), are given

by Eqs. (B4) and (B6) in Appendix B. The atomic transition
amplitude T

(1)
nlm is obtained from Eq. (17) by substituting

Eqs. (23) and (26) into Eqs. (18) and (19) as

T
(1)
nlm(N = 1) = − ilα0 ω

2π3/2q2

[√
l

2l + 1
T l−1

nlm (	+
2 ,	−

n ,q)

+
√

l + 1

2l + 1
T l+1

nlm (	+
2 ,	−

n ,q)

]
(29)
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for one-photon absorption (N = 1), where we have introduced
the notation

T l′
nlm(	±

2 ,	∓
n ,q) = ε · V∗

l′lm(q̂)Jnll′ (	
±
2 ,	∓

n ,q). (30)

The atomic radial integral Jnll′ is defined as the difference in
the two atomic radial integrals, Eqs. (25) and (28),

Jnll′ (	
±
2 ,	∓

n ,q) = J a
nll′,20(	±

2 ,q) − J b
nll′,20(	∓

n ,q), (31)

with l′ = l ± 1 (if l > 0) and l′ = 1 (if l = 0).
Similarly, for one-photon emission (N = −1) the atomic

transition amplitude is derived as

T
(1)
nlm(N = −1) = − ilα0 ω

2π3/2q2

[√
l

2l + 1
T l−1

nlm (	−
2 ,	+

n ,q)

+
√

l + 1

2l + 1
T l+1

nlm (	−
2 ,	+

n ,q)

]
. (32)

It is clear from Eqs. (29) and (32) that the one-photon atomic
transition amplitudes involve intermediate states with angular
momentum l′ = l ± 1, where l is the angular momentum of
the final state.

D. Differential cross section for excitation of the nl subshell

Finally, the DCS for laser-assisted inelastic e− + H(2s) →
e− + H(nl) scattering, in which the energy of the projectile
electron is modified by E2s − En + Nω, summed over the
magnetic quantum number, m, of the final state reads

dσnl(N )

d	
= (2π )4 kf (N )

ki

l∑
m=−l

|Tnlm(N )|2, (33)

where the inelastic transition amplitude Tnlm is given by
Eq. (14). Within the framework described in the previous
subsections the DCS for the inelastic scattering process
accompanied by one-photon absorption (N = 1) or emission
(N = −1), summed over the magnetic quantum number of the
final state, takes a compact analytic form after some algebra,

dσnl(N = ±1)

d	

= kf (N = ±1)

ki

I

2 ω2 q4

×
[
Cnl(	

±
2 ,	∓

n ,q) + |ε · q|2
q2

Dnl(	
±
2 ,	∓

n ,q)

]
,(34)

where the quantities Cnl and Dnl are defined as

Cnl = l(l + 1)

2l + 1
(Jnll+1 + Jnll−1)2 (35)

and

Dnl = (l + 1)(l + 2)

2l + 1
J 2

nll+1 + l(l − 1)

2l + 1
J 2

nll−1

− 6l(l + 1)

2l + 1
Jnll+1Jnll−1 + 4q

ω
Inl

×
[

q

2ω
(2l + 1) Inl + (l + 1)Jnll+1 − lJnll−1

]
. (36)

For notational simplicity, in the above formulas we drop
the arguments 	 and q of the quantities Cnl and Dnl . In

Eq. (34) the summation over the magnetic quantum number
is performed by taking into account the specific summation
relations for the vector spherical harmonics Vl′lm [34] which
are presented in Appendix C. The definitions of quantities
Cnl and Dnl given by Eqs. (35) and (36) have a similar form
compared to the definitions ofP andQ reported in Ref. [19] for
laser-assisted inelastic e−-H(1s) scattering, but obviously the
expressions of electronic Inl and atomic Jnll′ radial integrals
are different, since in the present work the hydrogen atom is
initially in its metastable 2s state. Next, after the derivation
of a general formula for the one-photon differential scattering
cross section, we present some particular cases where Eq. (34)
can take quite simple analytic expressions.

1. Differential cross section for ns-subshell excitation

For inelastic scattering where the final state is an ns subshell
(2s → ns excitation), which implies that both initial and final
atomic states have spherical symmetry, we obtain, after setting
the orbital quantum number l = 0 in Eq. (34), the following
simple formula for DCS:

dσn0(N = ±1)

d	
= I

kf (N = ±1)

ki

|ε · q|2
ω4q4

(
In0 + ω

q
Jn01

)2

.

(37)

In particular, for n = 2, the DCS given by Eq. (37) is in
perfect agreement with ours for laser-assisted elastic e−-H(2s)
scattering [26].

2. Differential cross section for np-subshell excitation

For inelastic scattering where the final state is an np-
subshell (2s → np excitation), which implies that only the
initial atomic state has a spherical symmetry, we obtain, after
setting l = 1 in Eq. (34), the following formula for DCS:

dσn1(N = ±1)

d	
= I

kf (N = ±1)

ki

1

2 ω2 q4

{
2

3
(Jn12 + Jn10)2

+ |ε · q|2
q2

[
6

5
J 2

n12 − 4Jn12Jn10

+ 4q

ω
In1

(
3q

2ω
In1 + 2Jn12 − Jn10

)]}
.

(38)

From Eqs. (37) and (38) it is clear that the DCS depends
on the projectile electron momenta and photon energy, and
has a maximum value in the scattering geometry in which the
polarization vector is parallel to the momentum transfer, ε ‖ q.

E. Differential cross section in the limit of negligible
field-atom interaction

In the domain of negligible laser-atom interaction (T (1)
nlm �

0), i.e., at large scattering angles and photon energies that are
far away from any (intermediate) resonance, only the projectile
electron-laser interaction has to be considered. Again, we
employ the partial-wave expansion of the exponential term
of the form factor F (q), then we substitute Eq. (15) into
Eq. (33), and after performing the summation over the final-
state magnetic quantum number we obtain a simple result for
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the DCS in the soft-photon limit,

dσnl(N )

d	
= 4

kf (N )

ki

2l + 1

q4
|JN (α0 · q)|2 I2

nl, (39)

which is the equivalent of the Beigman and Chichkov for-
mula [38] for laser-assisted excitation of H(2s) atoms by fast
electrons.

In particular, for one-photon exchange, if the dressing of
the target is neglected in Eq. (34), i.e., the atomic integrals
are neglected (Jnll±1 � 0) in Eqs. (35) and (36), the following
analytic result is derived for the inelastic scattering process:

dσnl(N = ±1)

d	
= I

kf (N = ±1)

ki

2l + 1

ω4 q4
|ε · q|2 I2

nl . (40)

Clearly, because the DCS is proportional to ω−4, a factor which
arises from the projectile electron quiver amplitude as can
be seen in Eq. (4), the infrared CO2 laser (photon energy
ω = 0.117 eV) was preferred to Nd:YAG (ω = 1.17 eV) or
He:Ne (ω = 2 eV) lasers in earlier laser-assisted electron-atom
experiments. Only recently laser-assisted experiments using
femtosecond near-infrared Ti:sapphire (ω = 1.55 eV) [39] or
Nd:YAG [22,40] lasers have been reported.

III. NUMERICAL EXAMPLES AND DISCUSSION

To start with, we check the reliability of our results for
the particular case of elastic scattering of fast electrons by
hydrogen atoms, in its metastable 2s state, in the presence of a
linearly polarized laser field of moderate power [26]. We recall
that our analytic results are also valid for the case of free-free
elastic scattering corresponding to the energy conservation
Ekf

= Eki
+ Nω, a process in which the atomic hydrogen

remains in its initial state 2s and the kinetic energy of the
projectile electron changes by an integer multiple of the photon
energy ω. We consider the scattering geometry depicted in
Fig. 1, denoted G1, where the laser field is linearly polarized in

z

θ  

y

x

kf

q

ε

ik

FIG. 1. The specific scattering geometry G1 assumed for the
numerical calculations of laser-assisted e−-H(2s) scattering. ki and
kf are the initial and final momentum vectors of the projectile
electron, θ is the angle between them, and q is the momentum transfer
vector. ε represents the polarization vector of the linearly polarized
laser field.

10-4

100

104

108

lo
g 10

(I
-1

dσ
/d

Ω
)

0 5 10 15 20 25
Scattering angle θ(deg)

10-4

100

104

108

lo
g 10

(I
-1

dσ
/d

Ω
)

(a)

(b)
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FIG. 2. (Color online) Comparison of the DCSs for laser-assisted
elastic scattering of electrons by H(2s) atoms, with N = 1 (one-
photon absorption), for incident projectile electron energy Eki

=
100 eV, at two photon energies, (a) 1.17 eV and (b) 2 eV, with the
laser-atom interaction calculated within the first-order TDPT. Dashed
lines represent the Bunkin-Fedorov approximation and dot-dashed
lines represent the atomic contribution to DCSs. DCSs are normalized
by the laser intensity I and the polarization vector of the laser
field ε is parallel to the initial momentum vector of the projectile
electron ki .

the same direction along the momentum vector of the ingoing
electron ε || ki , and ε defines the direction of the z axis. For this
scattering geometry the argument of the Bessel function can be
expressed as α0 · q = √

I ω−2(ki − kf cos θ ), where θ is the
scattering angle between the initial and the final momentum
vectors of the projectile electrons ki and kf . The numerical
results for one-photon absorption (N = 1) are shown in
Figs. 2(a) and 2(b) in terms of the DCSs at an incident projectile
electron energy Eki

= 100 eV, with photon energies of 1.17 eV
(Nd:YAG laser) and 2 eV (He:Ne laser), respectively. Solid
and dashed lines represent numerical results which include
the atomic dressing obtained from Eq. (37) and those given
by Eq. (40), where the dressing of the atom is neglected,
respectively. Dot-dashed lines represent the atomic dressing
contribution to the DCS calculated within the first-order TDPT
as (2π )4kf /ki

∑l
m=−l |T (1)

nlm(N )|2. The presented results for the
elastic scattering process agree with the previous data shown
in Figs. 1 and 2 in Ref. [26]. The first minimum appearing in
Fig. 2(a) at the scattering angle of θ � 3.8◦ originates from the
destructive dynamic interference of the electronic and atomic
contributions in Eq. (37). The value of θ � 3.8◦ is nothing
but the solution of the equation In0 + ω q−1Jn01 = 0, where
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the θ dependency is included in the momentum transfer q

and the radial integrals In0 and Jn01. This is the so-called
dynamic minimum, whose position depends on the choice
of the polarization potential for the target in the laser field.
Another type of minimum, at θ � 6.2◦ and 8.1◦ in Figs. 2(a)
and 2(b), respectively, occurs because the scalar product
ε · q vanishes in Eqs. (37) and (40), at the scattering angle
given by the relation of θ = arccos(ki/kf ) in the scattering
geometry G1. This is the so-called kinematic minimum, whose
position depends on the polarization geometry and the initial
and final energies of the projectile electron; it exists for the
photoabsorption (N > 0) scattering processes only, where the
projectile electron momenta must satisfy the relation of kf >

ki . We have also compared our numerical results, not shown
here, for laser-assisted elastic e−-H(2s) scattering with those
published by Vučić and Hewitt [28] based on a Born-Floquet
theory and we found a good quantitative agreement.

Second, we want to check the dynamic atomic polarizability
of the 2s state of hydrogen, α2s(ω), since the atomic dressing
effect increases with increasing excitation of the atomic target,
a fact that is reflected in the increasing static polarizability
of the excited states [26]. The dynamic polarizability is
defined as a function of the photon energy [15,41] and can
be expressed in the limit of small momentum transfer (Bethe-
Born approximation) [42], in terms of the linear-response
vector w200 as

α2s(ω) = − 1

ω ε · q
lim
q→0

[〈ψ200| exp(iq · r)|ε · w200(	+
2 )〉

+ 〈ε · w200(	−
n )| exp(iq · r)|ψ200〉]. (41)

After performing some algebra and recalling Eqs. (23)
and (26), the dynamic polarizability of the 2s state reads

α2s(ω) = 1

ω q
lim
q→0

J201(	+
2 ,	−

2 ,q), (42)

where the radial integral J201(	+
2 ,	−

2 ,q) is defined by
Eq. (31). In particular, in the soft-photon limit (ω 	 1 a.u.) the
dynamic polarizability gives the well-known value of the static
dipole polarizability of the 2s state, α2s=120 a.u.. In Fig. 3 is
plotted the dynamic polarizability of the 2s state of hydrogen,
α2s(ω), calculated in the limit of small momentum transfer of

0 0.5 1 1.5 2 2.5 3
Photon Energy ω (eV)

-1000

-500
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α 2s
(ω
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p p4-s2
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FIG. 3. The dynamic dipole polarizability of the 2s state, α2s ,
calculated from Eq. (42) as a function of the photon energy.

Eq. (42), as a function of the photon energy. The numerical
results are in good agreement with the data presented by
Tang and Chan [43] and references therein. The behavior
of the dynamic polarizability of the 2s state is qualitatively
similar to that of the ground state [44], and α2s(ω) changes
its sign whenever the photon energy passes through an atomic
resonance as well.

Next, we apply the analytic formulas derived in the
above sections to calculate the DCSs for inelastic electron
scattering by a hydrogen atom in its metastable 2s state in
the presence of a linearly polarized laser field, and we focus
our numerical examples on one-photon absorption (N = 1).
We show our numerical results for a higher scattering energ,
Eki

= 500 eV, and a photon energy corresponding to the
Nd:YAG laser, ω = 1.17 eV, where we expect important
dressing effects for H(2s). We choose low photon energies
and high energies of the projectile electron, such that neither
the photon nor the projectile electron can separately excite
the atomic upper state. Figures 4(a)–4(d) present the DCSs
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FIG. 4. (Color online) Differential cross sections for the laser-
assisted e− + H(2s) → e− + H(4l) inelastic scattering process for
N = 1 as a function of the scattering angle θ , at a projectile electron
energy of Eki

= 500 eV and photon energy of 1.17 eV with excitation
of the (a) 4s, (b) 4p, (c) 4d , and (d) 4f subshells. Dashed lines
represent DCSs given by Eq. (40), where the atomic dressing is
neglected, and dot-dashed lines represent the atomic contribution to
DCSs. The dot-dot-dashed line in (a) represents the total DCS for
transition to any n = 4 subshell. DCSs are normalized by the laser
intensity I and the polarization vector of the laser field ε is parallel
to ki .
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normalized to the laser intensity for excitation of the n = 4
subshells (4s, 4p, 4d, and 4f ) in the scattering geometry G1.
Solid and dashed lines correspond to DCSs which include
the atomic dressing calculated with Eq. (34) and neglect the
atomic dressing given by Eq. (40), respectively. Dot-dashed
lines represent the atomic contribution to the DCS given

by (2π )4kf /ki

∑l
m=−l |T (1)

nlm(N )|2. In Fig. 4(a) we also plot,
by the dot-dot-dashed line, the total DCS for the transition
to any n = 4 subshell calculated as

∑n−1
l=0 dσnl(N )/d	. As

in the case of elastic scattering the atomic dressing effects
are dominant in the forward scattering (θ = 0◦) and our
numerical results in Figs. 4(a)–4(d) indicate that at small
scattering angles (θ < 12◦) the atomic contribution to the
total DCS is more important than the electronic contribution.
The atomic dressing effects are dominant for scattering angles
that are θ < 4◦ in Fig. 4(a), θ < 12◦ in Fig. 4(b), θ < 20◦
in Fig. 4(c), and θ < 40◦ in Fig. 4(d). Dynamic minima
occur for the 2s → 4s excitation only at the scattering angles
θ � 3.1◦,7.2◦, and 10.7◦ in Fig. 4(a). As mentioned before,
these dynamic minima are independent of the scattering
geometry and represent the results of cancellation of the
electronic and atomic radial integrals in Eq. (37). Compared
with the elastic process we note the different character of
interferences between electronic and atomic radial integrals
in the DCS. At a photon energy ω = 1.17 eV the cinematic
minima are not allowed for any of the 2s → 4l (l = 0, 1, 2, and
3) excitations, because the projectile electron momenta satisfy
the relation kf < ki for photon energies lower than 2.55 eV
and therefore the scalar product ε · q does not vanish. At larger
scattering angles the elastic DCS does not decrease compared
to the inelastic DCS due to the nonzero electronic transition
amplitude of the electron projectile-nucleus interaction in
Eq. (21). Our numerical results based on Eq. (34), not shown
here, are in qualitative agreement with the earlier results of
DCSs calculated in a two-level approximation by Purohit and
Mathur [30] for a circularly polarized laser field, at a resonant
photon energy of 1.89 eV, which corresponds to the 2s-3s

transition in hydrogen.
Figures 5 and 6 show the DCSs with respect to the photon

energy for one-photon absorption (N = 1) corresponding
to the 2s → 4s (short-dashed line), 2s → 4p (dot-dashed
line), 2s → 4d (long-dashed line), and 2s → 4f (solid line)
excitations of hydrogen in the scattering geometry G1. The
DCSs are normalized to the laser intensity and calculated
at the incident projectile electron energy Eki

= 500 eV for
scattering angles θ = 5◦ in Fig. 5 and θ = 30◦ in Fig. 6.
At the small scattering angle, θ = 5◦, the atomic dressing is
important and the DCS for 4f subshell is dominant, while
at θ = 30◦ the DCSs for 4s and 4p subshells are dominant,
but at nonresonant photon energies the atomic dressing is
negligibly small compared to the electronic contribution. The
DCSs for 2s → 4l (l = 0, 1, 2, and 3) excitations as a
function of the photon energy show a strongly dependence
on the atomic structure and exhibit a series of resonances.
The first resonance in both Fig. 5 and Fig. 6 occurs at
the photon energy ω � 0.66 eV, which matches the energy
difference between the 4s and the 3p states. The origin of this
resonance resides in the dipole coupling of a final 4l state and a
lower intermediate 3l′ state (l′ = l ± 1), as can be noted from
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FIG. 5. (Color online) Differential cross sections for the laser-
assisted e− + H(2s) → e− + H(4l) inelastic scattering process for
N = 1 with excitation of the 4l subshells (l = 0, 1, 2, and 3) as
a function of the photon energy ω, at a projectile electron energy
of Eki

= 500 eV and a scattering angle of 5◦, for the 2s → 4s

(short-dashed line), 2s → 4p (dot-dashed line), 2s → 4d (long-
dashed line), and 2s → 4f (solid line) excitations of hydrogen. The
dot-dot-dashed line represents the total DCS for transition to any
n = 4 subshell. DCSs are normalized by the laser intensity I and the
polarization vector of the laser field ε is parallel to ki .

Eq. (26), and is related to the poles of the atomic transition
amplitude due to the atomic integral J b

4ll′,20(	−
4 ,q), given by

Eq. (B6), at photon energies such that ω = (1/n′2 − 1/42)/2,
with 2 � n′ < 4. Another resonance with a similar origin
occurs at ω � 2.55 eV due to the dipole coupling of a final
4l state and a lower intermediate 2l′ state (l′ = l ± 1). In
contrast, the rest of the resonances that appear in Figs. 5
and 6, at photon energies ω � 1.88, 2.55, 2.85, . . . eV are
associated with 2s → n′p atomic transitions, with n′ > 2.
These resonances occur due to one-photon absorption from
the initial 2s state to an intermediate n′p state followed by a
transition to the final 4l state by projectile electron interaction,
as can be noted from Eq. (23). Exactly at resonance the atomic
integral J a

4ll′,20(	+
2 ,q), given by Eq. (B4), presents poles

that occur at photon energies that match atomic resonances
such that ω = (1/22 − 1/n′2)/2, with n′ > 2. It is clear that
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FIG. 6. (Color online) Results similar to those in Fig. 5, but with
a scattering angle of 30◦.
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these two types of resonances occur due to simultaneously
projectile electron-photon excitation processes of hydrogen.
The hydrogen atom is excited to the 4l state either (i) by first
absorbing some of the projectile electron kinetic energy, then
absorbing (or emitting) a photon from (to) the laser field or (ii)
by first absorbing a photon from the laser field, then absorbing
(or transferring) the energy difference from (to) the projectile
electron.

Despite the fact that very new experiments on laser-assisted
electron-atom scattering have been developed [39,40], these
kind of investigations are still quite difficult to perform,
especially those involving excited states of atoms [22]. From
the experimental point of view [21], we believe that some
of these resonances are particularly interesting. Indeed, the
laser-assisted excitation processes in e−-H(2s) scattering
accompanied by one-photon absorption may be easier to detect
at a photon energy close to the 0.66-eV resonance because it
does not correspond to a resonance of the elastic scattering
processes of H(2s) with one-photon absorption [26].

IV. SUMMARY AND CONCLUSIONS

We have theoretically studied the inelastic scattering of fast
electrons by H(2s) in a laser field of moderate intensities,
a process that is accompanied a the change in the initial
state of the atom. We have included the laser dressing of
the excited states by using TDPT in the first order of the
field and the scattered electron embedded in the laser field
is described by the well-known Gordon-Volkov solution.
Since we chose high electron energies, the scattering process
is treated within the framework of the first-order Born
approximation. This formalism includes the dressing effects
in laser-assisted inelastic electron-atom scattering beyond the
two-level approximation and does not require the use of
the rotating-wave approximation, being applicable to any
polarization of the laser field. A new analytic formula has
been derived for the DCS in laser-assisted inelastic electron-
hydrogen scattering for 2s → nl excitation of an arbitrary nl

state. We have compared our results for laser-assisted elastic
electron scattering by the metastable 2s state of hydrogen with

similar calculations [26,28] and found a very good agreement,
for one-photon absorption. A very good agreement was found
for the dynamic dipole polarizability of the 2s state [43].
We found a qualitative agreement with the earlier inelastic
results calculated in a two-level approximation at resonance
photon energy [30], showing the accuracy and efficiency of
our results. The dynamics of laser-assisted inelastic e−-H(2s)
collisions accompanied by one-photon absorption differs both
qualitatively and quantitatively from that involving the ground
state [19] due to the high polarizabilities of the excited states.
The presented numerical data for each subshell of the n = 4
level indicate that at small scattering angles the atomic dressing
effects for inelastic collisions are significantly stronger than
those for elastic e−-H(2s) scattering. We found a significant
increase in the DCSs for the optically forbidden transitions s-s,
s-d, and s-f due to simultaneous electron-photon excitation
of H(2s). We have discussed the origin of the peaks in the
resonance structure of the DCSs as a function of the photon
energy for laser-assisted inelastic e−-H(2s) scattering. For
the studied range of photon energies our analysis shows
important differences from the dynamics of laser-assisted
elastic scattering that are mainly due to the dipole coupling
of the final 4l state with intermediate 2l′ and 3l′ states.
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APPENDIX A: ELECTRONIC RADIAL INTEGRAL I ′
nl

The electronic radial integral, I ′
nl , required to calculate the

inelastic electronic transition amplitude, T (0)
nlm, given in Eq. (20)

is defined as

I ′
nl(q) =

∫ ∞

0
dr r2Rnl(r)jl(qr)R20(r). (A1)

After performing the integration the electronic radial integral
may be expressed as finite sums of Gauss hypergeometric
functions, 2F1:

I ′
nl(q) = 1

q

2l+1/2

nl+2(2l + 1)!

[
(n + l)!

(n − l − 1)!

]1/2

Re

⎧⎨
⎩

l∑
p=0

ip−l−1

(2q)p
(l + p)!

p!(l − p)!

1∑
s=0

(
− 1

2

)s

(l + 1 − p + s)!

×
(

2n

2 + n − 2iqn

)2+l−p+s

2F1

(
l + 2 + s − p,l − n + 1,2l + 2,

4

2 + n − 2iqn

)⎫⎬
⎭. (A2)

APPENDIX B: ATOMIC RADIAL INTEGRALS J a
nll ′,20 AND J b

nll ′,20

We recall that the atomic radial integral Jnll′ required to calculate the one-photon atomic transition amplitude, T
(1)
nlm, given by

Eqs. (29) and (32) is defined as the difference between two atomic radial integrals,

Jnll′ (τ
∓
2 ,τ±

n ,q) = J a
nll′,20(τ∓

2 ,q) − J b
nll′,20(τ±

n ,q), (B1)

with l′ = l ± 1 (if l > 0) and l′ = 1 (if l = 0), and the dependence of the atomic radial integrals on the energies 	 is now included
in the new parameters τ+

n = (−2	−
n )−1/2 and τ−

n = (−2	+
n )−1/2. The two terms on the right-hand side of Eq. (B1) are defined
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as radial integrals,

J a
nll′,20(τ,q) =

∫ ∞

0
dr r2Rnl(r)jl′(qr)B201(τ ; r) (B2)

and

J b
nll′,20(τ,q) =

∫ ∞

0
dr r2R20(r)jl′(qr)Bnll′(τ ; r), (B3)

where the radial functions Bnll′ (τ ; r) are defined in Ref. [33].
First, we focus on the J a

nll′,20 atomic radial integral, and after performing some algebra using the development of the spherical
Bessel function in Eq. (B2), the integral is analytically expressed in terms of finite sums of the Appell hypergeometric, F1 [45],
of two variables,

J a
nll′,20(τ,q) = τ

q

22τ+l+9/2

n2+l

1

(2l + 1)!

[
(n + l)!

(n − l − 1)!

]1/2

Re

⎧⎨
⎩

l′∑
p=0

ip−l′−1

(2q)p
(l′ + p)!

p!(l′ − p)!

n−l−1∑
s=0

(l + 1 − n)s
(2l + 2)ss!

(
2

n

)s

×
1∑

ν=0

1∑
μ=0

(4)ν

a

(−1)μ+ν

(4)νμ!ν!

(
−1

4

)μ (2 − τ )1−μ−ν

(2 + τ )3+τ−2μ
(2 + l − p + s + ν)!

(
nτ

n + τ − iqnτ

)3+l−p+s+ν

× F1(a, − 2 − τ + μ,3 + l − p + s + ν,a + 1,x2,y2)

⎫⎬
⎭. (B4)

The expression (n)s , with n and s integers, denotes Pochhammer’s symbol and a = 2 − τ + μ + ν. The variables x2 and y2 of
the Appell hypergeometric function are

x2 = 2 − τ

4
, y2 = n

2

2 − τ

n + τ − iqnτ
. (B5)

We should mention that J a
nll′,20 presents poles with respect to τ in Eq. (B4), which arise due to the cancellation of the

a denominator and from the poles of the Appell hypergeometric functions for τ = n′, where n′ is an integer. The origin of
these poles resides in the poles of the Coulomb Green’s functions used for the calculation of wnlm vectors [33]. In particular,
J a

nll′,20(τ±
2 ,q) presents poles at τ−

2 = n′ with n′ > 2 and τ+
2 = n′ with n′ < 2.

Similarly, the second atomic radial integral J b
nll′,20 defined in Eq. (B3) is analytically expressed in terms of finite sums of

Appell hypergeometric functions, F1, as

J b
nll′,20(τ,q) = τ

q

22l′+τ+1/2 nτ−1

(2l′ + 1)!

[
(n + l)!

(n − l − 1)!

]1/2

Re

⎧⎨
⎩

l′∑
p=0

ip−l′−1

(2q)p
(l′ + p)!

p!(l′ − p)!

∑
k=−1,1

n−l′−1−k∑
ν=0

n−l′−1−k−ν∑
μ=0

d
l′,−k
n,l

× (4)ν

b

(
− 1

2n

)μ (l′ + 1 + k − n)μ+ν

(2l′ + 2)νμ!ν!

(n + τ )k+2μ−n−τ

(n − τ )k+μ+ν−n+l′+1

1∑
s=0

(
−1

2

)s

(l′ + 1 − p + s + ν)!

×
(

2τ

2 + τ − 2iqτ

)2+l′−p+s+ν

F1(b, − n − τ + 1 + k + μ,2 + l′ − p + s + ν,b + 1,xn,yn)

⎫⎬
⎭, (B6)

where the notations d
l+1,1
n,l = (n + l + 1)(n + l + 2), d

l−1,1
n,l = 1, and d

l′,−1
n,l = −d

l′,1
−n,l are introduced in [33], b = l′ + 1 − τ +

μ + ν, and the variables xn and yn of the Appell hypergeometric function are

xn = n − τ

2n
, yn = 2

n

n − τ

2 + τ − 2iqτ
. (B7)

Similarly to J a
nll′,20, the atomic radial integral J b

nll′,20 presents poles with respect to τ in Eq. (B6), which arise due to the
cancellation of the n − τ and b denominators, as well as from the poles of the Appell hypergeometric function F1 for τ = n′,
where n′ is an integer. In particular, J b

nll′,20(τ±
n ,q) presents poles at τ−

n = n′ with n′ > n and τ+
n = n′ with 2 � n′ < n.

APPENDIX C: SUMMATION FORMULAS FOR THE VECTOR SPHERICAL HARMONICS, Vl ′ lm

The well-known summation formulas of the vector spherical harmonics Vl±1lm [34] used in the
derivation of the DCS given by Eq. (34) and the quantities Cnl [Eq. (35)] and Dnl [Eq. (36)]
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are
l∑

m=−l

Y ∗
lm(q̂)Vl−1lm(q̂) =

√
l(2l + 1)

4π
q̂, (C1)

l∑
m=−l

Y ∗
lm(q̂)Vl+1lm(q̂) = −

√
(l + 1)(2l + 1)

4π
q̂, (C2)

l∑
m=−l

|ε · Vl+1lm(q̂)|2 = 1

8π
[l|ε|2 + (l + 2)|ε · q̂|2], (C3)

l∑
m=−l

|ε · Vl−1lm(q̂)|2 = 1

8π
[(l + 1)|ε|2 + (l − 1)|ε · q̂|2], (C4)

l∑
m=−l

[ε · Vl+1lm(q̂)]∗[ε · Vl−1lm(q̂)] =
√

l(l + 1)

8π
[|ε|2 − 3|ε · q̂|2]. (C5)
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et Hypersphériques. Polynomes d’Hermite (Gauthier-Villars,
Paris, 1926).

033421-11

http://dx.doi.org/10.1098/rspa.1931.0121
http://dx.doi.org/10.1098/rspa.1931.0121
http://dx.doi.org/10.1098/rspa.1931.0121
http://dx.doi.org/10.1098/rspa.1931.0121
http://dx.doi.org/10.1098/rspa.1932.0082
http://dx.doi.org/10.1098/rspa.1932.0082
http://dx.doi.org/10.1098/rspa.1932.0082
http://dx.doi.org/10.1098/rspa.1933.0013
http://dx.doi.org/10.1098/rspa.1933.0013
http://dx.doi.org/10.1098/rspa.1933.0013
http://dx.doi.org/10.1103/PhysRevA.12.2106
http://dx.doi.org/10.1103/PhysRevA.12.2106
http://dx.doi.org/10.1103/PhysRevA.12.2106
http://dx.doi.org/10.1103/PhysRevA.12.2106
http://dx.doi.org/10.1103/PhysRevA.19.1796
http://dx.doi.org/10.1103/PhysRevA.19.1796
http://dx.doi.org/10.1103/PhysRevA.19.1796
http://dx.doi.org/10.1103/PhysRevA.19.1796
http://dx.doi.org/10.1088/0034-4885/56/10/002
http://dx.doi.org/10.1088/0034-4885/56/10/002
http://dx.doi.org/10.1088/0034-4885/56/10/002
http://dx.doi.org/10.1088/0034-4885/56/10/002
http://dx.doi.org/10.1016/S0370-1573(97)00075-6
http://dx.doi.org/10.1016/S0370-1573(97)00075-6
http://dx.doi.org/10.1016/S0370-1573(97)00075-6
http://dx.doi.org/10.1016/S0370-1573(97)00075-6
http://dx.doi.org/10.1016/S0370-1573(00)00100-9
http://dx.doi.org/10.1016/S0370-1573(00)00100-9
http://dx.doi.org/10.1016/S0370-1573(00)00100-9
http://dx.doi.org/10.1016/S0370-1573(00)00100-9
http://dx.doi.org/10.1088/0953-4075/22/5/009
http://dx.doi.org/10.1088/0953-4075/22/5/009
http://dx.doi.org/10.1088/0953-4075/22/5/009
http://dx.doi.org/10.1088/0953-4075/22/5/009
http://dx.doi.org/10.1103/PhysRevA.8.804
http://dx.doi.org/10.1103/PhysRevA.8.804
http://dx.doi.org/10.1103/PhysRevA.8.804
http://dx.doi.org/10.1103/PhysRevA.8.804
http://dx.doi.org/10.1103/PhysRevA.40.5461
http://dx.doi.org/10.1103/PhysRevA.40.5461
http://dx.doi.org/10.1103/PhysRevA.40.5461
http://dx.doi.org/10.1103/PhysRevA.40.5461
http://dx.doi.org/10.1088/0953-4075/22/21/002
http://dx.doi.org/10.1088/0953-4075/22/21/002
http://dx.doi.org/10.1088/0953-4075/22/21/002
http://dx.doi.org/10.1088/0953-4075/22/21/002
http://dx.doi.org/10.1088/0953-4075/23/13/011
http://dx.doi.org/10.1088/0953-4075/23/13/011
http://dx.doi.org/10.1088/0953-4075/23/13/011
http://dx.doi.org/10.1088/0953-4075/23/13/011
http://dx.doi.org/10.1088/0953-4075/43/17/175201
http://dx.doi.org/10.1088/0953-4075/43/17/175201
http://dx.doi.org/10.1088/0953-4075/43/17/175201
http://dx.doi.org/10.1088/0953-4075/43/17/175201
http://dx.doi.org/10.1088/0022-3700/20/12/032
http://dx.doi.org/10.1088/0022-3700/20/12/032
http://dx.doi.org/10.1088/0022-3700/20/12/032
http://dx.doi.org/10.1088/0022-3700/20/12/032
http://dx.doi.org/10.1103/PhysRevA.38.1785
http://dx.doi.org/10.1103/PhysRevA.38.1785
http://dx.doi.org/10.1103/PhysRevA.38.1785
http://dx.doi.org/10.1103/PhysRevA.38.1785
http://dx.doi.org/10.1103/PhysRevA.44.1884
http://dx.doi.org/10.1103/PhysRevA.44.1884
http://dx.doi.org/10.1103/PhysRevA.44.1884
http://dx.doi.org/10.1103/PhysRevA.44.1884
http://dx.doi.org/10.1103/PhysRevA.45.5282
http://dx.doi.org/10.1103/PhysRevA.45.5282
http://dx.doi.org/10.1103/PhysRevA.45.5282
http://dx.doi.org/10.1103/PhysRevA.45.5282
http://dx.doi.org/10.1103/PhysRevLett.103.193201
http://dx.doi.org/10.1103/PhysRevLett.103.193201
http://dx.doi.org/10.1103/PhysRevLett.103.193201
http://dx.doi.org/10.1103/PhysRevLett.103.193201
http://dx.doi.org/10.1088/0953-4075/44/13/135203
http://dx.doi.org/10.1088/0953-4075/44/13/135203
http://dx.doi.org/10.1088/0953-4075/44/13/135203
http://dx.doi.org/10.1088/0953-4075/44/13/135203
http://dx.doi.org/10.1088/0953-4075/46/23/235201
http://dx.doi.org/10.1088/0953-4075/46/23/235201
http://dx.doi.org/10.1088/0953-4075/46/23/235201
http://dx.doi.org/10.1088/0953-4075/46/23/235201
http://dx.doi.org/10.1016/j.elspec.2013.12.016
http://dx.doi.org/10.1016/j.elspec.2013.12.016
http://dx.doi.org/10.1016/j.elspec.2013.12.016
http://dx.doi.org/10.1016/j.elspec.2013.12.016
http://dx.doi.org/10.1088/0953-4075/30/19/021
http://dx.doi.org/10.1088/0953-4075/30/19/021
http://dx.doi.org/10.1088/0953-4075/30/19/021
http://dx.doi.org/10.1088/0953-4075/30/19/021
http://dx.doi.org/10.1103/PhysRevA.61.063417
http://dx.doi.org/10.1103/PhysRevA.61.063417
http://dx.doi.org/10.1103/PhysRevA.61.063417
http://dx.doi.org/10.1103/PhysRevA.61.063417
http://dx.doi.org/10.1103/PhysRevA.64.043401
http://dx.doi.org/10.1103/PhysRevA.64.043401
http://dx.doi.org/10.1103/PhysRevA.64.043401
http://dx.doi.org/10.1103/PhysRevA.64.043401
http://dx.doi.org/10.1103/PhysRevA.56.4899
http://dx.doi.org/10.1103/PhysRevA.56.4899
http://dx.doi.org/10.1103/PhysRevA.56.4899
http://dx.doi.org/10.1103/PhysRevA.56.4899
http://dx.doi.org/10.1103/PhysRevA.65.033421
http://dx.doi.org/10.1103/PhysRevA.65.033421
http://dx.doi.org/10.1103/PhysRevA.65.033421
http://dx.doi.org/10.1103/PhysRevA.65.033421
http://dx.doi.org/10.1103/PhysRevA.45.6502
http://dx.doi.org/10.1103/PhysRevA.45.6502
http://dx.doi.org/10.1103/PhysRevA.45.6502
http://dx.doi.org/10.1103/PhysRevA.45.6502
http://dx.doi.org/10.1088/0022-3700/17/9/006
http://dx.doi.org/10.1088/0022-3700/17/9/006
http://dx.doi.org/10.1088/0022-3700/17/9/006
http://dx.doi.org/10.1088/0022-3700/17/9/006
http://dx.doi.org/10.1007/BF01331022
http://dx.doi.org/10.1007/BF01331022
http://dx.doi.org/10.1007/BF01331022
http://dx.doi.org/10.1007/BF01331022
http://dx.doi.org/10.1103/PhysRevA.34.4641
http://dx.doi.org/10.1103/PhysRevA.34.4641
http://dx.doi.org/10.1103/PhysRevA.34.4641
http://dx.doi.org/10.1103/PhysRevA.34.4641
http://dx.doi.org/10.1088/0953-4075/27/14/051
http://dx.doi.org/10.1088/0953-4075/27/14/051
http://dx.doi.org/10.1088/0953-4075/27/14/051
http://dx.doi.org/10.1088/0953-4075/27/14/051
http://dx.doi.org/10.1103/PhysRevLett.105.123202
http://dx.doi.org/10.1103/PhysRevLett.105.123202
http://dx.doi.org/10.1103/PhysRevLett.105.123202
http://dx.doi.org/10.1103/PhysRevLett.105.123202
http://dx.doi.org/10.1103/PhysRevA.83.022706
http://dx.doi.org/10.1103/PhysRevA.83.022706
http://dx.doi.org/10.1103/PhysRevA.83.022706
http://dx.doi.org/10.1103/PhysRevA.83.022706
http://dx.doi.org/10.1016/j.radphyschem.2005.05.006
http://dx.doi.org/10.1016/j.radphyschem.2005.05.006
http://dx.doi.org/10.1016/j.radphyschem.2005.05.006
http://dx.doi.org/10.1016/j.radphyschem.2005.05.006
http://dx.doi.org/10.1103/PhysRevA.40.4288
http://dx.doi.org/10.1103/PhysRevA.40.4288
http://dx.doi.org/10.1103/PhysRevA.40.4288
http://dx.doi.org/10.1103/PhysRevA.40.4288
http://dx.doi.org/10.1103/PhysRevA.33.3671
http://dx.doi.org/10.1103/PhysRevA.33.3671
http://dx.doi.org/10.1103/PhysRevA.33.3671
http://dx.doi.org/10.1103/PhysRevA.33.3671
http://dx.doi.org/10.1063/1.2185639
http://dx.doi.org/10.1063/1.2185639
http://dx.doi.org/10.1063/1.2185639
http://dx.doi.org/10.1063/1.2185639



